Review
BibTex RIS Cite

Yalancı Tahıllarda Çimlendirme Prosesinin Etkileri

Year 2022, , 252 - 265, 01.03.2022
https://doi.org/10.21597/jist.969567

Abstract

Dünyada en çok görülen gıda alerjilerinden birisi olan çölyak, hasta bireylerde önerilen miktarlardan daha az B vitamini, demir, kalsiyum ve lif gibi besin ögelerinin emilimine, dolayısıyla besin eksikliğine bağlı komplikasyonların oluşmasına neden olmaktadır. Çölyak hastaları için yüksek besin değerine sahip yeni gıda formülasyonlarının oluşturulmasında, zenginleştirmenin yanı sıra, kinoa (Chenopodium quinoa Willd), amarant (Amaranthus sp.) ve karabuğday (Fagopyrum sp.) gibi yalancı tahılların kullanımı da giderek artmaktadır. Çimlendirme, yenilebilir tohumların besleme kalitesini iyileştiren basit bir proses olarak görülmektedir. Dolayısıyla glutensiz gıdaların besin değerinin artırılmasındaki bir diğer yaklaşım ise formülasyonda kullanılabilecek yalancı tahıllara çimlendirme prosesi uygulamaktır. Bu çalışmada, yalancı tahıllardan kinoa, amarant ve karabuğdayın çimlendirilmesi ile besin içeriklerinde gerçekleşen değişimler hakkında yapılan çalışmalar derlenmiştir.

References

  • Alvarez-Jubete L, Arendt EK, Gallagher E, 2009. Nutritive Value and Chemical Composition of Pseudocereals as Gluten-Free Ingredients. International Journal of Food Sciences and Nutrition, 60 (4): 240-257.
  • Ali OIED, 2019. Nutritional Value of Germinated Quinoa Seeds and Their Protective Effects on Rats’ Health Injected by Nicotine. Egyptian Journal of Food Science, 47 (2): 227-241.
  • Argüelles-López OD, Reyes-Moreno C, Gutiérrez-Dorado RR, Sánchez-Osuna MF, López-Cervantes J, Cuevas-Rodríguez EO, Jorge Milán-Carrillo J, Perales-Sánchez JXK, 2018. Functional Beverages Elaborated from Amaranth and Chia Flours Processed by Germination and Extrusion. Biotecnia, 20 (3): 135-145.
  • Bardella MT, Fredella C, Prampolini L, Molteni N, Giunta AM, Bianchi PA, 2000. Body Composition and Dietary Intakes in Adult Celiac Disease Patients Consuming a Strict Gluten-Free Diet. American Journal of Clinical Nutrition, 72 (4): 937-939.
  • Bellaio S, Kappeler S, Rosenfeld EZ, Jacobs M, 2013. Partially Germinated Ingredients for Naturally Healthy and Tasty Products. Cereal Foods World, 58 (2): 55.
  • Bhinder S, Kumari S, Singh B, Kaur A, Singh N, 2021. Impact of Germination on Phenolic Composition, Antioxidant Properties, Antinutritional Factors, Mineral Content and Maillard Reaction Products of Malted Quinoa Flour. Food Chemistry, 346, 128915.
  • Bressani R, 2003. Amaranth. In: B Caballero (Eds.). Encyclopedia of Food Sciences and Nutrition. Oxford: Academic Press, pp. 166-173.
  • Carciochi RA, Manrique GD, Dimitrov K, 2014. Changes in Phenolic Composition and Antioxidant Activity During Germination of Quinoa Seeds (Chenopodium quinoa Willd.). International Food Research Journal, 21 (2): 767-773.
  • Caterina B, Camelia V, 2012. Sprouted Buckwheat an Important Vegetable Source of Antioxidants. The Annals of the University Dunarea de Jos of Galati. Fascicle VI-Food Technology, 36 (1): 53-60.
  • Ciacci C, Cirillo M, Cavallaro R, Mazzacca G, 2002. Long-Term Follow-up of Celiac Adults on Gluten-Free Diet Prevalence and Correlates of Intestinal Damage. Digestion, 66: 178-185.
  • Darwish AM, Al Jumayi HA, Elhendy HA, 2020. Effect of Germination on the Nutritional Profile of Quinoa (Cheopodium quinoa Willd.) Seeds and Its Antianemic Potential in Sprague–Dawley Male Albino Rats. Cereal Chemistry, 98 (2): 315-327.
  • de Oliveira Lopes C, Barcelos MDFP, de Goes Vieira CN, de Abreu WC, Ferreira EB, Pereira RC, de Angelis-Pereira MC, 2019. Effects of Sprouted and Fermented Quinoa (Chenopodium quinoa) on Glycemic Index of Diet and Biochemical Parameters of Blood of Wistar Rats Fed High Carbohydrate Diet. Journal of Food Science and Technology, 56 (1): 40-48.
  • Demir B, Bilgiçli N, 2020. Changes in Chemical and Anti-nutritional Properties of Pasta Enriched with Raw and Germinated Quinoa (Chenopodium quinoa Willd.) Flours. Journal of Food Science and Technology, 57 (10): 3884-3892.
  • Donkor ON, Stojanovska L, Ginn P, Ashton J, Vasiljevic T, 2012. Germinated Grains–Sources of Bioactive Compounds. Food Chemistry, 135 (3): 950-959.
  • Dykes L, Rooney LW, 2007. Phenolic Compounds in Cereal Grains and Their Health Benefits. Cereal Foods World, 52: 105-111.
  • Egli I, Davidsson L, Juillerat MA, Barclay D, Hurrell RF, 2002. The Influence of Soaking and Germination on the Phytase Activity and Phytic Acid Content of Grains and Seeds Potentially Useful for Complementary Feedin. Journal of Food Science, 67 (9): 3484-3488.
  • Fasano A, Catassi C, 2001. Current Approaches to Diagnosis and Treatment of Celiac Disease: An Evolving Spectrum. Gastroenterology, 120: 636-651.
  • Gorinstein S, Lojek A, Číž M, Pawelzik E, Delgado-Licon E, Medina OJ, Moreno M, Salas IA, Goshev I, 2008. Comparison of Composition and Antioxidant Capacity of Some Cereals and Pseudocereals. International Journal of Food Science & Technology, 43: 629-637.
  • Guardianelli LM, Salinas MV, Puppo MC, 2019. Hydration and Rheological Properties of Amaranth-Wheat Flour Dough: Influence of Germination of Amaranth Seeds. Food Hydrocolloids, 97: 105242.
  • Hallert C, Grant C, Grehn S, Grännö C, Hultén S, Midhagen G, Ström M, Svensson H, Valdimarsson T, 2002, Evidence of Poor Vitamin Status in Coeliac Patients on a Gluten-Free Diet for 10 Years. Alimentary Pharmacology & Therapeutics, 16: 1333-1339.
  • Hopman EGD, Le Cessie S, Von Blomberg ME, Mearin ML, 2006. Nutritional Management of the Gluten-Free Diet in Young People with Celiac Disease in The Netherlands. Journal of Pediatric Gastroenterology and Nutrition, 43: 102-108.
  • Hung PV, Trinh LND, Thuy NTX, Morita N, 2020. Changes in Nutritional Composition, Enzyme Activities and Bioactive Compounds of Germinated Buckwheat (Fagopyrum esculantum M.) Under Unchanged Air and Humidity Conditions. International Journal of Food Science & Technology, 56: 3209–3217.
  • Ispiryan L, Kuktaite R, Zannini E, Arendt EK, 2021. Fundamental Study on Changes in the FODMAP Profile of Cereals, Pseudo-cereals, and Pulses During the Malting Process. Food Chemistry, 343: 128549.
  • Jedrychowski L, 2010. General Characteristics of Food Allergens. In: L Jedrychowski, HJ Wichers (Eds.). Chemical and Biological Properties of Food Allergens. CRC Press: Boca Raton, pp. 185-192, FL.
  • Jimenez MD, Lobo M, Sammán N, 2019. Influence of Germination of Quinoa (Chenopodium quinoa) and Amaranth (Amaranthus) Grains on Nutritional and Techno Functional Properties of Their Flours. Journal of Food Composition and Analysis, 84: 103290.
  • Kanensi OJ, Ochola S, Gikonyo NK, Makokha A, 2013. Effect of Steeping and Germination on the Diastatic Activity and Sugar Content in Amaranth Grains and Viscosity of Porridge. Journal of Agriculture and Food Technology, 3 (1): 1-7.
  • Mariani P, Viti MG, Montuori M, La Vecchia A, Cipolletta E, Calvani L, Bonamico M, 1998. The Gluten-Free Diet: A Nutritional Risk Factor for Adolescents with Celiac Disease?. Journal of Pediatric Gastroenterology and Nutrition, 27 (5): 519-523.
  • Martínez-Villaluenga C, Peñas E, Hernández-Ledesma B, 2020. Pseudocereal Grains: Nutritional Value, Health Benefits and Current Applications for the Development of Gluten-Free Foods. Food and Chemical Toxicology, 137: 111178.
  • Mazza G, Oomah BD, 2003. Buckwheat. In: B Caballero (Eds.). Encyclopedia of Food Sciences and Nutrition. Oxford: Academic Press, pp. 692-699.
  • McGough N, Cummings JH, 2005. Coeliac Disease: A Diverse Clinical Syndrome Caused by Intolerance of Wheat, Barley and Rye. Proceedings of the Nutrition Society, 64: 434- 450.
  • Morita N, Miyake K, Maeda T, Van Hung P, 2013. Germinated Buckwheat for Functional Foods. In: Advances in Cereal and Pseudocereal Research for Functional Foods. pp. 75–90.
  • Motta C, Castanheira I, Gonzales GB, Delgado I, Torres D, Santos M, Matos AS, 2019. Impact of Cooking Methods and Malting on Amino Acids Content in Amaranth, Buckwheat and Quinoa. Journal of Food Composition and Analysis, 76: 58-65.
  • Omary MB, Fong C, Rothschild J, Finney P, 2012. Effects of Germination on the Nutritional Profile of Gluten‐Free Cereals and Pseudocereals: A Review. Cereal Chemistry, 89 (1): 1-14.
  • See J, Murray JA, 2006. Gluten-Free Diet: The Medical and Nutrition Management of Celiac Disease. Nutrition in Clinical Practice, 21: 1-15.
  • Sindhu R, Beniwal SK, Devi A, 2019. Effect of Grain Processing on Nutritional and Physico-Chemical, Functional and Pasting Properties of Amaranth and Quinoa Flours. Indian Journal of Traditional Knowledge (IJTK), 18 (3): 500-507.
  • Siwatch M, Yadav RB, Yadav BS, 2019. Chemical, Physicochemical, Pasting and Microstructural Properties of Amaranth (Amaranthus hypochondriacus) Flour as Affected by Different Processing Treatments. Quality Assurance and Safety of Crops & Foods, 11 (1): 3-13.
  • Smeds AI, Eklund PC, Sjöholm RE, Willför SM, Nishibe S, Deyama T, Holmbom BR, 2007. Quantification of a Broad Spectrum of Lignans in Cereals, Oilseeds, and Nuts. Journal of Agricultural and Food Chemistry, 55: 1337-1346.
  • Suárez-Estrella D, Bresciani A, Iametti S, Marengo M, Pagani MA, Marti A, 2020. Effect of Sprouting on Proteins and Starch in Quinoa (Chenopodium quinoa Willd.). Plant Foods for Human Nutrition, 75 (4): 635-641.
  • Tanwar B, Lamsal N, Goyal A, Kumar V, 2019. Functional and Physicochemical Characteristics of Raw, Roasted and Germinated Buckwheat Flour. Asian Journal of Dairy & Food Research, 38 (2).
  • Taylor JRN, Parker ML, 2002. Quinoa. In: PS Belton, JRN Taylor (Eds.). Pseudocereals and Less Common Cereals: Grain Properties and Utilization. Berlin: Springer Verlag, pp. 93-122.
  • Thompson T, 2000. Folate, Iron and Dietary Fiber Contents of the Glutenfree Diet. Journal of the American Dietetic Association, 100: 1389-1396.
  • Vora JD, Rane AG, Jadhav P, 2014. Biochemical, Antimicrobial and Organoleptic Studies on the Germination Profıle of Finger Millet (Eleusine coracana). International Journal of Life Sciences Biotechnology and Pharma Research, 3 (4): 123.

Effects of Germination Process on Pseudocereals

Year 2022, , 252 - 265, 01.03.2022
https://doi.org/10.21597/jist.969567

Abstract

Celiac disease, is one of the most common food allergies in the world, causes malnutrition of vitamin B, iron, calcium and fiber below the recommended amounts in patients, thus causing complications due to nutrient deficiency. In addition to enrichment, the usage of pseudocereals such as quinoa (Chenopodium quinoa Willd), amaranth (Amaranthus sp.) and buckwheat (Fagopyrum sp.) has an increasing trend in the improvement of new food formulations with high nutritional value for celiac patients. Germination is seen as a simple process that improves the nutritional quality of edible seeds. Therefore, another approach to increase the nutritional value of gluten-free foods is to apply the germination process to pseudocereals that can be used in the formulation. In this study, studies researching the changes in nutrient content with the germination of quinoa, amaranth and buckwheat from pseudocereals were compiled.

References

  • Alvarez-Jubete L, Arendt EK, Gallagher E, 2009. Nutritive Value and Chemical Composition of Pseudocereals as Gluten-Free Ingredients. International Journal of Food Sciences and Nutrition, 60 (4): 240-257.
  • Ali OIED, 2019. Nutritional Value of Germinated Quinoa Seeds and Their Protective Effects on Rats’ Health Injected by Nicotine. Egyptian Journal of Food Science, 47 (2): 227-241.
  • Argüelles-López OD, Reyes-Moreno C, Gutiérrez-Dorado RR, Sánchez-Osuna MF, López-Cervantes J, Cuevas-Rodríguez EO, Jorge Milán-Carrillo J, Perales-Sánchez JXK, 2018. Functional Beverages Elaborated from Amaranth and Chia Flours Processed by Germination and Extrusion. Biotecnia, 20 (3): 135-145.
  • Bardella MT, Fredella C, Prampolini L, Molteni N, Giunta AM, Bianchi PA, 2000. Body Composition and Dietary Intakes in Adult Celiac Disease Patients Consuming a Strict Gluten-Free Diet. American Journal of Clinical Nutrition, 72 (4): 937-939.
  • Bellaio S, Kappeler S, Rosenfeld EZ, Jacobs M, 2013. Partially Germinated Ingredients for Naturally Healthy and Tasty Products. Cereal Foods World, 58 (2): 55.
  • Bhinder S, Kumari S, Singh B, Kaur A, Singh N, 2021. Impact of Germination on Phenolic Composition, Antioxidant Properties, Antinutritional Factors, Mineral Content and Maillard Reaction Products of Malted Quinoa Flour. Food Chemistry, 346, 128915.
  • Bressani R, 2003. Amaranth. In: B Caballero (Eds.). Encyclopedia of Food Sciences and Nutrition. Oxford: Academic Press, pp. 166-173.
  • Carciochi RA, Manrique GD, Dimitrov K, 2014. Changes in Phenolic Composition and Antioxidant Activity During Germination of Quinoa Seeds (Chenopodium quinoa Willd.). International Food Research Journal, 21 (2): 767-773.
  • Caterina B, Camelia V, 2012. Sprouted Buckwheat an Important Vegetable Source of Antioxidants. The Annals of the University Dunarea de Jos of Galati. Fascicle VI-Food Technology, 36 (1): 53-60.
  • Ciacci C, Cirillo M, Cavallaro R, Mazzacca G, 2002. Long-Term Follow-up of Celiac Adults on Gluten-Free Diet Prevalence and Correlates of Intestinal Damage. Digestion, 66: 178-185.
  • Darwish AM, Al Jumayi HA, Elhendy HA, 2020. Effect of Germination on the Nutritional Profile of Quinoa (Cheopodium quinoa Willd.) Seeds and Its Antianemic Potential in Sprague–Dawley Male Albino Rats. Cereal Chemistry, 98 (2): 315-327.
  • de Oliveira Lopes C, Barcelos MDFP, de Goes Vieira CN, de Abreu WC, Ferreira EB, Pereira RC, de Angelis-Pereira MC, 2019. Effects of Sprouted and Fermented Quinoa (Chenopodium quinoa) on Glycemic Index of Diet and Biochemical Parameters of Blood of Wistar Rats Fed High Carbohydrate Diet. Journal of Food Science and Technology, 56 (1): 40-48.
  • Demir B, Bilgiçli N, 2020. Changes in Chemical and Anti-nutritional Properties of Pasta Enriched with Raw and Germinated Quinoa (Chenopodium quinoa Willd.) Flours. Journal of Food Science and Technology, 57 (10): 3884-3892.
  • Donkor ON, Stojanovska L, Ginn P, Ashton J, Vasiljevic T, 2012. Germinated Grains–Sources of Bioactive Compounds. Food Chemistry, 135 (3): 950-959.
  • Dykes L, Rooney LW, 2007. Phenolic Compounds in Cereal Grains and Their Health Benefits. Cereal Foods World, 52: 105-111.
  • Egli I, Davidsson L, Juillerat MA, Barclay D, Hurrell RF, 2002. The Influence of Soaking and Germination on the Phytase Activity and Phytic Acid Content of Grains and Seeds Potentially Useful for Complementary Feedin. Journal of Food Science, 67 (9): 3484-3488.
  • Fasano A, Catassi C, 2001. Current Approaches to Diagnosis and Treatment of Celiac Disease: An Evolving Spectrum. Gastroenterology, 120: 636-651.
  • Gorinstein S, Lojek A, Číž M, Pawelzik E, Delgado-Licon E, Medina OJ, Moreno M, Salas IA, Goshev I, 2008. Comparison of Composition and Antioxidant Capacity of Some Cereals and Pseudocereals. International Journal of Food Science & Technology, 43: 629-637.
  • Guardianelli LM, Salinas MV, Puppo MC, 2019. Hydration and Rheological Properties of Amaranth-Wheat Flour Dough: Influence of Germination of Amaranth Seeds. Food Hydrocolloids, 97: 105242.
  • Hallert C, Grant C, Grehn S, Grännö C, Hultén S, Midhagen G, Ström M, Svensson H, Valdimarsson T, 2002, Evidence of Poor Vitamin Status in Coeliac Patients on a Gluten-Free Diet for 10 Years. Alimentary Pharmacology & Therapeutics, 16: 1333-1339.
  • Hopman EGD, Le Cessie S, Von Blomberg ME, Mearin ML, 2006. Nutritional Management of the Gluten-Free Diet in Young People with Celiac Disease in The Netherlands. Journal of Pediatric Gastroenterology and Nutrition, 43: 102-108.
  • Hung PV, Trinh LND, Thuy NTX, Morita N, 2020. Changes in Nutritional Composition, Enzyme Activities and Bioactive Compounds of Germinated Buckwheat (Fagopyrum esculantum M.) Under Unchanged Air and Humidity Conditions. International Journal of Food Science & Technology, 56: 3209–3217.
  • Ispiryan L, Kuktaite R, Zannini E, Arendt EK, 2021. Fundamental Study on Changes in the FODMAP Profile of Cereals, Pseudo-cereals, and Pulses During the Malting Process. Food Chemistry, 343: 128549.
  • Jedrychowski L, 2010. General Characteristics of Food Allergens. In: L Jedrychowski, HJ Wichers (Eds.). Chemical and Biological Properties of Food Allergens. CRC Press: Boca Raton, pp. 185-192, FL.
  • Jimenez MD, Lobo M, Sammán N, 2019. Influence of Germination of Quinoa (Chenopodium quinoa) and Amaranth (Amaranthus) Grains on Nutritional and Techno Functional Properties of Their Flours. Journal of Food Composition and Analysis, 84: 103290.
  • Kanensi OJ, Ochola S, Gikonyo NK, Makokha A, 2013. Effect of Steeping and Germination on the Diastatic Activity and Sugar Content in Amaranth Grains and Viscosity of Porridge. Journal of Agriculture and Food Technology, 3 (1): 1-7.
  • Mariani P, Viti MG, Montuori M, La Vecchia A, Cipolletta E, Calvani L, Bonamico M, 1998. The Gluten-Free Diet: A Nutritional Risk Factor for Adolescents with Celiac Disease?. Journal of Pediatric Gastroenterology and Nutrition, 27 (5): 519-523.
  • Martínez-Villaluenga C, Peñas E, Hernández-Ledesma B, 2020. Pseudocereal Grains: Nutritional Value, Health Benefits and Current Applications for the Development of Gluten-Free Foods. Food and Chemical Toxicology, 137: 111178.
  • Mazza G, Oomah BD, 2003. Buckwheat. In: B Caballero (Eds.). Encyclopedia of Food Sciences and Nutrition. Oxford: Academic Press, pp. 692-699.
  • McGough N, Cummings JH, 2005. Coeliac Disease: A Diverse Clinical Syndrome Caused by Intolerance of Wheat, Barley and Rye. Proceedings of the Nutrition Society, 64: 434- 450.
  • Morita N, Miyake K, Maeda T, Van Hung P, 2013. Germinated Buckwheat for Functional Foods. In: Advances in Cereal and Pseudocereal Research for Functional Foods. pp. 75–90.
  • Motta C, Castanheira I, Gonzales GB, Delgado I, Torres D, Santos M, Matos AS, 2019. Impact of Cooking Methods and Malting on Amino Acids Content in Amaranth, Buckwheat and Quinoa. Journal of Food Composition and Analysis, 76: 58-65.
  • Omary MB, Fong C, Rothschild J, Finney P, 2012. Effects of Germination on the Nutritional Profile of Gluten‐Free Cereals and Pseudocereals: A Review. Cereal Chemistry, 89 (1): 1-14.
  • See J, Murray JA, 2006. Gluten-Free Diet: The Medical and Nutrition Management of Celiac Disease. Nutrition in Clinical Practice, 21: 1-15.
  • Sindhu R, Beniwal SK, Devi A, 2019. Effect of Grain Processing on Nutritional and Physico-Chemical, Functional and Pasting Properties of Amaranth and Quinoa Flours. Indian Journal of Traditional Knowledge (IJTK), 18 (3): 500-507.
  • Siwatch M, Yadav RB, Yadav BS, 2019. Chemical, Physicochemical, Pasting and Microstructural Properties of Amaranth (Amaranthus hypochondriacus) Flour as Affected by Different Processing Treatments. Quality Assurance and Safety of Crops & Foods, 11 (1): 3-13.
  • Smeds AI, Eklund PC, Sjöholm RE, Willför SM, Nishibe S, Deyama T, Holmbom BR, 2007. Quantification of a Broad Spectrum of Lignans in Cereals, Oilseeds, and Nuts. Journal of Agricultural and Food Chemistry, 55: 1337-1346.
  • Suárez-Estrella D, Bresciani A, Iametti S, Marengo M, Pagani MA, Marti A, 2020. Effect of Sprouting on Proteins and Starch in Quinoa (Chenopodium quinoa Willd.). Plant Foods for Human Nutrition, 75 (4): 635-641.
  • Tanwar B, Lamsal N, Goyal A, Kumar V, 2019. Functional and Physicochemical Characteristics of Raw, Roasted and Germinated Buckwheat Flour. Asian Journal of Dairy & Food Research, 38 (2).
  • Taylor JRN, Parker ML, 2002. Quinoa. In: PS Belton, JRN Taylor (Eds.). Pseudocereals and Less Common Cereals: Grain Properties and Utilization. Berlin: Springer Verlag, pp. 93-122.
  • Thompson T, 2000. Folate, Iron and Dietary Fiber Contents of the Glutenfree Diet. Journal of the American Dietetic Association, 100: 1389-1396.
  • Vora JD, Rane AG, Jadhav P, 2014. Biochemical, Antimicrobial and Organoleptic Studies on the Germination Profıle of Finger Millet (Eleusine coracana). International Journal of Life Sciences Biotechnology and Pharma Research, 3 (4): 123.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Gıda Mühendisliği / Food Engineering
Authors

Nezahat Olcay 0000-0003-3302-8969

Mustafa Kürşat Demir 0000-0002-4706-4170

Publication Date March 1, 2022
Submission Date July 12, 2021
Acceptance Date November 13, 2021
Published in Issue Year 2022

Cite

APA Olcay, N., & Demir, M. K. (2022). Yalancı Tahıllarda Çimlendirme Prosesinin Etkileri. Journal of the Institute of Science and Technology, 12(1), 252-265. https://doi.org/10.21597/jist.969567
AMA Olcay N, Demir MK. Yalancı Tahıllarda Çimlendirme Prosesinin Etkileri. Iğdır Üniv. Fen Bil Enst. Der. March 2022;12(1):252-265. doi:10.21597/jist.969567
Chicago Olcay, Nezahat, and Mustafa Kürşat Demir. “Yalancı Tahıllarda Çimlendirme Prosesinin Etkileri”. Journal of the Institute of Science and Technology 12, no. 1 (March 2022): 252-65. https://doi.org/10.21597/jist.969567.
EndNote Olcay N, Demir MK (March 1, 2022) Yalancı Tahıllarda Çimlendirme Prosesinin Etkileri. Journal of the Institute of Science and Technology 12 1 252–265.
IEEE N. Olcay and M. K. Demir, “Yalancı Tahıllarda Çimlendirme Prosesinin Etkileri”, Iğdır Üniv. Fen Bil Enst. Der., vol. 12, no. 1, pp. 252–265, 2022, doi: 10.21597/jist.969567.
ISNAD Olcay, Nezahat - Demir, Mustafa Kürşat. “Yalancı Tahıllarda Çimlendirme Prosesinin Etkileri”. Journal of the Institute of Science and Technology 12/1 (March 2022), 252-265. https://doi.org/10.21597/jist.969567.
JAMA Olcay N, Demir MK. Yalancı Tahıllarda Çimlendirme Prosesinin Etkileri. Iğdır Üniv. Fen Bil Enst. Der. 2022;12:252–265.
MLA Olcay, Nezahat and Mustafa Kürşat Demir. “Yalancı Tahıllarda Çimlendirme Prosesinin Etkileri”. Journal of the Institute of Science and Technology, vol. 12, no. 1, 2022, pp. 252-65, doi:10.21597/jist.969567.
Vancouver Olcay N, Demir MK. Yalancı Tahıllarda Çimlendirme Prosesinin Etkileri. Iğdır Üniv. Fen Bil Enst. Der. 2022;12(1):252-65.