Research Article
BibTex RIS Cite

Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities

Year 2021, Volume: 11 Issue: 1, 365 - 375, 01.03.2021
https://doi.org/10.21597/jist.779169

Abstract

Nanoparticles are used in many areas due to their superior properties. Recently, producing these particles using environmentally friendly synthesis methods has become very popular. Within this context, in this study, gold nanoparticles (AuNPs) were synthesized by using a quick, eco-friendly method with the green leaf extract of Artemisia absinthium (wormwood). The grain size of the AuNPs was determined as 13.40 nm according to the Debye-Scherrer equation. The inhibitory effects of the AuNPs on the growth of the tested microorganisms were determined by the minimum inhibitory concentration (MIC) method. The MIC is described as the minimum concentration of an antimicrobial agent that inhibits the growth of a microorganism. The obtained AuNPs were showed inhibitory effects on S. aureus, S. pyogenes, E. coli, P. aeruginosa strains and C. albicans yeast at concentrations of 0.250, 0.125, 0.125, 0.033 and 0.66 mg mL-1 respectively.

References

  • Aljabali AAA, Akkam Y, Al-Zoubi MS, Al-Batayneh KM, Al-Trad B, Abo-Alrob O, Alkilayn AM, Benamara M, Evans DJ, 2018. Synthesis of Gold Nanoparticles Using Leaf Extract of Ziziphus zizyphus and their Antimicrobial Activity. Nanomaterials-Basel 8(3): 1–15.
  • Ankamwar B, 2010. Biosynthesis of Gold Nanoparticles (Green-Gold) Using Leaf Extract of Terminalia catappa. Journal of Chemistry 7(4): 1334–1339.
  • Anuradha J, Abbasi T, Abbasi SA, 2015. An eco-friendly method of synthesizing gold nanoparticles using an otherwise worthless weed pistia (Pistia stratiotes L.). Journal of Advanced Research 6(5): 711–720.
  • Aravinthan A, Kamala-Kannan S, Govarthanan M, Kim JH, 2016. Accumulation of biosynthesized gold nanoparticles and its impact on various organs of Sprague Dawley rats: a systematic study. Toxicology Research 5: 1503-1511.
  • Balalakshmi C, Gopinath K, Govindarajan M, Lokesh R, Arumugam A, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G, 2017. Green Synthesis of Gold Nanoparticles Using a Cheap Sphaeranthus Indicus Extract: Impact on Plant Cells and the Aquatic Crustacean Artemia nauplii. Journal of Photochemistry and Photobiology B: Biology 173: 598-605.
  • Chaudhry N, 2018. Bio-inspired nanomaterials in agriculture and food: Current status, foreseen applications and challenges. Microbial Pathogenesis 123: 196–200.
  • Dubey SP, Lahtinen M, Sillanpää M, 2010. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids and Surfaces A 364(1–3): 34–41.
  • Dwivedi AD, Gopal K, 2010. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract”, Colloids and Surfaces A 369(1–3): 27–33.
  • Gharehyakheh S, Ahmeda A, Haddadi A, 2020. Effect of gold nanoparticles synthesized using the aqueous extract of Satureja hortensis leaf on enhancing the shelf life and removing Escherichia coli O157 : H7 and Listeria monocytogenes in minced camel ’ s meat : The role of nanotechnology in the food industry. Applied Organometalic Chemistry 34(4): 1–11.
  • Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z, Akbarzadeh A, Riazi G, Ajdari S, Amani A, Razzaghi-Abyaneh M, 2015. Enzymatic Synthesis of Gold Nanoparticles Using Sulfite Reductase Purified from Escherichia Coli: A Green Eco-Friendly Approach. Process Biochemistry 50: 1076-1085.
  • Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA, 2010. Gold Nanoparticles for Biology and Medicine Angewandte. Angewandte Chemie International Edition in English 49(19): 3280–3294.
  • Gopinath K, Kumaraguru S, Bhakyaraj K, Mohan S, Venkatesh KS, Esakkirajan M, Kaleeswarran P, Alharbi NS, Kadaikunnan S, Govindarajan M, Benelli G, Arumugam A, 2016. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microbial Pathogenesis 101: 1–11.
  • Gunalan S, Rajeshwari S, Venckatesh R, 2012. Green Synthesized ZnO Nanoparticles against Bacterial and Fungal Pathogens. Progress in Natural Science: Materials International 22: 693-700.
  • Huang H, Yang X, 2004. Synthesis of polysaccharide-stabilized gold and silver nanoparticles : a green method. Carbohydrate Research 339: 2627–2631.
  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C, 2007. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10): 105104.
  • Jacob R, Harikrishnan GN, Isac J, 2015. Structural and Morphological Studies of Nanocrystalline Ceramic BaSr0-9Fe0-1TiO4. International Letters of Chemistry, Physics and Astronomy 41: 100-117.
  • Jeyaraj M, Gurunathan S, Qasim M, Kang MH, Kim JH, 2019. A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles. Nanomaterials 9(12): 1-41.
  • Kanchi S, Kumar G, Lo AY, Tseng CM, Chen SK, Lin CY, Chin TS, 2018. Exploitation of de-oiled jatropha waste for gold nanoparticles synthesis: A green approach. Arabian Journal of Chemistry 11(2): 247–255.
  • Khan SA, Shahid S, Bashir W, Kanwal S, Iqbal A, 2017. Synthesis, characterization and evaluation of biological activities of manganese doped zinc oxide nanoparticles. Tropical Journal of Pharmaceutical Research 16: 2331-2339.
  • Khan SA, Shahid S, Lee CS, 2020. Green Synthesis of Gold and Silver Nanoparticles Using Leaf Extract of Clerodendrum inerme; Characterization, Antimicrobial, and Antioxidant Activities. Biomolecules 10: 835.
  • Khan SA, Shaid S, Shahid B, Fatima U, Abbasi SA, 2020. Green Synthesis of MnO Nanoparticles Using Abutilon indicum Leaf Extract for Biological, Photocatalytic, and Adsorption Activities. Biomolecules 10: 785.
  • Khoshnamvand M, Ashtiani S, Huo C, Saeb SP, Liu J, 2019. Use of Alcea rosea leaf extract for biomimetic synthesis of gold nanoparticles with innate free radical scavenging and catalytic activities. Journal of Molecular Structure 1179: 749–755.
  • Kobashigawa JM, Robles CA, Martínez Ricci ML, Carmarán CC, 2018. Influence of strong bases on the synthesis of silver nanoparticles (AgNPs) using the ligninolytic fungi Trametes trogii, Saudi Journal of Biological Sciences 4–10.
  • Kumar KP, Paul W, Sharma CP, 2013. Green synthesis of gold nanoparticles with Zingiber officinale extract : Characterization and blood compatibility. Process Biochemistry 46(10): 2007–2013.
  • Kumar P, Saravana M, Vimalin J, Malathi J, Ignacimuthu S, 2018. Anticancer Effects of One-Pot Synthesized Biogenic Gold Nanoparticles (Mc-AuNps) against Laryngeal Carcinoma. Journal of Drug Delivery Science and Technology 44: 118–128.
  • McFarland J, 1907. Nephelometer: an instrument for media used for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. Journal of the American Medical Association 14: 1176-1178.
  • Menon S, Rajeshkumar S, Venkat-Kumar S, 2017. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resource-Efficient Technologies 3(4): 516–527.
  • Mubarakali D, Thajuddin N, Jeganathan K, Gunasekaran M, 2011. Biointerfaces Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids and Surface B 85(2): 360–365.
  • Murphin Kumar PS, Mubarak Ali D, Saratale RG, Saratale GD, Pugazhendhi A, Gopalakrishnan K, Thajuddin N, 2017. Synthesis of nano-cuboidal gold particles for effective antimicrobial property against clinical human pathogens. Microbial Pathogenesis 113: 68–73.
  • Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P, 2015. Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Experinmental Parasitology 153: 129–138.
  • Mythili R, Selvankumar T, Srinivasan P, Sengottaiyan A, Sabastinraj J, Ameen F, Al-Sabri A, Kamala-Kannan S, Govarthanan M, Kime H, 2018. Biogenic synthesis, characterization and antibacterial activity of gold nanoparticles synthesised from vegetable waste. Journal of Molecular Liquids 262: 318–321.
  • Oueslati MH, Ben-Tahar L, Harrath AH, 2020. Synthesis of ultra-small gold nanoparticles by polyphenol extracted from Salvia officinalis and efficiency for catalytic reduction of p-nitrophenol and methylene blue. Green Chemistry Letters and Reviews 13(1): 18-26.
  • Patra JK, Gitishree D, Baek KH, 2016. Phyto-Mediated Biosynthesis of Silver Nanoparticles Using the Rind Extract of Watermelon (Citrullus lanatus) under Photo-Catalyzed Condition and Investigation of Its Antibacterial, Anticandidal and Antioxidant Efficacy. Journal of Photochemistry and Photobiology B 161: 200-210.
  • Philip D, 2010. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E: Low-dimensional Systems and Nanostructures 42(5): 1417–1424.
  • Piruthiviraj P, Anita M, Poornimau P, 2016. Gold Nanoparticles Synthesized by Brassica oleracea (Broccoli) Acting as Antimicrobial Agents against Human Pathogenic Bacteria and Fungi. Applied Nanoscience 6: 467-473.
  • Rajathi FAA, Arumugam R, Saravanan S, Anantharaman P, 2014. Phyto fabrication of gold nanoparticles assisted by leaves of Suaeda monoica and its free radical scavenging property. Journal of Photochemistry and Photobiology B 135: 75e80.
  • Santhosh AS, Sandeep S, Kumara Swamy N, 2019. Green synthesis of nano silver from Euphorbia geniculata leaf extract: Investigations on catalytic degradation of methyl orange dye and optical sensing of Hg2+. Surface and Interface Analysis 14: 50–54.
  • Shahid S, Fatima U, Sajjad R, Khan SA, 2019. Bioinspired Nanotheranostic Agent: Zinc Oxide; Green Synthesis and Biomedical Potential. Digest Journal of Nanomaterials and Biostructures 14(4): 1023-1031.
  • Shaid S, Khan SA, Ahmad W, Fatima U, Knawal S, 2018. Size-dependent Bacterial Growth Inhibition and Antibacterial Activity of Ag-doped ZnO Nanoparticles under Different Atmospheric Conditions. Indian Journal of Pharmaceutical Sciences 80(1): 173-180.
  • Shao Y, Wu C, Wu T, Yuan C, Chen S, Ding T, Ye X, Hu Y, 2018. Green synthesis of sodium alginate-silver nanoparticles and their antibacterial activity. International Journal of Biological Macromolecules 111: 1281-1292.
  • Sun B, Hu N, Han L, Pi Y, Gao Y, Chen K, 2019. “Anticancer activity of green synthesised gold nanoparticles from Marsdenia tenacissima inhibits A549 cell proliferation through the apoptotic pathway, Artif. Artificial Cells, Nanomedicine, and Biotechnology 47(1): 4012–4019.
  • Teimuri-mofrad R, Hadi R, Tahmasebi B, Farhoudian S, 2017. Green synthesis of gold nanoparticles using plant extract. Nanochemistry Research 2(1): 8–19.
  • Zha J, Dong C, Wang X, Zhang X, Xiao X, Yang X, 2017. Green synthesis and characterization of monodisperse gold nanoparticles using Ginkgo Biloba leaf extract. Optik (Stuttg). 144: 511-521.

Artemisia absinthium Bitki Ekstraktından Altın Nanopartiküllerin Çevre Dostu Hızlı Sentezi ve Antimikrobiyal Aktivitelerin Uygulanması

Year 2021, Volume: 11 Issue: 1, 365 - 375, 01.03.2021
https://doi.org/10.21597/jist.779169

Abstract

Nanopartiküller, üstün özelliklerinden dolayı birçok alanda kullanılmaktadır. Son zamanlarda, bu parçacıkların çevre dostu sentez yöntemleri kullanılarak üretilmesi çok popüler hale gelmiştir. Bu bağlamda, bu çalışmada, altın nanopartiküller (AuNP'ler), Artemisia absinthium'un (pelin otu) yeşil yaprak özütü ile hızlı ve çevre dostu bir yöntem kullanılarak sentezlenmiştir. AuNP'lerin tane boyutu Debye-Scherrer denklemine göre 13.40 nm olarak belirlendi. AuNP'lerin test edilen mikroorganizmaların büyümesi üzerindeki inhibe edici etkileri, minimum inhibe edici konsantrasyon (MİC) yöntemi ile belirlenmiştir. MİC, bir mikroorganizmanın büyümesini engelleyen bir antimikrobiyal maddenin minimum konsantrasyonu olarak tanımlanmaktadır. Elde edilen AuNP'ler, sırasıyla 0.250, 0.125, 0.125, 0.033 ve 0.66 mg mL-1 konsantrasyonlarında S. aureus, S. pyogenes, E. coli, P. aeruginosa suşları ve C. albicans mayası üzerinde önleyici etkiler göstermiştir.

References

  • Aljabali AAA, Akkam Y, Al-Zoubi MS, Al-Batayneh KM, Al-Trad B, Abo-Alrob O, Alkilayn AM, Benamara M, Evans DJ, 2018. Synthesis of Gold Nanoparticles Using Leaf Extract of Ziziphus zizyphus and their Antimicrobial Activity. Nanomaterials-Basel 8(3): 1–15.
  • Ankamwar B, 2010. Biosynthesis of Gold Nanoparticles (Green-Gold) Using Leaf Extract of Terminalia catappa. Journal of Chemistry 7(4): 1334–1339.
  • Anuradha J, Abbasi T, Abbasi SA, 2015. An eco-friendly method of synthesizing gold nanoparticles using an otherwise worthless weed pistia (Pistia stratiotes L.). Journal of Advanced Research 6(5): 711–720.
  • Aravinthan A, Kamala-Kannan S, Govarthanan M, Kim JH, 2016. Accumulation of biosynthesized gold nanoparticles and its impact on various organs of Sprague Dawley rats: a systematic study. Toxicology Research 5: 1503-1511.
  • Balalakshmi C, Gopinath K, Govindarajan M, Lokesh R, Arumugam A, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G, 2017. Green Synthesis of Gold Nanoparticles Using a Cheap Sphaeranthus Indicus Extract: Impact on Plant Cells and the Aquatic Crustacean Artemia nauplii. Journal of Photochemistry and Photobiology B: Biology 173: 598-605.
  • Chaudhry N, 2018. Bio-inspired nanomaterials in agriculture and food: Current status, foreseen applications and challenges. Microbial Pathogenesis 123: 196–200.
  • Dubey SP, Lahtinen M, Sillanpää M, 2010. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids and Surfaces A 364(1–3): 34–41.
  • Dwivedi AD, Gopal K, 2010. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract”, Colloids and Surfaces A 369(1–3): 27–33.
  • Gharehyakheh S, Ahmeda A, Haddadi A, 2020. Effect of gold nanoparticles synthesized using the aqueous extract of Satureja hortensis leaf on enhancing the shelf life and removing Escherichia coli O157 : H7 and Listeria monocytogenes in minced camel ’ s meat : The role of nanotechnology in the food industry. Applied Organometalic Chemistry 34(4): 1–11.
  • Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z, Akbarzadeh A, Riazi G, Ajdari S, Amani A, Razzaghi-Abyaneh M, 2015. Enzymatic Synthesis of Gold Nanoparticles Using Sulfite Reductase Purified from Escherichia Coli: A Green Eco-Friendly Approach. Process Biochemistry 50: 1076-1085.
  • Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA, 2010. Gold Nanoparticles for Biology and Medicine Angewandte. Angewandte Chemie International Edition in English 49(19): 3280–3294.
  • Gopinath K, Kumaraguru S, Bhakyaraj K, Mohan S, Venkatesh KS, Esakkirajan M, Kaleeswarran P, Alharbi NS, Kadaikunnan S, Govindarajan M, Benelli G, Arumugam A, 2016. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microbial Pathogenesis 101: 1–11.
  • Gunalan S, Rajeshwari S, Venckatesh R, 2012. Green Synthesized ZnO Nanoparticles against Bacterial and Fungal Pathogens. Progress in Natural Science: Materials International 22: 693-700.
  • Huang H, Yang X, 2004. Synthesis of polysaccharide-stabilized gold and silver nanoparticles : a green method. Carbohydrate Research 339: 2627–2631.
  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C, 2007. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10): 105104.
  • Jacob R, Harikrishnan GN, Isac J, 2015. Structural and Morphological Studies of Nanocrystalline Ceramic BaSr0-9Fe0-1TiO4. International Letters of Chemistry, Physics and Astronomy 41: 100-117.
  • Jeyaraj M, Gurunathan S, Qasim M, Kang MH, Kim JH, 2019. A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles. Nanomaterials 9(12): 1-41.
  • Kanchi S, Kumar G, Lo AY, Tseng CM, Chen SK, Lin CY, Chin TS, 2018. Exploitation of de-oiled jatropha waste for gold nanoparticles synthesis: A green approach. Arabian Journal of Chemistry 11(2): 247–255.
  • Khan SA, Shahid S, Bashir W, Kanwal S, Iqbal A, 2017. Synthesis, characterization and evaluation of biological activities of manganese doped zinc oxide nanoparticles. Tropical Journal of Pharmaceutical Research 16: 2331-2339.
  • Khan SA, Shahid S, Lee CS, 2020. Green Synthesis of Gold and Silver Nanoparticles Using Leaf Extract of Clerodendrum inerme; Characterization, Antimicrobial, and Antioxidant Activities. Biomolecules 10: 835.
  • Khan SA, Shaid S, Shahid B, Fatima U, Abbasi SA, 2020. Green Synthesis of MnO Nanoparticles Using Abutilon indicum Leaf Extract for Biological, Photocatalytic, and Adsorption Activities. Biomolecules 10: 785.
  • Khoshnamvand M, Ashtiani S, Huo C, Saeb SP, Liu J, 2019. Use of Alcea rosea leaf extract for biomimetic synthesis of gold nanoparticles with innate free radical scavenging and catalytic activities. Journal of Molecular Structure 1179: 749–755.
  • Kobashigawa JM, Robles CA, Martínez Ricci ML, Carmarán CC, 2018. Influence of strong bases on the synthesis of silver nanoparticles (AgNPs) using the ligninolytic fungi Trametes trogii, Saudi Journal of Biological Sciences 4–10.
  • Kumar KP, Paul W, Sharma CP, 2013. Green synthesis of gold nanoparticles with Zingiber officinale extract : Characterization and blood compatibility. Process Biochemistry 46(10): 2007–2013.
  • Kumar P, Saravana M, Vimalin J, Malathi J, Ignacimuthu S, 2018. Anticancer Effects of One-Pot Synthesized Biogenic Gold Nanoparticles (Mc-AuNps) against Laryngeal Carcinoma. Journal of Drug Delivery Science and Technology 44: 118–128.
  • McFarland J, 1907. Nephelometer: an instrument for media used for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. Journal of the American Medical Association 14: 1176-1178.
  • Menon S, Rajeshkumar S, Venkat-Kumar S, 2017. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resource-Efficient Technologies 3(4): 516–527.
  • Mubarakali D, Thajuddin N, Jeganathan K, Gunasekaran M, 2011. Biointerfaces Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids and Surface B 85(2): 360–365.
  • Murphin Kumar PS, Mubarak Ali D, Saratale RG, Saratale GD, Pugazhendhi A, Gopalakrishnan K, Thajuddin N, 2017. Synthesis of nano-cuboidal gold particles for effective antimicrobial property against clinical human pathogens. Microbial Pathogenesis 113: 68–73.
  • Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P, 2015. Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Experinmental Parasitology 153: 129–138.
  • Mythili R, Selvankumar T, Srinivasan P, Sengottaiyan A, Sabastinraj J, Ameen F, Al-Sabri A, Kamala-Kannan S, Govarthanan M, Kime H, 2018. Biogenic synthesis, characterization and antibacterial activity of gold nanoparticles synthesised from vegetable waste. Journal of Molecular Liquids 262: 318–321.
  • Oueslati MH, Ben-Tahar L, Harrath AH, 2020. Synthesis of ultra-small gold nanoparticles by polyphenol extracted from Salvia officinalis and efficiency for catalytic reduction of p-nitrophenol and methylene blue. Green Chemistry Letters and Reviews 13(1): 18-26.
  • Patra JK, Gitishree D, Baek KH, 2016. Phyto-Mediated Biosynthesis of Silver Nanoparticles Using the Rind Extract of Watermelon (Citrullus lanatus) under Photo-Catalyzed Condition and Investigation of Its Antibacterial, Anticandidal and Antioxidant Efficacy. Journal of Photochemistry and Photobiology B 161: 200-210.
  • Philip D, 2010. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E: Low-dimensional Systems and Nanostructures 42(5): 1417–1424.
  • Piruthiviraj P, Anita M, Poornimau P, 2016. Gold Nanoparticles Synthesized by Brassica oleracea (Broccoli) Acting as Antimicrobial Agents against Human Pathogenic Bacteria and Fungi. Applied Nanoscience 6: 467-473.
  • Rajathi FAA, Arumugam R, Saravanan S, Anantharaman P, 2014. Phyto fabrication of gold nanoparticles assisted by leaves of Suaeda monoica and its free radical scavenging property. Journal of Photochemistry and Photobiology B 135: 75e80.
  • Santhosh AS, Sandeep S, Kumara Swamy N, 2019. Green synthesis of nano silver from Euphorbia geniculata leaf extract: Investigations on catalytic degradation of methyl orange dye and optical sensing of Hg2+. Surface and Interface Analysis 14: 50–54.
  • Shahid S, Fatima U, Sajjad R, Khan SA, 2019. Bioinspired Nanotheranostic Agent: Zinc Oxide; Green Synthesis and Biomedical Potential. Digest Journal of Nanomaterials and Biostructures 14(4): 1023-1031.
  • Shaid S, Khan SA, Ahmad W, Fatima U, Knawal S, 2018. Size-dependent Bacterial Growth Inhibition and Antibacterial Activity of Ag-doped ZnO Nanoparticles under Different Atmospheric Conditions. Indian Journal of Pharmaceutical Sciences 80(1): 173-180.
  • Shao Y, Wu C, Wu T, Yuan C, Chen S, Ding T, Ye X, Hu Y, 2018. Green synthesis of sodium alginate-silver nanoparticles and their antibacterial activity. International Journal of Biological Macromolecules 111: 1281-1292.
  • Sun B, Hu N, Han L, Pi Y, Gao Y, Chen K, 2019. “Anticancer activity of green synthesised gold nanoparticles from Marsdenia tenacissima inhibits A549 cell proliferation through the apoptotic pathway, Artif. Artificial Cells, Nanomedicine, and Biotechnology 47(1): 4012–4019.
  • Teimuri-mofrad R, Hadi R, Tahmasebi B, Farhoudian S, 2017. Green synthesis of gold nanoparticles using plant extract. Nanochemistry Research 2(1): 8–19.
  • Zha J, Dong C, Wang X, Zhang X, Xiao X, Yang X, 2017. Green synthesis and characterization of monodisperse gold nanoparticles using Ginkgo Biloba leaf extract. Optik (Stuttg). 144: 511-521.
There are 43 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Cumali Keskin 0000-0003-3758-0654

Mehmet Nuri Atalar 0000-0003-2993-2605

M.firat Baran 0000-0001-8133-6670

Ayşe Baran 0000-0002-2317-0489

Publication Date March 1, 2021
Submission Date August 11, 2020
Acceptance Date November 24, 2020
Published in Issue Year 2021 Volume: 11 Issue: 1

Cite

APA Keskin, C., Atalar, M. N., Baran, M., Baran, A. (2021). Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities. Journal of the Institute of Science and Technology, 11(1), 365-375. https://doi.org/10.21597/jist.779169
AMA Keskin C, Atalar MN, Baran M, Baran A. Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities. J. Inst. Sci. and Tech. March 2021;11(1):365-375. doi:10.21597/jist.779169
Chicago Keskin, Cumali, Mehmet Nuri Atalar, M.firat Baran, and Ayşe Baran. “Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia Absinthium Plant Extract and Application of Antimicrobial Activities”. Journal of the Institute of Science and Technology 11, no. 1 (March 2021): 365-75. https://doi.org/10.21597/jist.779169.
EndNote Keskin C, Atalar MN, Baran M, Baran A (March 1, 2021) Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities. Journal of the Institute of Science and Technology 11 1 365–375.
IEEE C. Keskin, M. N. Atalar, M. Baran, and A. Baran, “Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities”, J. Inst. Sci. and Tech., vol. 11, no. 1, pp. 365–375, 2021, doi: 10.21597/jist.779169.
ISNAD Keskin, Cumali et al. “Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia Absinthium Plant Extract and Application of Antimicrobial Activities”. Journal of the Institute of Science and Technology 11/1 (March 2021), 365-375. https://doi.org/10.21597/jist.779169.
JAMA Keskin C, Atalar MN, Baran M, Baran A. Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities. J. Inst. Sci. and Tech. 2021;11:365–375.
MLA Keskin, Cumali et al. “Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia Absinthium Plant Extract and Application of Antimicrobial Activities”. Journal of the Institute of Science and Technology, vol. 11, no. 1, 2021, pp. 365-7, doi:10.21597/jist.779169.
Vancouver Keskin C, Atalar MN, Baran M, Baran A. Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities. J. Inst. Sci. and Tech. 2021;11(1):365-7.

Cited By