Research Article
BibTex RIS Cite

Stereolitrografi ile 3B Basılabilir Nanokil Takviyeli Polimer Yapıların Mekanik Karakterizasyonu

Year 2019, Volume: 9 Issue: 3, 1584 - 1593, 01.09.2019
https://doi.org/10.21597/jist.555398

Abstract

3-Boyutlu (3B) basılabilir polimerik yapılar, mevcut geleneksel yöntemlerle üretilen parçalardan daha düşük mekanik özelliklere sahiptir. UV-ışınları ve devamında uygulanan ısıl işlem adımları sırasında polimer zincirleri arasında reçine çapraz bağlanmasına rağmen, 3B polimerik yapılar üzerinde yüksek uzama ve daha fazla süneklik arzu edilen seviyelerde değildir. Son yıllarda silika, alümina, zirkonya ve çok duvarlı karbon nanotüp, grafen vb. gibi takviye malzemeleri mekanik özellikleri geliştirmek için örnek çalışmalar olmuşlardır. Bu çalışmada, fotoduyarlı reçinede yüksek dispersiyon ve homojenlik sağlayan amin ve silan fonksiyonel grubu içeren montmorillonit nanokiller, dört farklı (katkısız, %0.25, %0.5 ve %1) konsantrasyonda hazırlanmıştır. 3B lazer stereolitografi yazıcı kullanılarak test numuneleri (çekme testi, dinamik mekanik analiz (DMA) ve taramalı elektron mikroskobu (SEM)) basılmıştır. Sonuç olarak, nanokil konsantrasyonunu arttırarak, polimerik yapılar mekanik dayanımının katkısız polimer yapılara nazaran arttığı görülmektedir. Sadece %1 nanokil konsantrasyonda nanokiller arasında görülen topaklaşma nedeni ile %0.5 nanokil ilavesine kıyasla mekanik dayanımın daha düşük çıktığı gözlemlenmiştir. Ayrıca nanokilin yalıtkan özelliğinden dolayı termal stabilitenin nanokil ilavesi ile beraber kademeli olarak azaldığı da görülmüştür.

References

  • Babu Valapa R, Loganathan S, Pugazhenthi G, Thomas S, Varghese, TO, 2017. An Overview of Polymer–Clay Nanocomposites. Clay-Polymer Nanocomposites, 29–81.
  • Berman B, 2012. 3-D printing: The new industrial revolution. Business Horizons, 55 (2): 155–162.
  • Bikas H, Stavropoulos P, Chryssolouris G, 2015 Additive manufacturing methods and modelling approaches: a critical review. The International Journal of Advanced Manufacturing Technology, 83 (1-4): 389–405.
  • De Leon AC, Chen Q, Palaganas NB, Palaganas JO, Manapat J, Advincula RC, 2016. High performance polymer nanocomposites for additive manufacturing applications. Reactive and Functional Polymers, 103: 141–155.
  • Dos Santos MN, Opelt CV, Lafratta FH, Lepienski CM, Pezzin SH, Coelho LAF, 2011. Thermal and mechanical properties of a nanocomposite of a photocurable epoxy-acrylate resin and multiwalled carbon nanotubes. Materials Science and Engineering: A, 528 (13-14): 4318–4324.
  • Eng H, Maleksaeedi S, Yu S., Choong YYC, Wiria FE, Kheng RE, Wei J, Su P-C, Tham HP, 2017. Development of CNTs-filled photopolymer for projection stereolithography. Rapid Prototyping Journal, 23 (1): 129–136.
  • Eng H, Maleksaeddi S, Yu S, Choong YYC, Wiria FE, Tan CLC, Su PC, Wei J, 2017. 3D Stereolithography of Polymer Composites Reinforced with Orientated Nanoclay. Procedia Engineering, 216: 1-7.
  • Frazier WE, 2014. Metal Additive Manufacturing: A Review. Journal of Materials Engineering and Performance, 23 (6): 1917–1928.
  • Gurr M, Hofmann D, Ehm M, Thomann Y, Kübler R, Mülhaupt R, 2008. Acrylic Nanocomposite Resins for Use in Stereolithography and Structural Light Modulation Based Rapid Prototyping and Rapid Manufacturing Technologies. Advanced Functional Materials, 18 (16): 2390–2397.
  • Hmeidat NS, Kemp JW, Compton BG, 2018. High-strength epoxy nanocomposites for 3D printing. Composites Science and Technology, 160: 9–20.
  • Kumar S, Hofmann M, Steinmann B, Foster EJ, Weder C, 2012. Reinforcement of Stereolithographic Resins for Rapid Prototyping with Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 4 (10): 5399–5407.
  • Manapat JZ, Mangadlao JD, Tiu BDB, Tritchler GC, Advincula RC, 2017. High-Strength Stereolithographic 3D Printed Nanocomposites: Graphene Oxide Metastability. ACS Applied Materials & Interfaces, 9 (11): 10085–10093.
  • Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D, 2018. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143: 172–196.
  • Paul DR, Robeson LM, 2008. Polymer nanotechnology: Nanocomposites’’, Polymer, 49 (15): 3187–3204.
  • Sandoval JH, Soto KF, Murr LE, Wicker RB, 2006. Nanotailoring photocrosslinkable epoxy resins with multi-walled carbon nanotubes for stereolithography layered manufacturing. Journal of Materials Science, 42 (1): 156–165.
  • Sciancalepore C, Moroni F, Messori M, Bondioli F, 2017. Acrylate-based silver nanocomposite by simultaneous polymerization–reduction approach via 3D stereolithography. Composites Communications, 6: 11–16.
  • Shirazi SFS, Gharehkhani S, Mehrali M, Yarmand H, Metselaar HSC, Adib Kadri N, Osman NAA, 2015. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Science and Technology of Advanced Materials, 16 (3): 033502.
  • Taormina G, Sciancalepore C, Bondioli F, Messori M, 2018. Special Resins for Stereolithography: In Situ Generation of Silver Nanoparticles. Polymers, 10 (2): 212.
  • Turner BN, Gold SA, 2015. A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyping Journal, 21 (3): 250–261.
  • Vaezi M, Seitz H, Yang S, 2012. A review on 3D micro-additive manufacturing Technologies. The International Journal of Advanced Manufacturing Technology, 67 (5-8): 1721–1754.
  • Voet VSD, Strating T, Schnelting GHM, Dijkstra P, Tietema M, Xu J, Woortman AJJ, Loos K, Jager J, Folkersma R, 2018. Biobased Acrylate Photocurable Resin Formulation for Stereolithography 3D Printing. ACS Omega, 3 (2): 1403–1408.
  • Wang K, Chen L, Wu J, Toh ML, He C, Yee AF, 2005. Epoxy Nanocomposites with Highly Exfoliated Clay: Mechanical Properties and Fracture Mechanisms. Macromolecules, 38 (3): 788–800.
  • Wang X, Jiang M, Zhou Z, Gou J, Hui D, 2017. 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, 110: 442–458.
  • Weng Z, Zhou Y, Lin W, Senthil T, Wu L, 2016. Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer. Composites Part A: Applied Science and Manufacturing, 88: 234–242.
  • Wong KV, Hernandez A, 2012. A Review of Additive Manufacturing. ISRN Mechanical Engineering, 1–10.
  • Yuan S, Shen F, Chua CK, Zhou K, 2018. Polymeric composites for powder-based additive manufacturing: Materials and applications. Progress in Polymer Science.

Mechanical Characterization of 3D Printable Nanoclay Reinforced Polymer Structures by Stereolithography

Year 2019, Volume: 9 Issue: 3, 1584 - 1593, 01.09.2019
https://doi.org/10.21597/jist.555398

Abstract

3-Dimensional (3D) printable polymeric structures have lower mechanical properties than parts produced by existing conventional methods. It is still a challenge to obtain high elongation and more ductile on 3D polymeric structures even though photocurable resin cross linked with among polymer chains during UV-irridation and applied post-heat treatment steps. Filler materials as reinforcement agents such as silica, alumina, zirconia and multi-walled carbon nanotube, graphene, etc. were used to enhance its mechanical properties in the past decades. In this study, montmorillonite nanoclays including amine and silane functional group, which provides high dispersibility and homogeneity in photocurable resin, are added and mixed into acyrlate based photocurable resin with four different (pure, 0.25%, 0.5% and 1%) concentration. By using a 3D laser stereolithography printer, test samples are produced and characterized by tensile test, dynamic mechanical analyzer (DMA) and scanning electron microscope (SEM). As a result, it has been observed that by increasing the concentration of nanoclay, 3D polymeric structures gradually enhances its mechanical strength compared to pure polymer structures. Due to the agglomeration observed on %1 nanoclay concentration, their mechanical strength is lower than that of 0.5% nanoclay. Also, thermal stability gradually decreases with increasing nanoclay concentration due to its insulating properties.

References

  • Babu Valapa R, Loganathan S, Pugazhenthi G, Thomas S, Varghese, TO, 2017. An Overview of Polymer–Clay Nanocomposites. Clay-Polymer Nanocomposites, 29–81.
  • Berman B, 2012. 3-D printing: The new industrial revolution. Business Horizons, 55 (2): 155–162.
  • Bikas H, Stavropoulos P, Chryssolouris G, 2015 Additive manufacturing methods and modelling approaches: a critical review. The International Journal of Advanced Manufacturing Technology, 83 (1-4): 389–405.
  • De Leon AC, Chen Q, Palaganas NB, Palaganas JO, Manapat J, Advincula RC, 2016. High performance polymer nanocomposites for additive manufacturing applications. Reactive and Functional Polymers, 103: 141–155.
  • Dos Santos MN, Opelt CV, Lafratta FH, Lepienski CM, Pezzin SH, Coelho LAF, 2011. Thermal and mechanical properties of a nanocomposite of a photocurable epoxy-acrylate resin and multiwalled carbon nanotubes. Materials Science and Engineering: A, 528 (13-14): 4318–4324.
  • Eng H, Maleksaeedi S, Yu S., Choong YYC, Wiria FE, Kheng RE, Wei J, Su P-C, Tham HP, 2017. Development of CNTs-filled photopolymer for projection stereolithography. Rapid Prototyping Journal, 23 (1): 129–136.
  • Eng H, Maleksaeddi S, Yu S, Choong YYC, Wiria FE, Tan CLC, Su PC, Wei J, 2017. 3D Stereolithography of Polymer Composites Reinforced with Orientated Nanoclay. Procedia Engineering, 216: 1-7.
  • Frazier WE, 2014. Metal Additive Manufacturing: A Review. Journal of Materials Engineering and Performance, 23 (6): 1917–1928.
  • Gurr M, Hofmann D, Ehm M, Thomann Y, Kübler R, Mülhaupt R, 2008. Acrylic Nanocomposite Resins for Use in Stereolithography and Structural Light Modulation Based Rapid Prototyping and Rapid Manufacturing Technologies. Advanced Functional Materials, 18 (16): 2390–2397.
  • Hmeidat NS, Kemp JW, Compton BG, 2018. High-strength epoxy nanocomposites for 3D printing. Composites Science and Technology, 160: 9–20.
  • Kumar S, Hofmann M, Steinmann B, Foster EJ, Weder C, 2012. Reinforcement of Stereolithographic Resins for Rapid Prototyping with Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 4 (10): 5399–5407.
  • Manapat JZ, Mangadlao JD, Tiu BDB, Tritchler GC, Advincula RC, 2017. High-Strength Stereolithographic 3D Printed Nanocomposites: Graphene Oxide Metastability. ACS Applied Materials & Interfaces, 9 (11): 10085–10093.
  • Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D, 2018. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143: 172–196.
  • Paul DR, Robeson LM, 2008. Polymer nanotechnology: Nanocomposites’’, Polymer, 49 (15): 3187–3204.
  • Sandoval JH, Soto KF, Murr LE, Wicker RB, 2006. Nanotailoring photocrosslinkable epoxy resins with multi-walled carbon nanotubes for stereolithography layered manufacturing. Journal of Materials Science, 42 (1): 156–165.
  • Sciancalepore C, Moroni F, Messori M, Bondioli F, 2017. Acrylate-based silver nanocomposite by simultaneous polymerization–reduction approach via 3D stereolithography. Composites Communications, 6: 11–16.
  • Shirazi SFS, Gharehkhani S, Mehrali M, Yarmand H, Metselaar HSC, Adib Kadri N, Osman NAA, 2015. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Science and Technology of Advanced Materials, 16 (3): 033502.
  • Taormina G, Sciancalepore C, Bondioli F, Messori M, 2018. Special Resins for Stereolithography: In Situ Generation of Silver Nanoparticles. Polymers, 10 (2): 212.
  • Turner BN, Gold SA, 2015. A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyping Journal, 21 (3): 250–261.
  • Vaezi M, Seitz H, Yang S, 2012. A review on 3D micro-additive manufacturing Technologies. The International Journal of Advanced Manufacturing Technology, 67 (5-8): 1721–1754.
  • Voet VSD, Strating T, Schnelting GHM, Dijkstra P, Tietema M, Xu J, Woortman AJJ, Loos K, Jager J, Folkersma R, 2018. Biobased Acrylate Photocurable Resin Formulation for Stereolithography 3D Printing. ACS Omega, 3 (2): 1403–1408.
  • Wang K, Chen L, Wu J, Toh ML, He C, Yee AF, 2005. Epoxy Nanocomposites with Highly Exfoliated Clay: Mechanical Properties and Fracture Mechanisms. Macromolecules, 38 (3): 788–800.
  • Wang X, Jiang M, Zhou Z, Gou J, Hui D, 2017. 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, 110: 442–458.
  • Weng Z, Zhou Y, Lin W, Senthil T, Wu L, 2016. Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer. Composites Part A: Applied Science and Manufacturing, 88: 234–242.
  • Wong KV, Hernandez A, 2012. A Review of Additive Manufacturing. ISRN Mechanical Engineering, 1–10.
  • Yuan S, Shen F, Chua CK, Zhou K, 2018. Polymeric composites for powder-based additive manufacturing: Materials and applications. Progress in Polymer Science.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Makina Mühendisliği / Mechanical Engineering
Authors

Mehmet Saraç 0000-0002-0760-5569

Merve Mert This is me 0000-0002-9389-2700

İremnur Bülbül This is me 0000-0002-8119-7807

İsmail Aktitiz This is me 0000-0002-3551-7611

Berrin Saygı Yalçın This is me 0000-0001-6579-3345

Remzı Varol 0000-0003-2427-0710

Publication Date September 1, 2019
Submission Date April 18, 2019
Acceptance Date July 27, 2019
Published in Issue Year 2019 Volume: 9 Issue: 3

Cite

APA Saraç, M., Mert, M., Bülbül, İ., Aktitiz, İ., et al. (2019). Stereolitrografi ile 3B Basılabilir Nanokil Takviyeli Polimer Yapıların Mekanik Karakterizasyonu. Journal of the Institute of Science and Technology, 9(3), 1584-1593. https://doi.org/10.21597/jist.555398
AMA Saraç M, Mert M, Bülbül İ, Aktitiz İ, Saygı Yalçın B, Varol R. Stereolitrografi ile 3B Basılabilir Nanokil Takviyeli Polimer Yapıların Mekanik Karakterizasyonu. J. Inst. Sci. and Tech. September 2019;9(3):1584-1593. doi:10.21597/jist.555398
Chicago Saraç, Mehmet, Merve Mert, İremnur Bülbül, İsmail Aktitiz, Berrin Saygı Yalçın, and Remzı Varol. “Stereolitrografi Ile 3B Basılabilir Nanokil Takviyeli Polimer Yapıların Mekanik Karakterizasyonu”. Journal of the Institute of Science and Technology 9, no. 3 (September 2019): 1584-93. https://doi.org/10.21597/jist.555398.
EndNote Saraç M, Mert M, Bülbül İ, Aktitiz İ, Saygı Yalçın B, Varol R (September 1, 2019) Stereolitrografi ile 3B Basılabilir Nanokil Takviyeli Polimer Yapıların Mekanik Karakterizasyonu. Journal of the Institute of Science and Technology 9 3 1584–1593.
IEEE M. Saraç, M. Mert, İ. Bülbül, İ. Aktitiz, B. Saygı Yalçın, and R. Varol, “Stereolitrografi ile 3B Basılabilir Nanokil Takviyeli Polimer Yapıların Mekanik Karakterizasyonu”, J. Inst. Sci. and Tech., vol. 9, no. 3, pp. 1584–1593, 2019, doi: 10.21597/jist.555398.
ISNAD Saraç, Mehmet et al. “Stereolitrografi Ile 3B Basılabilir Nanokil Takviyeli Polimer Yapıların Mekanik Karakterizasyonu”. Journal of the Institute of Science and Technology 9/3 (September 2019), 1584-1593. https://doi.org/10.21597/jist.555398.
JAMA Saraç M, Mert M, Bülbül İ, Aktitiz İ, Saygı Yalçın B, Varol R. Stereolitrografi ile 3B Basılabilir Nanokil Takviyeli Polimer Yapıların Mekanik Karakterizasyonu. J. Inst. Sci. and Tech. 2019;9:1584–1593.
MLA Saraç, Mehmet et al. “Stereolitrografi Ile 3B Basılabilir Nanokil Takviyeli Polimer Yapıların Mekanik Karakterizasyonu”. Journal of the Institute of Science and Technology, vol. 9, no. 3, 2019, pp. 1584-93, doi:10.21597/jist.555398.
Vancouver Saraç M, Mert M, Bülbül İ, Aktitiz İ, Saygı Yalçın B, Varol R. Stereolitrografi ile 3B Basılabilir Nanokil Takviyeli Polimer Yapıların Mekanik Karakterizasyonu. J. Inst. Sci. and Tech. 2019;9(3):1584-93.