Research Article
BibTex RIS Cite

Design and Control of a Multi-Input Transformer-Based Inverter Producing 27 Levels from a Single Source

Year 2025, Volume: 15 Issue: 3, 861 - 871, 01.09.2025
https://doi.org/10.21597/jist.1700386

Abstract

The need for multiple DC bus voltages in multi-level inverters (MLIs) increases the cost and complexity of the system. A solution to this problem is to include the voltages in the system in isolation by using High Frequency Link (HFL). In the conventional usage of HFL, the square wave signal is generated by an H-bridge. In this study, the transformer is set to 3 primary windings by using two H-bridges used before HFL. Thus, the voltage obtained from HFL is diversified and 27 level output is obtained from the PUC circuit that can produce 7 levels. In addition, the cuckoo optimization algorithm is used for the transformer winding numbers to minimize the inverter voltage THD. The proposed 27-level topology is verified by testing it with outputs at different frequencies and amplitudes using an inductive filter. Simulation findings show that the multi-input transformer in the proposed topology can be applied to other innovative and competitive MLI circuits.

References

  • Aktar, A. K. (2025). Energy transition in smart grids: Combining hydrogen, methanation and electric vehicles for sustainable heat and power. International Journal of Hydrogen Energy, 140, 787-802. doi:10.1016/J.IJHYDENE.2025.05.363
  • Chen, J., Zhang, J., Zhou, J., Shi, G., Jia, Y., Wang, H., Cai, X. (2024). Enhanced Modular Multilevel Converter with Multiple MVac Ports Based on Active Fundamental-Frequency Circulating Current Injection to Realize Full-Range Operation. IEEE Transactions on Power Electronics. doi:10.1109/TPEL.2024.3519892
  • Hatas, H., Almali, M. N. (2023a). Design and control of bypass diode multilevel inverter using a single DC source. Electric Power Systems Research, 216. doi:10.1016/j.epsr.2022.109039
  • Hatas, H., Almali, M. N. (2023b). Design and control of a novel topology for multilevel inverters using high frequency link. Electric Power Systems Research, 221. doi:10.1016/j.epsr.2023.109458
  • Junior, Samuel Carvallho Silva, Jacobina, C. B., Fabricio, E. L. L., Felinto, A. S. (2022). Asymmetric 49-Levels Cascaded MPUC Multilevel Inverter Fed by a Single DC Source. IEEE Transactions on Industry Applications, 58(6). doi:10.1109/TIA.2022.3202875
  • Junior, Samuel C.S., Jacobina, C., Fabricio, E. L. L. (2021). A Single-Phase 35-levels Cascaded PUC Multilevel Inverter Fed by a Single DC-Source. 2021 IEEE Energy Conversion Congress and Exposition, ECCE 2021 - Proceedings,. doi:10.1109/ECCE47101.2021.9595834
  • Karakılıç, M. (2025). A Novel Enhanced Switched Capacitor (ESC) Unit and ESC Based 9L MLI Topology. Journal of Electrical Engineering and Technology, 1-16. doi:10.1007/S42835-025-02202-9/FIGURES/25
  • Karakılıç, M., Hataş, H., Nuri Almalı, M. (2023). Design of a 21-level multilevel inverter with minimum number of devices count. International Journal of Circuit Theory and Applications, 51(12). doi:10.1002/cta.3730
  • Li, J., Huang, A. Q., Liang, Z., Bhattacharya, S. (2012). Analysis and design of active NPC (ANPC) inverters for fault-tolerant operation of high-power electrical drives. IEEE Transactions on Power Electronics, 27(2), 519-533. doi:10.1109/TPEL.2011.2143430
  • Mahto, K. K., Das, P., Das, D., Mittal, S., Mahato, B. (2024). A New Criss-Cross-Based Asymmetrically Configured T-Type Multi-level Inverter. Lecture Notes in Electrical Engineering, 1148 LNEE, 1-14. doi:10.1007/978-981-97-0154-4_1
  • Memis, M., Karakilic, M. (2025). 7-Level Soft Charging Switched Capacitor Multilevel Inverter. IEEE Access. doi:10.1109/ACCESS.2025.3560576
  • Modeer, T., Pallo, N., Foulkes, T., Barth, C. B., Pilawa-Podgurski, R. C. N. (2020). Design of a GaN-Based Interleaved Nine-Level Flying Capacitor Multilevel Inverter for Electric Aircraft Applications. IEEE Transactions on Power Electronics, 35(11), 12153-12165. doi:10.1109/TPEL.2020.2989329
  • Murshid, S., Tayyab, M., Sarwar, A., Tariq, M., Al-Durra, A., Tomar, A. (2022). Self-Balanced Twenty Five Level Switched Capacitor Multilevel Inverter with Reduced Switch Count and Voltage Boosting Capability. IEEE Transactions on Industry Applications, 58(2), 2183-2194. doi:10.1109/TIA.2021.3136802
  • Pereda, J., Dixon, J. (2011). High-frequency link: A solution for using only one DC source in asymmetric cascaded multilevel inverters. IEEE Transactions on Industrial Electronics, 58(9). doi:10.1109/TIE.2010.2103532
  • Venkataramanaiah, J., Suresh, Y., Panda, A. K. (2017). A review on symmetric, asymmetric, hybrid and single DC sources based multilevel inverter topologies. Renewable and Sustainable Energy Reviews. doi:10.1016/j.rser.2017.03.066
  • Yarlagadda, A. K., Verma, V. (2022). Trinary asymmetric cascaded H bridge (1:3:9) multilevel inverter with self-balanced capacitor. Journal of Power Electronics, 22(9). doi:10.1007/s43236-022-00467-1

Tek Kaynaktan 27 Seviye Üreten Çok Girişli Transformatör Tabanlı Evirici Tasarımı ve Kontrolü

Year 2025, Volume: 15 Issue: 3, 861 - 871, 01.09.2025
https://doi.org/10.21597/jist.1700386

Abstract

Çok seviyeli eviricilerde (ÇSE) çoklu DA bara gerilimlerine duyulan ihtiyaç, sistemin maliyetini ve karmaşıklığını artırmaktadır. Bu soruna yönelik bir çözüm yolu, Yüksek Frekans Bağlantısı (YFB) kullanılarak gerilimlerin izole olarak sisteme dahil edilmesidir. YFB'nin alışılagelmiş kullanım şeklinde, kare dalga sinyali bir H-köprüsü tarafından üretilir. Bu çalışmada ise, YFB öncesinde kullanılan H-köprü iki tane kullanarak transformatör 3 birincil sargılı ayarlanmıştır. Böylece YFB'den elde edilen voltaj çeşitlendirilerek, 7 seviye üretebilen PUC devresinden 27 seviye çıkış alınmıştır. Ayrıca evirici gerilim THB’sinin minimum olması için transformatör sargı sayıları guguk kuşu optimizasyon algoritması kullanılmıştır. Önerilen 27 seviyeli topoloji, bir endüktif filtre kullanılarak farklı frekans ve genlik değerlerindeki çıkışlarla test edilmek suretiyle doğrulanmıştır. Simülasyon bulguları, önerilen topolojideki çok girişli transformatörün yenilikçi ve rekabetçi diğer ÇSE devrelerine uygulanabilirliğini göstermektedir.

References

  • Aktar, A. K. (2025). Energy transition in smart grids: Combining hydrogen, methanation and electric vehicles for sustainable heat and power. International Journal of Hydrogen Energy, 140, 787-802. doi:10.1016/J.IJHYDENE.2025.05.363
  • Chen, J., Zhang, J., Zhou, J., Shi, G., Jia, Y., Wang, H., Cai, X. (2024). Enhanced Modular Multilevel Converter with Multiple MVac Ports Based on Active Fundamental-Frequency Circulating Current Injection to Realize Full-Range Operation. IEEE Transactions on Power Electronics. doi:10.1109/TPEL.2024.3519892
  • Hatas, H., Almali, M. N. (2023a). Design and control of bypass diode multilevel inverter using a single DC source. Electric Power Systems Research, 216. doi:10.1016/j.epsr.2022.109039
  • Hatas, H., Almali, M. N. (2023b). Design and control of a novel topology for multilevel inverters using high frequency link. Electric Power Systems Research, 221. doi:10.1016/j.epsr.2023.109458
  • Junior, Samuel Carvallho Silva, Jacobina, C. B., Fabricio, E. L. L., Felinto, A. S. (2022). Asymmetric 49-Levels Cascaded MPUC Multilevel Inverter Fed by a Single DC Source. IEEE Transactions on Industry Applications, 58(6). doi:10.1109/TIA.2022.3202875
  • Junior, Samuel C.S., Jacobina, C., Fabricio, E. L. L. (2021). A Single-Phase 35-levels Cascaded PUC Multilevel Inverter Fed by a Single DC-Source. 2021 IEEE Energy Conversion Congress and Exposition, ECCE 2021 - Proceedings,. doi:10.1109/ECCE47101.2021.9595834
  • Karakılıç, M. (2025). A Novel Enhanced Switched Capacitor (ESC) Unit and ESC Based 9L MLI Topology. Journal of Electrical Engineering and Technology, 1-16. doi:10.1007/S42835-025-02202-9/FIGURES/25
  • Karakılıç, M., Hataş, H., Nuri Almalı, M. (2023). Design of a 21-level multilevel inverter with minimum number of devices count. International Journal of Circuit Theory and Applications, 51(12). doi:10.1002/cta.3730
  • Li, J., Huang, A. Q., Liang, Z., Bhattacharya, S. (2012). Analysis and design of active NPC (ANPC) inverters for fault-tolerant operation of high-power electrical drives. IEEE Transactions on Power Electronics, 27(2), 519-533. doi:10.1109/TPEL.2011.2143430
  • Mahto, K. K., Das, P., Das, D., Mittal, S., Mahato, B. (2024). A New Criss-Cross-Based Asymmetrically Configured T-Type Multi-level Inverter. Lecture Notes in Electrical Engineering, 1148 LNEE, 1-14. doi:10.1007/978-981-97-0154-4_1
  • Memis, M., Karakilic, M. (2025). 7-Level Soft Charging Switched Capacitor Multilevel Inverter. IEEE Access. doi:10.1109/ACCESS.2025.3560576
  • Modeer, T., Pallo, N., Foulkes, T., Barth, C. B., Pilawa-Podgurski, R. C. N. (2020). Design of a GaN-Based Interleaved Nine-Level Flying Capacitor Multilevel Inverter for Electric Aircraft Applications. IEEE Transactions on Power Electronics, 35(11), 12153-12165. doi:10.1109/TPEL.2020.2989329
  • Murshid, S., Tayyab, M., Sarwar, A., Tariq, M., Al-Durra, A., Tomar, A. (2022). Self-Balanced Twenty Five Level Switched Capacitor Multilevel Inverter with Reduced Switch Count and Voltage Boosting Capability. IEEE Transactions on Industry Applications, 58(2), 2183-2194. doi:10.1109/TIA.2021.3136802
  • Pereda, J., Dixon, J. (2011). High-frequency link: A solution for using only one DC source in asymmetric cascaded multilevel inverters. IEEE Transactions on Industrial Electronics, 58(9). doi:10.1109/TIE.2010.2103532
  • Venkataramanaiah, J., Suresh, Y., Panda, A. K. (2017). A review on symmetric, asymmetric, hybrid and single DC sources based multilevel inverter topologies. Renewable and Sustainable Energy Reviews. doi:10.1016/j.rser.2017.03.066
  • Yarlagadda, A. K., Verma, V. (2022). Trinary asymmetric cascaded H bridge (1:3:9) multilevel inverter with self-balanced capacitor. Journal of Power Electronics, 22(9). doi:10.1007/s43236-022-00467-1
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Electrical Machines and Drives
Journal Section Elektrik Elektronik Mühendisliği / Electrical Electronic Engineering
Authors

Hasan Hataş 0000-0003-4543-362X

Early Pub Date August 31, 2025
Publication Date September 1, 2025
Submission Date May 15, 2025
Acceptance Date June 10, 2025
Published in Issue Year 2025 Volume: 15 Issue: 3

Cite

APA Hataş, H. (2025). Tek Kaynaktan 27 Seviye Üreten Çok Girişli Transformatör Tabanlı Evirici Tasarımı ve Kontrolü. Journal of the Institute of Science and Technology, 15(3), 861-871. https://doi.org/10.21597/jist.1700386
AMA Hataş H. Tek Kaynaktan 27 Seviye Üreten Çok Girişli Transformatör Tabanlı Evirici Tasarımı ve Kontrolü. J. Inst. Sci. and Tech. September 2025;15(3):861-871. doi:10.21597/jist.1700386
Chicago Hataş, Hasan. “Tek Kaynaktan 27 Seviye Üreten Çok Girişli Transformatör Tabanlı Evirici Tasarımı Ve Kontrolü”. Journal of the Institute of Science and Technology 15, no. 3 (September 2025): 861-71. https://doi.org/10.21597/jist.1700386.
EndNote Hataş H (September 1, 2025) Tek Kaynaktan 27 Seviye Üreten Çok Girişli Transformatör Tabanlı Evirici Tasarımı ve Kontrolü. Journal of the Institute of Science and Technology 15 3 861–871.
IEEE H. Hataş, “Tek Kaynaktan 27 Seviye Üreten Çok Girişli Transformatör Tabanlı Evirici Tasarımı ve Kontrolü”, J. Inst. Sci. and Tech., vol. 15, no. 3, pp. 861–871, 2025, doi: 10.21597/jist.1700386.
ISNAD Hataş, Hasan. “Tek Kaynaktan 27 Seviye Üreten Çok Girişli Transformatör Tabanlı Evirici Tasarımı Ve Kontrolü”. Journal of the Institute of Science and Technology 15/3 (September2025), 861-871. https://doi.org/10.21597/jist.1700386.
JAMA Hataş H. Tek Kaynaktan 27 Seviye Üreten Çok Girişli Transformatör Tabanlı Evirici Tasarımı ve Kontrolü. J. Inst. Sci. and Tech. 2025;15:861–871.
MLA Hataş, Hasan. “Tek Kaynaktan 27 Seviye Üreten Çok Girişli Transformatör Tabanlı Evirici Tasarımı Ve Kontrolü”. Journal of the Institute of Science and Technology, vol. 15, no. 3, 2025, pp. 861-7, doi:10.21597/jist.1700386.
Vancouver Hataş H. Tek Kaynaktan 27 Seviye Üreten Çok Girişli Transformatör Tabanlı Evirici Tasarımı ve Kontrolü. J. Inst. Sci. and Tech. 2025;15(3):861-7.