Research Article
BibTex RIS Cite

Farmasötik Preparatlarda Ondansetron Tayini İçin Elektrokimyasal Sensör Geliştirilmesi

Year 2021, Volume: 11 Issue: 4, 2860 - 2869, 15.12.2021
https://doi.org/10.21597/jist.788927

Abstract

Bu çalışmada, farmasötik preparatlardaki ondansetron içeriğinin belirlenmesi için karbon nanotüp immobilize diester-kaliks[4]arene (CNT-Calix-DE) dayalı elektrokimyasal sensör geliştirildi. Sensör hazırlama aşamasında, camsı karbon elektrot yüzeyi CNT-Calix-DE ile modifiye edildi. Sensörün yüzey morfolojisi, elektrokimyasal karakterizasyonu ve analitik performansı, taramalı elektron mikroskopu (SEM), elektrokimyasal empedans spektroskopisi (EIS) ve diferansiyel puls anodik sıyırma voltametrisi (DPASV) kullanılarak incelendi. Optimum deneysel koşullar altında, geliştirilen sensör ondansetrona karşı 1.0-10.0 µM konsantrasyon aralığında doğrusal cevap gösterdi. Sensörün analitik uygulanabilirliği farmasötik preparatlarda ondansetron tayini yapılarak araştırıldı.

References

  • Akyüz E, 2011. Ürik asit tayini için yeni bir biyosensör geliştirilmesi, Trakya Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış).
  • Alvarez JC, Charbit B, Grassin Delyle S, Demolis JL, Funck Brentano C, Abe E, 2011. Human plasma quantification of droperidol and ondansetron used in preventingpostoperative nausea and vomiting with a LC/ESI/MS/MS method. Journal of Chromatography B, 879:187-190.
  • Arama C, Varvara V, Monciu CM, 2011. Development and validation of a new capillary zone electrophoresis method for the assay of ondansetron. Farmacia, 59:34-43.
  • Bauer S, Storner E, Kaise R, Tremblay PB, Brockmoller J, Roots I, 2002. imultaneous determination of ondansetron and tropisetron in human plasma using HPLC with UV detection. Biomedical Chromatography, 16:187-190.
  • Becker A, Tobias H, Porat ZE, Mandler D, 2008. Detection of uranium(VI) in aqueous solution by a calix[6]arene modified. Journal of Electroanalytical Chemistry, 621:214-221.
  • Canpolat EC, Sar E, Coskun NY, Cankurtaran H, 2007. Determination of trace amounts of copper in tap water samples with a calix[4]arene modified carbon electrode by differantial pulse anodic stripping voltammetry. Electroanalysis, 19:1109-1115.
  • Chen M, Meng Y, Zhang W, Zhou J, Xie J, Diao GW, 2013. Beta-cyclodextrin polymer functionalized reduced-graphene oxide:application for electrochemical determination imidacloprid. Electrochimica Acta, 108:1-9.
  • Colthup PV, Felgate CC, Palmer JL, Scully NL, 1991. Determination of Ondansetron in Plasma and Its Pharmacokinetics in the Young and Elderly. Journal of Pharmaceutical Sciences, 80:868-871.
  • Colthup PV, Palmer JL, 1989. The determination in plasma and pharmacokinetics of ondansetron. European Journal of Cancer and Clinical Oncology, 25:71-74.
  • Del Favero A, Roila F, Tonato M, 1993. Reducing chemotherapy-induced nausea and vomiting. Drug Safety, 9(6):410-428.
  • Doyle R, Breslin CB, Rooney AD, 2009. A simple but highly selective electrochemical sensor for dopamine. Chemical and Biochemical Engineering Quarterly, 23:93-98.
  • Ebdelli R, Rouis A, Mlika R, Bonnamour I, Jaffrezic-Renault N, Ben Ouada H, Davenas J, 2011. Electrochemical impedance detection of Hg2+, Ni2+ and Eu3+ ions by a new azo-calix[4]arene membrane. Journal of Electroanalytical Chemistry, 661:31-38.
  • Espinosa Boch M, Ruiz Sanchez AJ, Sanchez Rojas F, Bosch Ojeda C, 2017. Review of analytical methodologies fort he determination of 5-HT3 receptor antagonists. Microchemical Journal, 132:341-350.
  • Honeychurch KC, Hart JP, Cowell DC, Arrigan DWN, 2002. Voltammetric behaviour and trace determination of cadmium at a calixarene modified screen-printed carbon electrode. Electroanalysis, 14:177-185.
  • Kun Z, Shuai Y, Dongmei T, Yuyang Z, 2013. Electrochemical behaviour of propranolol hydrochloride in neutral solution on calixarene/multi-walled carnon nanotubes modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 709:99-105.
  • Liu C, Yao J, Tang H, Zhu S, Hu J, 2006. The electrochemical behaviour of p-benzenediol on a self-assembled monolayers Pt electrode modified with N-(2-mercapto-1,3,4-thiadiazol-5-yl)-N’(4-substituted-arylqacetyl)urea. Analytical and Bioanalytical Chemistry, 386:1905-1911.
  • Liu Y, Yuan R, Chai Y, Tang D, Dai J, Zhong X, 2006. Direct electrochemistry of horseradish peroxidase immobilized on gold colloid/cysteine/nafion-modified platinum disk electrode. Sens. Actuators B, 115:109-115.
  • Lu JQ, He XW, Zeng XS, Wan QJ, Zhang ZZ, 2003. Voltammetric determination of mercury(II) in aqueous media using glassy carbon electrodes modified with novel calix[4]arene. Talanta, 59:553-560.
  • Musshoff F, Madea B, Stüber F, Stamer UM, 2010. Enantioselective Determination of Ondansetron and 8-Hydroxyondansetron in Human Plasma from Recovered Surgery Patients by Liquid Chromatography– Tandem Mass Spectrometry. Journal of Analytical Toxicology, 34:581-586.
  • Nigovic B, 2006. Electrochemical properties and square wave voltammetric determination of pravastatin. Analytical and Bioanalytical Chemistry, 384:431-437.
  • Nigovic B, Hocevar SB, 2011. Antimony film electrode for direct cathodic measurement of sulfasalazine. Electrochimica Acta, 58:523-527.
  • Nigovic B, Sadikovic M, Sertic M, 2004. Multi-walled carbon nanotubes/Nafion composite film modified electrode as a sensor for simultaneous determination of ondansetron and morphine. 122:187-194.
  • Nigovic B, Spajic J, 2011. A novel electrochemical sensor for assaying of antipsychotic drug quetiapine. Talanta, 86:393-399.
  • Raza A, Ijaz AS, Rehman A, Rasheed U, 2007. Spectrophotometric Determination of Ondansetron Hydrochloride in Pharmaceutical Bulk and Dosage Forms. Journal of the Chinese Chemical Society, 54:223-227.
  • Vaze VD, Srivastava AK, 2007. Electrochemical behaviour of folic acid at calixarene based chemically modified electrodes and its determination by adsorptive stripping voltammetry. Electrochimica Acta, 53:1713-1721.
  • Wang F, Wei XH, Wang CB, Zhang SS, Ye BX, 2010. Langmuir-Blodgett film of p-tert-butylthiacalix[4]arene modified glassy carbon electrode as voltammetr,c sensor fort he determination of Hg(II). Talanta, 80:1198-1204.
  • Wang F, Wu Y, Lu K, Ye B, 2013. A simple but highly sensitive and selective calixarene-based voltammetrci sensor for serotomin. Electrochimica Acta, 87:756-762.
  • Wilde MI, Markham A, 1996. Ondansetron: A review of its pharmacology and preliminary clinical findings in novel applications. Drugs, 52:773-794.
  • Zaabal M, Boulache M, Bakirhan NK, Kaddour S, Saidat B, Ozkan SA,2018. A facile strategy for construction of sensor for detection of ondansetron and investigation of its redox behaviour and thermodynamic parameters. Electroanalysis, 30:1-13.
  • Zen JM, Kumar AS, Tsai DM, 2003. Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis, 15:13
  • Zhang HL, Liu Y, Lai GS, Yu AM, Huang YM, Jin CM, 2009. Calix[4]arenecrown-4-ether modified glassy carbon electrode for electrochemical determination of norepinephrine. Analyst, 134:2141-2146.
  • Zhang T, Xu M, He L, Xi, K, Gu, M, 2008. Synthesis, characterization and cytotoxicity of phosphoryl choline-grafted water-soluble carbon nanotubes. Carbon, 46:1782-1792.
  • Zhou J, Chen M, Diao GW, 2013. Calix-4,6,8-arenesulfonates functionalized reduced graphene oxide with high supramolecular recognition capability: fabrication and application for enhanced host-guest electrochemical recognition. ACS Applied Materials & Interfaces, 5:828-836.
  • Zhou J, Chen M, Xie J, Diao GW, 2013. Synergistically enhanced electrochemical response of host-guest recognition based on ternary nanocomposites:reduced graphene oxide-amphiphilic pillar[5]arene-gold nanoparticles, ACS Applied Materials & Interfaces, 5:11218-11224.

Development of Electrochemical Sensor for Determination of Ondansetron in Pharmaceutical Preparations

Year 2021, Volume: 11 Issue: 4, 2860 - 2869, 15.12.2021
https://doi.org/10.21597/jist.788927

Abstract

In this study, an electrochemical sensor based on carbon nanotube immobilized with diester-functionalized calix[4]arene (CNT-Calix-DE) was developed to determine the ondansetron content in pharmaceutical preparations. During the sensor preparation stage, the glassy carbon electrode surface was modified with CNT-Calix-DE. The surface morphology, electrochemical characterization and analytical performance of the sensor were examined using scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS) and differential pulse anodic stripping voltammetry (DPASV). Under optimal experimental conditions, the developed sensor showed a linear response to ondansetron in the concentration range of 1.0-10.0 M. Analytical applicability of the sensor was investigated by determination of ondansetron in pharmaceutical preparations.

References

  • Akyüz E, 2011. Ürik asit tayini için yeni bir biyosensör geliştirilmesi, Trakya Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış).
  • Alvarez JC, Charbit B, Grassin Delyle S, Demolis JL, Funck Brentano C, Abe E, 2011. Human plasma quantification of droperidol and ondansetron used in preventingpostoperative nausea and vomiting with a LC/ESI/MS/MS method. Journal of Chromatography B, 879:187-190.
  • Arama C, Varvara V, Monciu CM, 2011. Development and validation of a new capillary zone electrophoresis method for the assay of ondansetron. Farmacia, 59:34-43.
  • Bauer S, Storner E, Kaise R, Tremblay PB, Brockmoller J, Roots I, 2002. imultaneous determination of ondansetron and tropisetron in human plasma using HPLC with UV detection. Biomedical Chromatography, 16:187-190.
  • Becker A, Tobias H, Porat ZE, Mandler D, 2008. Detection of uranium(VI) in aqueous solution by a calix[6]arene modified. Journal of Electroanalytical Chemistry, 621:214-221.
  • Canpolat EC, Sar E, Coskun NY, Cankurtaran H, 2007. Determination of trace amounts of copper in tap water samples with a calix[4]arene modified carbon electrode by differantial pulse anodic stripping voltammetry. Electroanalysis, 19:1109-1115.
  • Chen M, Meng Y, Zhang W, Zhou J, Xie J, Diao GW, 2013. Beta-cyclodextrin polymer functionalized reduced-graphene oxide:application for electrochemical determination imidacloprid. Electrochimica Acta, 108:1-9.
  • Colthup PV, Felgate CC, Palmer JL, Scully NL, 1991. Determination of Ondansetron in Plasma and Its Pharmacokinetics in the Young and Elderly. Journal of Pharmaceutical Sciences, 80:868-871.
  • Colthup PV, Palmer JL, 1989. The determination in plasma and pharmacokinetics of ondansetron. European Journal of Cancer and Clinical Oncology, 25:71-74.
  • Del Favero A, Roila F, Tonato M, 1993. Reducing chemotherapy-induced nausea and vomiting. Drug Safety, 9(6):410-428.
  • Doyle R, Breslin CB, Rooney AD, 2009. A simple but highly selective electrochemical sensor for dopamine. Chemical and Biochemical Engineering Quarterly, 23:93-98.
  • Ebdelli R, Rouis A, Mlika R, Bonnamour I, Jaffrezic-Renault N, Ben Ouada H, Davenas J, 2011. Electrochemical impedance detection of Hg2+, Ni2+ and Eu3+ ions by a new azo-calix[4]arene membrane. Journal of Electroanalytical Chemistry, 661:31-38.
  • Espinosa Boch M, Ruiz Sanchez AJ, Sanchez Rojas F, Bosch Ojeda C, 2017. Review of analytical methodologies fort he determination of 5-HT3 receptor antagonists. Microchemical Journal, 132:341-350.
  • Honeychurch KC, Hart JP, Cowell DC, Arrigan DWN, 2002. Voltammetric behaviour and trace determination of cadmium at a calixarene modified screen-printed carbon electrode. Electroanalysis, 14:177-185.
  • Kun Z, Shuai Y, Dongmei T, Yuyang Z, 2013. Electrochemical behaviour of propranolol hydrochloride in neutral solution on calixarene/multi-walled carnon nanotubes modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 709:99-105.
  • Liu C, Yao J, Tang H, Zhu S, Hu J, 2006. The electrochemical behaviour of p-benzenediol on a self-assembled monolayers Pt electrode modified with N-(2-mercapto-1,3,4-thiadiazol-5-yl)-N’(4-substituted-arylqacetyl)urea. Analytical and Bioanalytical Chemistry, 386:1905-1911.
  • Liu Y, Yuan R, Chai Y, Tang D, Dai J, Zhong X, 2006. Direct electrochemistry of horseradish peroxidase immobilized on gold colloid/cysteine/nafion-modified platinum disk electrode. Sens. Actuators B, 115:109-115.
  • Lu JQ, He XW, Zeng XS, Wan QJ, Zhang ZZ, 2003. Voltammetric determination of mercury(II) in aqueous media using glassy carbon electrodes modified with novel calix[4]arene. Talanta, 59:553-560.
  • Musshoff F, Madea B, Stüber F, Stamer UM, 2010. Enantioselective Determination of Ondansetron and 8-Hydroxyondansetron in Human Plasma from Recovered Surgery Patients by Liquid Chromatography– Tandem Mass Spectrometry. Journal of Analytical Toxicology, 34:581-586.
  • Nigovic B, 2006. Electrochemical properties and square wave voltammetric determination of pravastatin. Analytical and Bioanalytical Chemistry, 384:431-437.
  • Nigovic B, Hocevar SB, 2011. Antimony film electrode for direct cathodic measurement of sulfasalazine. Electrochimica Acta, 58:523-527.
  • Nigovic B, Sadikovic M, Sertic M, 2004. Multi-walled carbon nanotubes/Nafion composite film modified electrode as a sensor for simultaneous determination of ondansetron and morphine. 122:187-194.
  • Nigovic B, Spajic J, 2011. A novel electrochemical sensor for assaying of antipsychotic drug quetiapine. Talanta, 86:393-399.
  • Raza A, Ijaz AS, Rehman A, Rasheed U, 2007. Spectrophotometric Determination of Ondansetron Hydrochloride in Pharmaceutical Bulk and Dosage Forms. Journal of the Chinese Chemical Society, 54:223-227.
  • Vaze VD, Srivastava AK, 2007. Electrochemical behaviour of folic acid at calixarene based chemically modified electrodes and its determination by adsorptive stripping voltammetry. Electrochimica Acta, 53:1713-1721.
  • Wang F, Wei XH, Wang CB, Zhang SS, Ye BX, 2010. Langmuir-Blodgett film of p-tert-butylthiacalix[4]arene modified glassy carbon electrode as voltammetr,c sensor fort he determination of Hg(II). Talanta, 80:1198-1204.
  • Wang F, Wu Y, Lu K, Ye B, 2013. A simple but highly sensitive and selective calixarene-based voltammetrci sensor for serotomin. Electrochimica Acta, 87:756-762.
  • Wilde MI, Markham A, 1996. Ondansetron: A review of its pharmacology and preliminary clinical findings in novel applications. Drugs, 52:773-794.
  • Zaabal M, Boulache M, Bakirhan NK, Kaddour S, Saidat B, Ozkan SA,2018. A facile strategy for construction of sensor for detection of ondansetron and investigation of its redox behaviour and thermodynamic parameters. Electroanalysis, 30:1-13.
  • Zen JM, Kumar AS, Tsai DM, 2003. Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis, 15:13
  • Zhang HL, Liu Y, Lai GS, Yu AM, Huang YM, Jin CM, 2009. Calix[4]arenecrown-4-ether modified glassy carbon electrode for electrochemical determination of norepinephrine. Analyst, 134:2141-2146.
  • Zhang T, Xu M, He L, Xi, K, Gu, M, 2008. Synthesis, characterization and cytotoxicity of phosphoryl choline-grafted water-soluble carbon nanotubes. Carbon, 46:1782-1792.
  • Zhou J, Chen M, Diao GW, 2013. Calix-4,6,8-arenesulfonates functionalized reduced graphene oxide with high supramolecular recognition capability: fabrication and application for enhanced host-guest electrochemical recognition. ACS Applied Materials & Interfaces, 5:828-836.
  • Zhou J, Chen M, Xie J, Diao GW, 2013. Synergistically enhanced electrochemical response of host-guest recognition based on ternary nanocomposites:reduced graphene oxide-amphiphilic pillar[5]arene-gold nanoparticles, ACS Applied Materials & Interfaces, 5:11218-11224.
There are 34 citations in total.

Details

Primary Language Turkish
Journal Section Kimya / Chemistry
Authors

Zehra Özden Erdoğan 0000-0002-1687-973X

Mustafa Barış Koçer This is me 0000-0001-8439-1966

Serkan Sayın 0000-0003-0518-3208

Semahat Küçükkolbaşı 0000-0002-5129-5385

Publication Date December 15, 2021
Submission Date September 1, 2020
Acceptance Date August 14, 2021
Published in Issue Year 2021 Volume: 11 Issue: 4

Cite

APA Erdoğan, Z. Ö., Koçer, M. B., Sayın, S., Küçükkolbaşı, S. (2021). Farmasötik Preparatlarda Ondansetron Tayini İçin Elektrokimyasal Sensör Geliştirilmesi. Journal of the Institute of Science and Technology, 11(4), 2860-2869. https://doi.org/10.21597/jist.788927
AMA Erdoğan ZÖ, Koçer MB, Sayın S, Küçükkolbaşı S. Farmasötik Preparatlarda Ondansetron Tayini İçin Elektrokimyasal Sensör Geliştirilmesi. J. Inst. Sci. and Tech. December 2021;11(4):2860-2869. doi:10.21597/jist.788927
Chicago Erdoğan, Zehra Özden, Mustafa Barış Koçer, Serkan Sayın, and Semahat Küçükkolbaşı. “Farmasötik Preparatlarda Ondansetron Tayini İçin Elektrokimyasal Sensör Geliştirilmesi”. Journal of the Institute of Science and Technology 11, no. 4 (December 2021): 2860-69. https://doi.org/10.21597/jist.788927.
EndNote Erdoğan ZÖ, Koçer MB, Sayın S, Küçükkolbaşı S (December 1, 2021) Farmasötik Preparatlarda Ondansetron Tayini İçin Elektrokimyasal Sensör Geliştirilmesi. Journal of the Institute of Science and Technology 11 4 2860–2869.
IEEE Z. Ö. Erdoğan, M. B. Koçer, S. Sayın, and S. Küçükkolbaşı, “Farmasötik Preparatlarda Ondansetron Tayini İçin Elektrokimyasal Sensör Geliştirilmesi”, J. Inst. Sci. and Tech., vol. 11, no. 4, pp. 2860–2869, 2021, doi: 10.21597/jist.788927.
ISNAD Erdoğan, Zehra Özden et al. “Farmasötik Preparatlarda Ondansetron Tayini İçin Elektrokimyasal Sensör Geliştirilmesi”. Journal of the Institute of Science and Technology 11/4 (December 2021), 2860-2869. https://doi.org/10.21597/jist.788927.
JAMA Erdoğan ZÖ, Koçer MB, Sayın S, Küçükkolbaşı S. Farmasötik Preparatlarda Ondansetron Tayini İçin Elektrokimyasal Sensör Geliştirilmesi. J. Inst. Sci. and Tech. 2021;11:2860–2869.
MLA Erdoğan, Zehra Özden et al. “Farmasötik Preparatlarda Ondansetron Tayini İçin Elektrokimyasal Sensör Geliştirilmesi”. Journal of the Institute of Science and Technology, vol. 11, no. 4, 2021, pp. 2860-9, doi:10.21597/jist.788927.
Vancouver Erdoğan ZÖ, Koçer MB, Sayın S, Küçükkolbaşı S. Farmasötik Preparatlarda Ondansetron Tayini İçin Elektrokimyasal Sensör Geliştirilmesi. J. Inst. Sci. and Tech. 2021;11(4):2860-9.