Research Article
BibTex RIS Cite

Kolemanitin propiyonik asit çözeltilerinde çözünmesi sırasında Ca²⁺ iyonunun kinetik davranışı

Year 2025, Volume: 15 Issue: 2, 634 - 649, 01.06.2025
https://doi.org/10.21597/jist.1522708

Abstract

Türkiye’de bulunan ticari bor rezervlerinin öncülüğünü kolemanit, tinkal ve üleksit oluşturmaktadır. Bir kalsiyum borat minerali olan kolemanit cevheri, bor trioksit (B2O3) bakımından en zengin bileşime sahiptir. İçerdiği yüksek B2O3 içeriğiyle başta borik asit ve endüstride bor bileşiklerinin üretiminde temel hammaddedir. Günümüz endüstrisinde bor ve bor türevlerinin kullanımı artmaktadır. Kullanılacak olan bor minerallerinin saf olarak elde edilmesi büyük önem arz etmektedir. Kolemanitin propiyonik asitte çözünmesi safsızlıkların oluşumunu engellemekte ve ticari öneme sahip bir yan ürün oluşmaktadır. Bu çalışmada kolemanitin propiyonik asit çözeltilerindeki çözünme kinetiği üzerine yapılan bu çalışma, reaksiyon sıcaklığı, asit konsantrasyonu, katı-sıvı oranı ve tane boyutu gibi parametrelerin çözünme hızını önemli ölçüde etkilediğini ve bu parametrelerin optimizasyonu ile çözünme verimliliğinin artırılabileceğini göstermektedir. Bu bulgular literatürdeki diğer çalışmalarla uyumludur ve kolemanitin farklı asit çözeltilerinde çözünme kinetiği üzerine yapılan araştırmalara önemli katkılar sağlamaktadır. Sonuç olarak, kolemanitin farklı asit çözeltilerinde çözünme kinetiği üzerine yapılan bu çalışmaların çoğunda karıştırma hızının etkisinin olmadığı gözlemlenmiştir. Çözünme hızının tipik olarak artan sıcaklıklarla, azalan tanecik boyutuyla ve azalan katı-sıvı oranıyla arttığı tespit edilmiştir. Çözünme sürecinin çoğunlukla difüzyon kontrolüne bağlı olduğu ve aktivasyon enerjisinin hesaplandığı bu sonuçlar, propiyonik asit çözeltilerinde elde edilen bulgularla tutarlıdır. Aktivasyon enerjisi (E) 36,56 kj.mol-1 olarak bulundu.

Supporting Institution

Çankırı Karatekin Üniversitesi

Project Number

MF210621D06

References

  • Abali, Y., Bayca, S., & Mistincik, E. (2006). Kinetics of oxalic acid leaching of tincal. Chemical Engineering Journal, 123(1-2), 25-30.
  • Abanades, S., Kimura, H., & Otsuka, H. (2015). Kinetic investigation of carbon-catalyzed methane decomposition in a thermogravimetric solar reactor. International Journal of Hydrogen Energy, 40(34), 10744-10755.
  • Alkan, M., Çifçi, C., Ayaz, F., & Doğan, M. (2000). Dissolution kinetics of ulexite in aqueous EDTA solutions. Canadian Metallurgical Quarterly, 39(4), 433-440.
  • Alkan, M., & Doğan, M. (2004). Dissolution kinetics of colemanite in oxalic acid solutions. Chemical Engineering and Processing: Process Intensification, 43(7), 867-872.
  • Bayca, S. U., Kocan, F., & Abali, Y. (2014). Dissolution of colemanite process waste in oxalic acid solutions. Environmental Progress & Sustainable Energy, 33(4), 1111-1116.
  • Çalımlı, M. H., Mehmet, T., & Kocakerim, M. M. (2020). Investigation dissolution behaviours and kinetics parameters of ulexite in boric acid solution. International Journal of Chemistry and Technology, 4(2), 121-129.
  • Çavuş, F., & Kuşlu, S. (2005). Dissolution kinetics of colemanite in citric acid solutions assisted by mechanical agitation and microwaves. Industrial & Engineering Chemistry Research, 44(22), 8164-8170.
  • Çopur, M., Pekdemir, T., Kocakerim, M. M., Korucu, H., & Guliyev, R. (2022). Industrial symbiosis: Boron waste valorization through CO2 utilization. Korean Journal of Chemical Engineering, 39(10), 2600-2614.
  • Demir, F., Al‐Ani, A. O. A., & Lacin, O. (2020). А kinеtiс аnаlysis fоr prоduсtiоn of саlсium bоrоgluсоnаtе frоm colemanite. International Journal of Chemical Kinetics, 52(11), 769-776.
  • Demirkıran, N. (2009). Dissolution kinetics of ulexite in ammonium nitrate solutions. Hydrometallurgy, 95(3-4), 198-202.
  • Guliyev, R., Kuşlu, S., Çalban, T., & Çolak, S. (2012). Leaching kinetics of colemanite in ammonium hydrogen sulphate solutions. Journal of Industrial and Engineering Chemistry, 18(4), 1202-1207.
  • Gür, A. (2007). Dissolution mechanism of colemanite in sulphuric acid solutions. Korean Journal of Chemical Engineering, 24(4), 588-591.
  • Gür, A., & Alkan, M. E. (2008). Leaching kinetics of colemanite in perchloric acid solutions. journal of chemical engineering of japan, 41(5), 354-360.
  • Karagöz, Ö., & Kuşlu, S. (2017). Dissolution kinetics of colemanite in potassium dihydrogen phosphate solution (KH2PO4). International Journal of Hydrogen Energy, 42(36), 23250-23259.
  • Kavcı, E., Calban, T., Colak, S., & Kuşlu, S. (2014). Leaching kinetics of ulexite in sodium hydrogen sulphate solutions. Journal of Industrial and Engineering Chemistry, 20(5), 2625-2631.
  • Kaya, F., & Özer, A. (2024). Production of boric acid from colemanite ore in the semi-batch reactor: Investigation of product yield and impurity control. Minerals Engineering, 206, 108528.
  • Kizilca, M., & Copur, M. (2015). Kinetic investigation of reaction between colemanite ore and methanol. Chemical Engineering Communications, 202(11), 1528-1534.
  • Kum, C., Alkan, M., & Kocakerim, M. M. (1994). Dissolution kinetics of calcined colemanite in ammonium chloride solution. Hydrometallurgy, 36(2), 259-268.
  • Kurtbaş, A., Kocakerim, M. M., Küçük, Ö., & Yartaşı, A. (2006). Dissolution of colemanite in aqueous solutions saturated with both sulfur dioxide (SO2) gas and boric acid. Industrial & engineering chemistry research, 45(6), 1857-1862.
  • Kuşlu, S., Dişli, F. Ç., & Çolak, S. (2010). Leaching kinetics of ulexite in borax pentahydrate solutions saturated with carbon dioxide. Journal of Industrial and Engineering Chemistry, 16(5), 673-678.
  • Küçük, N., Küçük, Ö., & Solak, A. O. (2023). Optimization by Using the Taguchi Method of Boric Acid Production by Dissolving Flash Calcined Colemanite in Water Saturated with SO2. Iran. J. Chem. Chem. Eng. Research Article Vol, 42(5).
  • Küçük, Ö., Kocakerim, M. M., Yartaşı, A., & Çopur, M. (2002). Dissolution of kestelek's colemanite containing clay minerals in water saturated with sulfur dioxide. Industrial & engineering chemistry research, 41(12), 2853-2857.
  • Künkül, A., Aslan, N. E., Ekmekyapar, A., & Demirkıran, N. (2012). Boric acid extraction from calcined colemanite with ammonium carbonate solutions. Industrial & engineering chemistry research, 51(9), 3612-3618.
  • Mazet, N. (1992). Modeling of gas-solid reactions. 2. nonporous solids. Int. Chem. Eng., 32, 271-284.
  • Naktiyok, J., Bayrakçeken, H., Özer, A. K., & Gülaboğlu, M. Ş. (2013). Kinetics of thermal decomposition of phospholipids obtained from phosphate rock. Fuel processing technology, 116, 158-164.
  • Özmetin, C., Kocakerim, M. M., Yapıcı, S., & Yartaşı, A. (1996). A semiempirical kinetic model for dissolution of colemanite in aqueous CH3COOH solutions. Industrial & engineering chemistry research, 35(7), 2355-2359.
  • Phechkrajang, C. M., & Yooyong, S. (2017). Fast and simple method for semiquantitative determination of calcium propionate in bread samples. journal of food and drug analysis, 25(2), 254-259. Sert, H., Yıldıran, H., & Toscalı, D. (2012). An investigation on the production of sodium metaborate dihydrate from ulexite by using trona and lime. International journal of hydrogen energy, 37(7), 5833-5839.
  • Şimşek, H. M., Guliyev, R., & Beşe, A. V. (2018). Dissolution kinetics of borogypsum in di-ammonium hydrogen phosphate solutions. international journal of hydrogen energy, 43(44), 20262-20270.
  • Şimşek, H. M., & Yeşilyurt, M. (2021). Sodyumbisülfat çözeltisinde kolemanitin kinetik mekanizmasının araştırılması. BOR DERGİSİ, 6(4), 395-401.
  • Temur, H., Yartaşı, A., Copur, M., & Kocakerim, M. M. (2000). The kinetics of dissolution of colemanite in H3PO4 solutions. Industrial & engineering chemistry research, 39(11), 4114-4119.
  • Tombal, T., Özkan, Ş., Kurşun Ünver, İ., & Osmanlioğlu, A. (2016). Properties, production, uses of boron compounds and their importance in nuclear reactor technology. Boron, 1(2), 86-95.
  • Tunc, M., Yapici, S., Kocakerim, M., & Yartasi, A. (2001). The dissolution kinetics of ulexite in sulphuric acid solutions. equilibrium, 3, 2.
  • Tunç, M., Kocakerim, M. M., Küçük, Ö., & Aluz, M. (2007). Dissolution of colemanite in (NH 4) 2SO 4 solutions. Korean Journal of Chemical Engineering, 24(1), 55-59.
  • Uğur, M. (2024a). Dissolution behavior and kinetic investigation of [Ca]^(2+) in the dissolution of colemanite in propionic acid presence saturated with synthetic flue gas. Journal of Boron, 9(1), 9-18.
  • Uğur, M. (2024b). Dissolution Kinetics for Colemanite Ore in Propionic Acid Solutions Saturated with Pyrite Roasting Gas. Iranian Journal of Chemistry and Chemical Engineering(Articles in Press).
  • Uğur, M. (2024c). Dissolution behavior and kinetic investigation of in solution in the reaction of colemanite ore with propionic acid. International Journal of Chemistry and Technology, 8(2), 143-152.

Kinetic Behavior of Ca²⁺ Ions During the Dissolution of Colemanite in Propionic Acid Solutions

Year 2025, Volume: 15 Issue: 2, 634 - 649, 01.06.2025
https://doi.org/10.21597/jist.1522708

Abstract

The leading commercial boron reserves in Türkiye are colemanite, tincal, and ulexite. The Colemanite ore, a calcium borate mineral, has the richest composition in terms of boron trioxide (B2O3). Boric acid, with its high B2O3 content, is the basic raw material in the production of boron compounds in industry. The use of boron and boron derivatives is increasing in today's industry. The boron minerals to be used must be obtained in pure form. Dissolving colemanite in propionic acid prevents the formation of impurities and produces a commercially important by-product This study, conducted on the dissolution kinetics of colemanite in propionic acid solutions, shows that parameters reaction temperature, acid concentration, solid-liquid ratio, and particle size significantly affect the dissolution rate and that the dissolution efficiency can be increased by optimizing these parameters. These findings are compatible with other studies in the literature and provide important contributions to research on the dissolution kinetics of colemanite in different acid solutions. As a result, it has been observed that stirring speed has no effect in most of these studies on dissolution kinetics of colemanite in different acid solutions. It has been established that the dissolution rate typically rises with elevated temperatures, diminished particle size, and reduced solid-liquid ratio. These results, in which the dissolution process mostly depends on diffusion control and the activation energy is calculated, are consistent with the findings obtained in propionic acid solutions. The activation energy (E) was found to be 36.56 kj/mol.

Supporting Institution

Çankırı Karatekin Üniversitesi

Project Number

MF210621D06

References

  • Abali, Y., Bayca, S., & Mistincik, E. (2006). Kinetics of oxalic acid leaching of tincal. Chemical Engineering Journal, 123(1-2), 25-30.
  • Abanades, S., Kimura, H., & Otsuka, H. (2015). Kinetic investigation of carbon-catalyzed methane decomposition in a thermogravimetric solar reactor. International Journal of Hydrogen Energy, 40(34), 10744-10755.
  • Alkan, M., Çifçi, C., Ayaz, F., & Doğan, M. (2000). Dissolution kinetics of ulexite in aqueous EDTA solutions. Canadian Metallurgical Quarterly, 39(4), 433-440.
  • Alkan, M., & Doğan, M. (2004). Dissolution kinetics of colemanite in oxalic acid solutions. Chemical Engineering and Processing: Process Intensification, 43(7), 867-872.
  • Bayca, S. U., Kocan, F., & Abali, Y. (2014). Dissolution of colemanite process waste in oxalic acid solutions. Environmental Progress & Sustainable Energy, 33(4), 1111-1116.
  • Çalımlı, M. H., Mehmet, T., & Kocakerim, M. M. (2020). Investigation dissolution behaviours and kinetics parameters of ulexite in boric acid solution. International Journal of Chemistry and Technology, 4(2), 121-129.
  • Çavuş, F., & Kuşlu, S. (2005). Dissolution kinetics of colemanite in citric acid solutions assisted by mechanical agitation and microwaves. Industrial & Engineering Chemistry Research, 44(22), 8164-8170.
  • Çopur, M., Pekdemir, T., Kocakerim, M. M., Korucu, H., & Guliyev, R. (2022). Industrial symbiosis: Boron waste valorization through CO2 utilization. Korean Journal of Chemical Engineering, 39(10), 2600-2614.
  • Demir, F., Al‐Ani, A. O. A., & Lacin, O. (2020). А kinеtiс аnаlysis fоr prоduсtiоn of саlсium bоrоgluсоnаtе frоm colemanite. International Journal of Chemical Kinetics, 52(11), 769-776.
  • Demirkıran, N. (2009). Dissolution kinetics of ulexite in ammonium nitrate solutions. Hydrometallurgy, 95(3-4), 198-202.
  • Guliyev, R., Kuşlu, S., Çalban, T., & Çolak, S. (2012). Leaching kinetics of colemanite in ammonium hydrogen sulphate solutions. Journal of Industrial and Engineering Chemistry, 18(4), 1202-1207.
  • Gür, A. (2007). Dissolution mechanism of colemanite in sulphuric acid solutions. Korean Journal of Chemical Engineering, 24(4), 588-591.
  • Gür, A., & Alkan, M. E. (2008). Leaching kinetics of colemanite in perchloric acid solutions. journal of chemical engineering of japan, 41(5), 354-360.
  • Karagöz, Ö., & Kuşlu, S. (2017). Dissolution kinetics of colemanite in potassium dihydrogen phosphate solution (KH2PO4). International Journal of Hydrogen Energy, 42(36), 23250-23259.
  • Kavcı, E., Calban, T., Colak, S., & Kuşlu, S. (2014). Leaching kinetics of ulexite in sodium hydrogen sulphate solutions. Journal of Industrial and Engineering Chemistry, 20(5), 2625-2631.
  • Kaya, F., & Özer, A. (2024). Production of boric acid from colemanite ore in the semi-batch reactor: Investigation of product yield and impurity control. Minerals Engineering, 206, 108528.
  • Kizilca, M., & Copur, M. (2015). Kinetic investigation of reaction between colemanite ore and methanol. Chemical Engineering Communications, 202(11), 1528-1534.
  • Kum, C., Alkan, M., & Kocakerim, M. M. (1994). Dissolution kinetics of calcined colemanite in ammonium chloride solution. Hydrometallurgy, 36(2), 259-268.
  • Kurtbaş, A., Kocakerim, M. M., Küçük, Ö., & Yartaşı, A. (2006). Dissolution of colemanite in aqueous solutions saturated with both sulfur dioxide (SO2) gas and boric acid. Industrial & engineering chemistry research, 45(6), 1857-1862.
  • Kuşlu, S., Dişli, F. Ç., & Çolak, S. (2010). Leaching kinetics of ulexite in borax pentahydrate solutions saturated with carbon dioxide. Journal of Industrial and Engineering Chemistry, 16(5), 673-678.
  • Küçük, N., Küçük, Ö., & Solak, A. O. (2023). Optimization by Using the Taguchi Method of Boric Acid Production by Dissolving Flash Calcined Colemanite in Water Saturated with SO2. Iran. J. Chem. Chem. Eng. Research Article Vol, 42(5).
  • Küçük, Ö., Kocakerim, M. M., Yartaşı, A., & Çopur, M. (2002). Dissolution of kestelek's colemanite containing clay minerals in water saturated with sulfur dioxide. Industrial & engineering chemistry research, 41(12), 2853-2857.
  • Künkül, A., Aslan, N. E., Ekmekyapar, A., & Demirkıran, N. (2012). Boric acid extraction from calcined colemanite with ammonium carbonate solutions. Industrial & engineering chemistry research, 51(9), 3612-3618.
  • Mazet, N. (1992). Modeling of gas-solid reactions. 2. nonporous solids. Int. Chem. Eng., 32, 271-284.
  • Naktiyok, J., Bayrakçeken, H., Özer, A. K., & Gülaboğlu, M. Ş. (2013). Kinetics of thermal decomposition of phospholipids obtained from phosphate rock. Fuel processing technology, 116, 158-164.
  • Özmetin, C., Kocakerim, M. M., Yapıcı, S., & Yartaşı, A. (1996). A semiempirical kinetic model for dissolution of colemanite in aqueous CH3COOH solutions. Industrial & engineering chemistry research, 35(7), 2355-2359.
  • Phechkrajang, C. M., & Yooyong, S. (2017). Fast and simple method for semiquantitative determination of calcium propionate in bread samples. journal of food and drug analysis, 25(2), 254-259. Sert, H., Yıldıran, H., & Toscalı, D. (2012). An investigation on the production of sodium metaborate dihydrate from ulexite by using trona and lime. International journal of hydrogen energy, 37(7), 5833-5839.
  • Şimşek, H. M., Guliyev, R., & Beşe, A. V. (2018). Dissolution kinetics of borogypsum in di-ammonium hydrogen phosphate solutions. international journal of hydrogen energy, 43(44), 20262-20270.
  • Şimşek, H. M., & Yeşilyurt, M. (2021). Sodyumbisülfat çözeltisinde kolemanitin kinetik mekanizmasının araştırılması. BOR DERGİSİ, 6(4), 395-401.
  • Temur, H., Yartaşı, A., Copur, M., & Kocakerim, M. M. (2000). The kinetics of dissolution of colemanite in H3PO4 solutions. Industrial & engineering chemistry research, 39(11), 4114-4119.
  • Tombal, T., Özkan, Ş., Kurşun Ünver, İ., & Osmanlioğlu, A. (2016). Properties, production, uses of boron compounds and their importance in nuclear reactor technology. Boron, 1(2), 86-95.
  • Tunc, M., Yapici, S., Kocakerim, M., & Yartasi, A. (2001). The dissolution kinetics of ulexite in sulphuric acid solutions. equilibrium, 3, 2.
  • Tunç, M., Kocakerim, M. M., Küçük, Ö., & Aluz, M. (2007). Dissolution of colemanite in (NH 4) 2SO 4 solutions. Korean Journal of Chemical Engineering, 24(1), 55-59.
  • Uğur, M. (2024a). Dissolution behavior and kinetic investigation of [Ca]^(2+) in the dissolution of colemanite in propionic acid presence saturated with synthetic flue gas. Journal of Boron, 9(1), 9-18.
  • Uğur, M. (2024b). Dissolution Kinetics for Colemanite Ore in Propionic Acid Solutions Saturated with Pyrite Roasting Gas. Iranian Journal of Chemistry and Chemical Engineering(Articles in Press).
  • Uğur, M. (2024c). Dissolution behavior and kinetic investigation of in solution in the reaction of colemanite ore with propionic acid. International Journal of Chemistry and Technology, 8(2), 143-152.
There are 36 citations in total.

Details

Primary Language English
Subjects Reaction Engineering (Excl. Nuclear Reactions)
Journal Section Kimya Mühendisliği / Chemical Engineering
Authors

Mücahit Uğur 0000-0002-3746-5683

Ahmet Yartaşı 0000-0003-0469-4575

Mehmet Muhtar Kocakerim 0000-0003-3276-6097

Project Number MF210621D06
Early Pub Date May 24, 2025
Publication Date June 1, 2025
Submission Date July 26, 2024
Acceptance Date October 24, 2024
Published in Issue Year 2025 Volume: 15 Issue: 2

Cite

APA Uğur, M., Yartaşı, A., & Kocakerim, M. M. (2025). Kinetic Behavior of Ca²⁺ Ions During the Dissolution of Colemanite in Propionic Acid Solutions. Journal of the Institute of Science and Technology, 15(2), 634-649. https://doi.org/10.21597/jist.1522708
AMA Uğur M, Yartaşı A, Kocakerim MM. Kinetic Behavior of Ca²⁺ Ions During the Dissolution of Colemanite in Propionic Acid Solutions. J. Inst. Sci. and Tech. June 2025;15(2):634-649. doi:10.21597/jist.1522708
Chicago Uğur, Mücahit, Ahmet Yartaşı, and Mehmet Muhtar Kocakerim. “Kinetic Behavior of Ca²⁺ Ions During the Dissolution of Colemanite in Propionic Acid Solutions”. Journal of the Institute of Science and Technology 15, no. 2 (June 2025): 634-49. https://doi.org/10.21597/jist.1522708.
EndNote Uğur M, Yartaşı A, Kocakerim MM (June 1, 2025) Kinetic Behavior of Ca²⁺ Ions During the Dissolution of Colemanite in Propionic Acid Solutions. Journal of the Institute of Science and Technology 15 2 634–649.
IEEE M. Uğur, A. Yartaşı, and M. M. Kocakerim, “Kinetic Behavior of Ca²⁺ Ions During the Dissolution of Colemanite in Propionic Acid Solutions”, J. Inst. Sci. and Tech., vol. 15, no. 2, pp. 634–649, 2025, doi: 10.21597/jist.1522708.
ISNAD Uğur, Mücahit et al. “Kinetic Behavior of Ca²⁺ Ions During the Dissolution of Colemanite in Propionic Acid Solutions”. Journal of the Institute of Science and Technology 15/2 (June 2025), 634-649. https://doi.org/10.21597/jist.1522708.
JAMA Uğur M, Yartaşı A, Kocakerim MM. Kinetic Behavior of Ca²⁺ Ions During the Dissolution of Colemanite in Propionic Acid Solutions. J. Inst. Sci. and Tech. 2025;15:634–649.
MLA Uğur, Mücahit et al. “Kinetic Behavior of Ca²⁺ Ions During the Dissolution of Colemanite in Propionic Acid Solutions”. Journal of the Institute of Science and Technology, vol. 15, no. 2, 2025, pp. 634-49, doi:10.21597/jist.1522708.
Vancouver Uğur M, Yartaşı A, Kocakerim MM. Kinetic Behavior of Ca²⁺ Ions During the Dissolution of Colemanite in Propionic Acid Solutions. J. Inst. Sci. and Tech. 2025;15(2):634-49.