Research Article
BibTex RIS Cite

Facile One-pot Synthesis of A Novel Propargyl-Azulene Hybrid Derivative: Cycloaddition Reaction and Some Spectroscopic Properties

Year 2020, Volume: 10 Issue: 4, 2747 - 2758, 15.12.2020
https://doi.org/10.21597/jist.735838

Abstract

Guaiazulene, 1,4-dimethyl-7-isopropylazulene, is one of the non-benzenoid aromatic compounds consisting of fused of the seven- and the five-membered ring. Guaiazulene is an important natural product and having great potential due to its unique optical and electronic properties. In this study, a method for propargyl insertion into the C-4 methyl group of the guaiazulene is developed. A one-pot reaction of the guaiazulene, LDA, and propargyl bromide in THF affords the corresponding a new propargyl-azulene hybrid derivative. Additionally, Diels-Alder cycloaddition reaction between the propargyl-GA and tetraphenylcyclopentadienone was performed, and the cycloadduct was obtained with excellent yield. The structures of new compounds were elucidated on the basis of extensive spectroscopic (IR, NMR, and UV-vis) data analysis. This approach may be potentially useful for the development of the new azulene derivatives.

Thanks

The author is indebted to Atatürk University for its financial support and thanks to Professor Arif Daştan for helpful discussions.

References

  • Amir E, Amir RJ, Campos LM, Hawker CJ, 2011. Stimuli-responsive azulene-based conjugated oligomers with polyaniline-like properties. Journal of the American Chemical Society, 133(26): 10046-10049.
  • Asato AE, Peng A, Hossain MZ, Mirzadegan T, Bertram, JS, 1993. Azulenic retinoids: novel nonbenzenoid aromatic retinoids with anticancer activity. Journal of Medicinal Chemistry, 36(21): 3137-3147.
  • Aumüller IB, Yli-Kauhaluoma J, 2009. Benzo [cd] azulene skeleton: Azulene, heptafulvene, and tropone derivatives. Organic Letters, 11(23): 5363-5365.
  • Aumüller IB, Yli-Kauhaluoma J, 2011. Synthesis and Tautomerization of Benzo [cd] azulen-3-ones. Organic Letters, 13(7): 1670-1673.
  • Balduzzi S, Müller‐Bunz H, McGlinchey MJ, 2004. A Convenient Synthetic Route to Benz [cd] azulenes: Versatile Ligands with the Potential To Bind Metals in an η5, η6, or η7 Fashion. Chemistry-A European Journal, 10(21): 5398-5405.
  • Barman S, Furukawa H, Blacque O, Venkatesan K, Yaghi OM, Berke H, 2010. Azulene based metal-organic frameworks for strong adsorption of H2. Chemical Communications, 46(42): 7981-7983.
  • Cao T, Li Y, Yang Z, Yuan M, Li Y, Yang H, Yin S, 2016. Synthesis and Biological Evaluation of 3, 8‐dimethyl‐5‐isopropylazulene Derivatives as Anti‐gastric Ulcer Agent. Chemical Biology & Drug Design, 88(2): 264-271.
  • Carret S, Blanc A, Coquerel Y, Berthod M, Greene AE, Deprés JP, 2005. Approach to the blues: a highly flexible route to the azulenes. Angewandte Chemie International Edition, 44(32): 5130-5133.
  • Chen D, Yu S, van Ofwegen L, Proksch P, Lin W, 2012. Anthogorgienes A-O, new guaiazulene-derived terpenoids from a Chinese gorgonian Anthogorgia species, and their antifouling and antibiotic activities. Journal of Agricultural and Food Chemistry, 60(1): 112-123.
  • Cowper P, Jin Y, Turton MD, Kociok‐Köhn G, Lewis SE, 2016. Azulenesulfonium Salts: accessible, stable, and versatile reagents for cross‐coupling. Angewandte Chemie International Edition, 55(7): 2564-2568.
  • Crombie AL, Kane JL, Shea KM, Danheiser RL, 2004. Ring expansion-annulation strategy for the synthesis of substituted azulenes and oligoazulenes. 2. Synthesis of azulenyl halides, sulfonates, and azulenylmetal compounds and their application in transition-metal-mediated coupling reactions. The Journal of Organic Chemistry, 69(25): 8652-8667.
  • Ghasimi S, Landfester K, Zhang KA, 2016. Water Compatible Conjugated Microporous Polyazulene Networks as Visible‐Light Photocatalysts in Aqueous Medium. ChemCatChem, 8(4): 694-698.
  • Ghazvini Zadeh EH, Woodward AW, Richardson D, Bondar MV, Belfield KD, 2015. Stimuli‐Responsive Cyclopenta [ef] heptalenes: Synthesis and Optical Properties. European Journal of Organic Chemistry, 2015(10): 2271-2276.
  • Gordon M, 1952. The Azulenes. Chemical Reviews, 50(1): 127-200.
  • Imamura M, Nakanishi K, Suzuki T, Ikegai K, Shiraki R, Ogiyama T, Yokota M, 2012. Discovery of ipragliflozin (ASP1941): a novel C-glucoside with benzothiophene structure as a potent and selective sodium glucose co-transporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes mellitus. Bioorganic & Medicinal Chemistry, 20(10): 3263-3279.
  • Kiriazis A, Aumüller IB, Arnaudova R. Brito V, Rüffer T, Lang H, Yli-Kauhaluoma J, 2017. Nucleophilic Substitution of Hydrogen Facilitated by Quinone Methide Moieties in Benzo [cd] azulen-3-ones. Organic Letters, 19(8): 2030-2033.
  • Kurokawa S, 1983. Synthesis of 2-(4-azulenyl) ethanamine derivatives as a nonbenzenoid analog of biogenic amine. Bulletin of the Chemical Society of Japan, 56(8): 2311-2318.
  • Narita M, Murafuji T, Yamashita S, Fujinaga M, Hiyama K, Oka Y, Ishiguro K, 2018. Synthesis of 2-iodoazulenes by the iododeboronation of azulen-2-ylboronic acid pinacol esters with copper (I) iodide. The Journal of Organic Chemistry, 83(3): 1298-1303.
  • Park S, Yong WS, Kim S, Lee PH, 2014. Diastereoselective N-Sulfonylaminoalkenylation of Azulenes from Terminal Alkynes and Azides via N-Sulfonyl-1, 2, 3-triazoles. Organic Letters, 16(17): 4468-4471.
  • Razus AC, Birzan L, Tecuceanu V, Cristea M, Enache C, 2008. Condensation of alkylazulenes with thiophene-2-carboxaldehyde and the corresponding azomethines. Arkivoc, 11: 210-226.
  • Seo Y, Rho JR, Geum N, Yoon JB, Shin J, 1996. Isolation of guaianoid pigments from the gorgonian Calicogorgia granulosa. Journal of Natural Products, 59(10): 985-986.
  • Shoji T, Sugiyama S, Kobayashi Y, Yamazaki A, Ariga Y, Katoh R, Ito S, 2020. Direct synthesis of 2-arylazulenes by [8+ 2] cycloaddition of 2H-cyclohepta [b] furan-2-ones with silyl enol ethers. Chemical Communications.
  • Székely A, Péter A, Aradi K, Tolnai GL, Novák Z, 2017. Gold-Catalyzed Direct Alkynylation of Azulenes. Organic Letters, 19(4): 954-957.
  • Takekuma SI, Yamamoto M, Nakagawa A, Iwata T, Minematsu T, Takekuma H, 2012. Preparation, crystal structure, and spectroscopic, chemical, and electrochemical properties of (2E, 4E)-1, 4-di (3-guaiazulenyl)-1, 3-butadiene compared with those of (E)-1, 2-di (3-guaiazulenyl) ethylene. Tetrahedron, 68(39): 8318-8329.
  • Tanaka Y, Shigenobu K, 2001. A Review of HNS‐32: A Novel Azulene‐l‐Carboxamidine Derivative with Multiple Cardiovascular Protective Actions. Cardiovascular Drug Reviews, 19(4): 297-312.
  • Tomiyama T, Yokota M, Wakabayashi S, Kosakai K, Yanagisawa T, 1993. Design, synthesis, and pharmacology of 3-substituted sodium azulene-1-sulfontes and related compounds: non-prostanoid thromboxane A2 receptor antagonists. Journal of Medicinal Chemistry, 36(7): 791-800.
  • Vlasceanu A, Andersen CL, Parker CR, Hammerich O, Morsing TJ, Jevric M, Nielsen MB, 2016. Multistate Switches: Ruthenium Alkynyl–Dihydroazulene/Vinylheptafulvene Conjugates. Chemistry-A European Journal, 22(22): 7514-7523.
  • Wang P, Zhu P, Ye C, Asato AE, Liu RS, 1999. Theoretical investigation and molecular design of some azulene derivatives with large hyperpolarizabilities. The Journal of Physical Chemistry A, 103(35): 7076-7082.
  • Woodward AW, Ghazvini Zadeh EH, Bondar MV, Belfield KD, 2016. Computer aided chemical design: using quantum chemical calculations to predict properties of a series of halochromic guaiazulene derivatives. Royal Society Open Science, 3(11): 160373.
  • Yanagisawa T, Wakabayashi S, Tomiyama T, Yasunami M, Takase K, 1988. Synthesis and anti-ulcer activities of sodium alkylazulene sulfonates. Chemical and Pharmaceutical Bulletin, 36(2): 641-647.
  • Zadeh EG, Tang S, Woodward AW, Liu T, Bondar MV, Belfield KD, 2015. Chromophoric materials derived from a natural azulene: syntheses, halochromism and one-photon and two-photon microlithography. Journal of Materials Chemistry C, 3(33): 8495-8503.
  • Zadeh EG, Tang S, Woodward AW, Liu T, Bondar MV, Belfield KD, 2015. Chromophoric materials derived from a natural azulene: syntheses, halochromism and one-photon and two-photon microlithography. Journal of Materials Chemistry C, 3(33): 8495-8503.
  • Zhang LY, Yang F, Shi WQ, Zhang P, Li Y, Yin SF, 2011. Synthesis and antigastric ulcer activity of novel 5-isoproyl-3, 8-dimethylazulene derivatives. Bioorganic & Medicinal Chemistry Letters, 21(19): 5722-5725.
  • Zhao L, Bruneau C, Doucet H, 2013. A straightforward access to guaiazulene derivatives using palladium-catalysed sp 2 or sp 3 C–H bond functionalisation. Chemical Communications, 49(49): 5598-5600.

Facile One-pot Synthesis of A Novel Propargyl-Azulene Hybrid Derivative: Cycloaddition Reaction and Some Spectroscopic Properties

Year 2020, Volume: 10 Issue: 4, 2747 - 2758, 15.12.2020
https://doi.org/10.21597/jist.735838

Abstract

Guaiazulene, 1,4-dimethyl-7-isopropylazulene, is one of the non-benzenoid aromatic compounds consisting of fused of the seven- and the five-membered ring. Guaiazulene is an important natural product and having great potential due to its unique optical and electronic properties. In this study, a method for propargyl insertion into the C-4 methyl group of the guaiazulene is developed. A one-pot reaction of the guaiazulene, LDA, and propargyl bromide in THF affords the corresponding a new propargyl-azulene hybrid derivative. Additionally, Diels-Alder cycloaddition reaction between the propargyl-GA and tetraphenylcyclopentadienone was performed, and the cycloadduct was obtained with excellent yield. The structures of new compounds were elucidated on the basis of extensive spectroscopic (IR, NMR, and UV-vis) data analysis. This approach may be potentially useful for the development of the new azulene derivatives.

References

  • Amir E, Amir RJ, Campos LM, Hawker CJ, 2011. Stimuli-responsive azulene-based conjugated oligomers with polyaniline-like properties. Journal of the American Chemical Society, 133(26): 10046-10049.
  • Asato AE, Peng A, Hossain MZ, Mirzadegan T, Bertram, JS, 1993. Azulenic retinoids: novel nonbenzenoid aromatic retinoids with anticancer activity. Journal of Medicinal Chemistry, 36(21): 3137-3147.
  • Aumüller IB, Yli-Kauhaluoma J, 2009. Benzo [cd] azulene skeleton: Azulene, heptafulvene, and tropone derivatives. Organic Letters, 11(23): 5363-5365.
  • Aumüller IB, Yli-Kauhaluoma J, 2011. Synthesis and Tautomerization of Benzo [cd] azulen-3-ones. Organic Letters, 13(7): 1670-1673.
  • Balduzzi S, Müller‐Bunz H, McGlinchey MJ, 2004. A Convenient Synthetic Route to Benz [cd] azulenes: Versatile Ligands with the Potential To Bind Metals in an η5, η6, or η7 Fashion. Chemistry-A European Journal, 10(21): 5398-5405.
  • Barman S, Furukawa H, Blacque O, Venkatesan K, Yaghi OM, Berke H, 2010. Azulene based metal-organic frameworks for strong adsorption of H2. Chemical Communications, 46(42): 7981-7983.
  • Cao T, Li Y, Yang Z, Yuan M, Li Y, Yang H, Yin S, 2016. Synthesis and Biological Evaluation of 3, 8‐dimethyl‐5‐isopropylazulene Derivatives as Anti‐gastric Ulcer Agent. Chemical Biology & Drug Design, 88(2): 264-271.
  • Carret S, Blanc A, Coquerel Y, Berthod M, Greene AE, Deprés JP, 2005. Approach to the blues: a highly flexible route to the azulenes. Angewandte Chemie International Edition, 44(32): 5130-5133.
  • Chen D, Yu S, van Ofwegen L, Proksch P, Lin W, 2012. Anthogorgienes A-O, new guaiazulene-derived terpenoids from a Chinese gorgonian Anthogorgia species, and their antifouling and antibiotic activities. Journal of Agricultural and Food Chemistry, 60(1): 112-123.
  • Cowper P, Jin Y, Turton MD, Kociok‐Köhn G, Lewis SE, 2016. Azulenesulfonium Salts: accessible, stable, and versatile reagents for cross‐coupling. Angewandte Chemie International Edition, 55(7): 2564-2568.
  • Crombie AL, Kane JL, Shea KM, Danheiser RL, 2004. Ring expansion-annulation strategy for the synthesis of substituted azulenes and oligoazulenes. 2. Synthesis of azulenyl halides, sulfonates, and azulenylmetal compounds and their application in transition-metal-mediated coupling reactions. The Journal of Organic Chemistry, 69(25): 8652-8667.
  • Ghasimi S, Landfester K, Zhang KA, 2016. Water Compatible Conjugated Microporous Polyazulene Networks as Visible‐Light Photocatalysts in Aqueous Medium. ChemCatChem, 8(4): 694-698.
  • Ghazvini Zadeh EH, Woodward AW, Richardson D, Bondar MV, Belfield KD, 2015. Stimuli‐Responsive Cyclopenta [ef] heptalenes: Synthesis and Optical Properties. European Journal of Organic Chemistry, 2015(10): 2271-2276.
  • Gordon M, 1952. The Azulenes. Chemical Reviews, 50(1): 127-200.
  • Imamura M, Nakanishi K, Suzuki T, Ikegai K, Shiraki R, Ogiyama T, Yokota M, 2012. Discovery of ipragliflozin (ASP1941): a novel C-glucoside with benzothiophene structure as a potent and selective sodium glucose co-transporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes mellitus. Bioorganic & Medicinal Chemistry, 20(10): 3263-3279.
  • Kiriazis A, Aumüller IB, Arnaudova R. Brito V, Rüffer T, Lang H, Yli-Kauhaluoma J, 2017. Nucleophilic Substitution of Hydrogen Facilitated by Quinone Methide Moieties in Benzo [cd] azulen-3-ones. Organic Letters, 19(8): 2030-2033.
  • Kurokawa S, 1983. Synthesis of 2-(4-azulenyl) ethanamine derivatives as a nonbenzenoid analog of biogenic amine. Bulletin of the Chemical Society of Japan, 56(8): 2311-2318.
  • Narita M, Murafuji T, Yamashita S, Fujinaga M, Hiyama K, Oka Y, Ishiguro K, 2018. Synthesis of 2-iodoazulenes by the iododeboronation of azulen-2-ylboronic acid pinacol esters with copper (I) iodide. The Journal of Organic Chemistry, 83(3): 1298-1303.
  • Park S, Yong WS, Kim S, Lee PH, 2014. Diastereoselective N-Sulfonylaminoalkenylation of Azulenes from Terminal Alkynes and Azides via N-Sulfonyl-1, 2, 3-triazoles. Organic Letters, 16(17): 4468-4471.
  • Razus AC, Birzan L, Tecuceanu V, Cristea M, Enache C, 2008. Condensation of alkylazulenes with thiophene-2-carboxaldehyde and the corresponding azomethines. Arkivoc, 11: 210-226.
  • Seo Y, Rho JR, Geum N, Yoon JB, Shin J, 1996. Isolation of guaianoid pigments from the gorgonian Calicogorgia granulosa. Journal of Natural Products, 59(10): 985-986.
  • Shoji T, Sugiyama S, Kobayashi Y, Yamazaki A, Ariga Y, Katoh R, Ito S, 2020. Direct synthesis of 2-arylazulenes by [8+ 2] cycloaddition of 2H-cyclohepta [b] furan-2-ones with silyl enol ethers. Chemical Communications.
  • Székely A, Péter A, Aradi K, Tolnai GL, Novák Z, 2017. Gold-Catalyzed Direct Alkynylation of Azulenes. Organic Letters, 19(4): 954-957.
  • Takekuma SI, Yamamoto M, Nakagawa A, Iwata T, Minematsu T, Takekuma H, 2012. Preparation, crystal structure, and spectroscopic, chemical, and electrochemical properties of (2E, 4E)-1, 4-di (3-guaiazulenyl)-1, 3-butadiene compared with those of (E)-1, 2-di (3-guaiazulenyl) ethylene. Tetrahedron, 68(39): 8318-8329.
  • Tanaka Y, Shigenobu K, 2001. A Review of HNS‐32: A Novel Azulene‐l‐Carboxamidine Derivative with Multiple Cardiovascular Protective Actions. Cardiovascular Drug Reviews, 19(4): 297-312.
  • Tomiyama T, Yokota M, Wakabayashi S, Kosakai K, Yanagisawa T, 1993. Design, synthesis, and pharmacology of 3-substituted sodium azulene-1-sulfontes and related compounds: non-prostanoid thromboxane A2 receptor antagonists. Journal of Medicinal Chemistry, 36(7): 791-800.
  • Vlasceanu A, Andersen CL, Parker CR, Hammerich O, Morsing TJ, Jevric M, Nielsen MB, 2016. Multistate Switches: Ruthenium Alkynyl–Dihydroazulene/Vinylheptafulvene Conjugates. Chemistry-A European Journal, 22(22): 7514-7523.
  • Wang P, Zhu P, Ye C, Asato AE, Liu RS, 1999. Theoretical investigation and molecular design of some azulene derivatives with large hyperpolarizabilities. The Journal of Physical Chemistry A, 103(35): 7076-7082.
  • Woodward AW, Ghazvini Zadeh EH, Bondar MV, Belfield KD, 2016. Computer aided chemical design: using quantum chemical calculations to predict properties of a series of halochromic guaiazulene derivatives. Royal Society Open Science, 3(11): 160373.
  • Yanagisawa T, Wakabayashi S, Tomiyama T, Yasunami M, Takase K, 1988. Synthesis and anti-ulcer activities of sodium alkylazulene sulfonates. Chemical and Pharmaceutical Bulletin, 36(2): 641-647.
  • Zadeh EG, Tang S, Woodward AW, Liu T, Bondar MV, Belfield KD, 2015. Chromophoric materials derived from a natural azulene: syntheses, halochromism and one-photon and two-photon microlithography. Journal of Materials Chemistry C, 3(33): 8495-8503.
  • Zadeh EG, Tang S, Woodward AW, Liu T, Bondar MV, Belfield KD, 2015. Chromophoric materials derived from a natural azulene: syntheses, halochromism and one-photon and two-photon microlithography. Journal of Materials Chemistry C, 3(33): 8495-8503.
  • Zhang LY, Yang F, Shi WQ, Zhang P, Li Y, Yin SF, 2011. Synthesis and antigastric ulcer activity of novel 5-isoproyl-3, 8-dimethylazulene derivatives. Bioorganic & Medicinal Chemistry Letters, 21(19): 5722-5725.
  • Zhao L, Bruneau C, Doucet H, 2013. A straightforward access to guaiazulene derivatives using palladium-catalysed sp 2 or sp 3 C–H bond functionalisation. Chemical Communications, 49(49): 5598-5600.
There are 34 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Musa Erdoğan 0000-0001-6097-2862

Publication Date December 15, 2020
Submission Date May 11, 2020
Acceptance Date June 25, 2020
Published in Issue Year 2020 Volume: 10 Issue: 4

Cite

APA Erdoğan, M. (2020). Facile One-pot Synthesis of A Novel Propargyl-Azulene Hybrid Derivative: Cycloaddition Reaction and Some Spectroscopic Properties. Journal of the Institute of Science and Technology, 10(4), 2747-2758. https://doi.org/10.21597/jist.735838
AMA Erdoğan M. Facile One-pot Synthesis of A Novel Propargyl-Azulene Hybrid Derivative: Cycloaddition Reaction and Some Spectroscopic Properties. J. Inst. Sci. and Tech. December 2020;10(4):2747-2758. doi:10.21597/jist.735838
Chicago Erdoğan, Musa. “Facile One-Pot Synthesis of A Novel Propargyl-Azulene Hybrid Derivative: Cycloaddition Reaction and Some Spectroscopic Properties”. Journal of the Institute of Science and Technology 10, no. 4 (December 2020): 2747-58. https://doi.org/10.21597/jist.735838.
EndNote Erdoğan M (December 1, 2020) Facile One-pot Synthesis of A Novel Propargyl-Azulene Hybrid Derivative: Cycloaddition Reaction and Some Spectroscopic Properties. Journal of the Institute of Science and Technology 10 4 2747–2758.
IEEE M. Erdoğan, “Facile One-pot Synthesis of A Novel Propargyl-Azulene Hybrid Derivative: Cycloaddition Reaction and Some Spectroscopic Properties”, J. Inst. Sci. and Tech., vol. 10, no. 4, pp. 2747–2758, 2020, doi: 10.21597/jist.735838.
ISNAD Erdoğan, Musa. “Facile One-Pot Synthesis of A Novel Propargyl-Azulene Hybrid Derivative: Cycloaddition Reaction and Some Spectroscopic Properties”. Journal of the Institute of Science and Technology 10/4 (December 2020), 2747-2758. https://doi.org/10.21597/jist.735838.
JAMA Erdoğan M. Facile One-pot Synthesis of A Novel Propargyl-Azulene Hybrid Derivative: Cycloaddition Reaction and Some Spectroscopic Properties. J. Inst. Sci. and Tech. 2020;10:2747–2758.
MLA Erdoğan, Musa. “Facile One-Pot Synthesis of A Novel Propargyl-Azulene Hybrid Derivative: Cycloaddition Reaction and Some Spectroscopic Properties”. Journal of the Institute of Science and Technology, vol. 10, no. 4, 2020, pp. 2747-58, doi:10.21597/jist.735838.
Vancouver Erdoğan M. Facile One-pot Synthesis of A Novel Propargyl-Azulene Hybrid Derivative: Cycloaddition Reaction and Some Spectroscopic Properties. J. Inst. Sci. and Tech. 2020;10(4):2747-58.