Research Article
BibTex RIS Cite

Vitis labrusca L. Genotiplerinin Fenolik Bileşik ve Antioksidan Kapasite İçerikleri

Year 2022, Volume: 19 Issue: 2, 318 - 331, 31.05.2022
https://doi.org/10.33462/jotaf.952108

Abstract

Phenolic compounds have been one of the most intensively studied topics in recent times, especially when health and healthy diet have come to the fore. There are proven health benefits of phenolic compounds found in the skin, seed, leaf and stem of grapes. While there are many studies on the phenolic content of Vitis vinifera L. species that positively contribute to human health, research on Vitis labrusca L. genotypes is far too few. In this study, total phenolic compound, antioxidant capacity and total anthocyanin levels were determined on the skin, seed, stem and leaves of the sixteen red Vitis labrusca L genotypes. In addition, the contents of the catechin, epicatechin and the trans-resveratrol, which are known to contribute to human health, were determined. According to the results of the research, the total phenolic compound content of the analyzed tissue was determined in the ranges of 115.650-5.650 mg GAE kg-1DW, antioxidant capacity 709-45 µmol trolox g-1 DW, total anthocyanin 32.788-2.037 mg kg-1, catechin 13.131-0 mg-1 DW, epicatechin 5.080-0 mg-1 DW and trans-resveratrol 98-0 mg kg-1 DW. The highest total phenolic compound content was determined in the stem of cluster of Steuben variety, the highest antioxidant capacity in the seed of Champbell Early genotype and the highest total anthocyanin in the skin of Vailant variety. The level of trans-resveratrol, which is known for its beneficial effects, is also measured at the highest in the leaves of Steuben variety as 98 mg kg-1 DW. The Vitis labrusca species is the only species that is resistant to the humid climate of the Black Sea region, however these genotypes are not preferred for table consumption. It is believed that the skin, seed, stem and leaves of Vitis labrusca can be used as new natural antioxidant sources and thus provide significant economic benefits.

References

  • Abe, L. T., Mota, R. V. D., Lajolo, F. M., Genovese, M. I. (2007). Compostos fenólicos e capacidade antioxidante de cultivares de uvas Vitis labrusca L. e Vitis vinifera L. Food Science and Technology 27: 394-400.
  • Anonim (2021a). Türkiye İstatistik Kurumu (TÜİK), http:// https://data.tuik.gov.tr/, (Erişim tarihi: 18.05.2021).
  • Anonim (2021b). Pubmed. https://pubmed.ncbi.nlm.nih.gov/, (Erişim tarihi: 20.05.2021).
  • Ardağ, A. (2008). Antioksidan Kapasite Tayin Yöntemlerinin Analitik Açıdan Karşılaştırılması. (Yüksek Lisans Tezi) Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, Aydın.
  • Aouey, B., Samet, A.M., Fetoui, H., Simmonds, M.S.J., Bouaziz, M. (2016). Anti-oxidant, anti-inflammatory, analgesic and antipyretic activities of grapevine leaf extract (Vitis vinifera) in mice and identification of its active constituents by LC–MS/MS analyses. Biomedicine and Pharmacotherapy, 84:1088-1098.
  • Bal, E., Kök, D., Çelik, S. (2011). Kozak Siyahı üzüm çeşidi üzerine hasat sonrası bazı uygulamaların etkisi. Tekirdağ Ziraat Fakültesi Dergisi 8(2), 65-76.
  • Braidot, E., Zancani, M., Petrussa, E., Peresson, C., Bertolini, A., Patui, S., Macrì, F., Vianello, A. (2008). Transport and accumulation of flavonoids in grapevine (Vitis vinifera L.). Plant Signaling and Behavior 2008, (3): 626–632.
  • Burin, V.M., Ferreira-Lima, N. E, Panceri, C. P., Bordignon-Luiz, M.T. (2014). Bioactive compounds and antioxidant activity of Vitis vinifera and Vitis labrusca grapes: Evaluation of different extraction methods. Microchemical Journal 114: 155-163.
  • Camargo, U. A., Maia, J. D. G., Ritschel, P. (2010). Novas Cultivares Brasileiras de Uva. Bento Gonçalves: Embrapa Uva e Vinho.
  • Cantos, E., Espín, J. C., & Tomás-Barberán, F. A. (2002). Varietal differences among the polyphenol profiles of seven table grape cultivars studied by LC–DAD–MS–MS. Journal of Agricultural and Food Chemistry 50(20): 5691–5696.
  • Castilla, P., Echarri, R., Dávalos, A., Cerrato, F., Ortega, H., Teruel, J. L., Lucas, M. F., Gómez-Coronado, D., Ortuño, J., & Lasunción, M. A. (2006). Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects. The American Journal of Clinical Nutrition 84(1): 252–262.
  • Corrales, M., Fernandez, A., Vizoso Pinto, M.G. , Butz, P., Franz, C.M.A.P., Schuele, E. (2010). Characterization of phenolic content, in vitro biological activity, and pesticide loads of extracts from white grape skins from organic and conventional cultivars. Food and Chemical Toxicology 48 (12): 3471-3476.
  • Dal Magro, L., Goetze, D., Ribeiro, C. T., Paludo, N., Rodrigues, E., Hertz, P. F., Rodrigues, R. C. (2016). Identification of bioactive compounds from Vitis labrusca L. variety concord grape juice treated with commercial enzymes: improved yield and quality parameters. Food and Bioprocess Technology 9(2), 365-377.
  • Dani, C., Oliboni, L. S., Vanderlinde, R., Bonatto, D., Salvador, M., Henriques, J. A. P. (2007). Phenolic content and antioxidant activities of white and purple juices manufactured with organically- or conventionally-produced grapes. Food and Chemical Toxicology 45(12): 2574–2580.
  • Gabaston, J., Villar, C.E., Biais, B., Teguo, W.P., Renouf, E., Corio-Costet, M.F., Richard, T., Mérillon, J.M. (2017). Stilbenes from Vitis vinifera L. waste: A sustainable tool for controlling Plasmopara Viticola. Journal of Agricultural Food Chemistry 65: 2711–2718.
  • Giusti, M.M., Wrolstad, R.E.(2001). Characterization and measurement of anthocyanins by UV–visible spectroscopy. Current Protocols in Food Analytical Chemistry, New York.
  • Gliemann, L., Nyberg, M., Hellsten, Y. (2016). Effects of exercise training and resveratrol on vascular health in aging. Free Radical Biology and Medicine 98:165–176.
  • Gueguen, N.,Desquiret-Dumas, V., Leman, G.,Chupin, S., Baron, S., Nivet-Antoine, V.,Vessières, E., Ayer, A., Henrion, D., Lenaers, G. (2015). Resveratrol directly binds to mitochondrial complex I and increases oxidative stress in brain mitochondria of aged mice. Plos One 18,10(12):e0144290.
  • Guthrie, A.R., Chow, H.H.S., Martinez, J.A. (2017). Effects of resveratrol on drug- and carcinogen-metabolizing enzymes, implications for cancer prevention. Pharmacology Research and Perspective 5, e00294.
  • Haskell-Ramsay, C.F., Stuart, R.C., Okello, E.J., Watson, A.W. (2017). Cognitive and mood improvements following acute supplementation with purple grape juice in healthy young adults. European Journal of Nutrition Journal 56:2621–2631.
  • Jayaprakasha, G.K., Singh, R.P., Sakariah, K.K. (2001). Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chemistry 73: 285–290.
  • Katiyar, S. K. 2008. Grape seed proanthocyanidines and skin cancer prevention: Inhibition of oxidative stress and protection of immune system. Molecular Nutrition and Food Research 52: S71–S76.
  • Kavgacı, M. (2019). İzabella Üzümünün (Vitis Labrusca L.) Resveratrol ve Fenolik Kompozisyonu ile Antioksidan Özelliklerinin Belirlenmesi. Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Enstitüsü Kimya Anabilim Dalı Yüksek Lisans Tezi.
  • Keskin, N., Bilir Ekbic, H., Kaya, O., Keskin, S. (2021). Antioxidant Activity and Biochemical Compounds of Vitis vinifera L. (cv.‘Katıkara’) and Vitis labrusca L. (cv.‘Isabella’) Grown in Black Sea Coast of Turkey. Erwerbs-Obstbau 63(1): 115-122.
  • Kim, S.Y., Jeong, S.M., Park, W.P., Nam, K.C., Ahn, D.U., Lee, S.C. (2006). Effect of heating conditions of grape seeds on the antioxidant activity of grape seed extracts. Food Chemistry 97: 472–479.
  • Kök, D , Bahar, E , Korkutal, I , Bal, E , Alço, T , Candar, S , Yaşasın, A . (2018). Ganos Dağlarinda Doğal Olarak Yetişen Üzüm Tiplerinin (V. vinifera L.) Fitokimyasal Özelliklerinin Belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi 15 (3): 52-60.
  • Lacerda, D. S., Santos, C. F., Oliveira, A. S., Zimmermann, R., Schneider, R., Agostini, F., Dani, C., Funchal, C., Gomez, R. (2014). Antioxidant and hepatoprotective effects of an organic grapevine leaf (Vitis labrusca L.) extract in diabetic rats. RSC Advances 4(95): 52611–52619.
  • Le Blanc, M.R. (2006). Cultivar, juice extraction, ultra violet irradiation and storage influence the stilbene content of muscadine grape (Vitis rotundifolia Michx.). Ph.D. Dissertation, Louisiana State University, LA, the USA, 112 p.
  • Lau, D.W., King, A.J. (2003). Pre- and post-mortem use of grape seed extract in dark poultry meat to inhibit development of thiobarbituric acid reactive substances. Journal of Agricultural and Food Chemistry 51: 1602–1607.
  • Nassiri-Asl, M., Hosseinzadeh, H. (2009). Review of the pharmacological effects of Vitis vinifera (grape) and its bioactive compounds. Phytotheraphy Researchs 23: 1197–1204.
  • Nixdorf, S. L., Hermosín-Gutiérrez, I. (2010). Brazilian red wines made from the hybrid grape cultivar Isabel: Phenolic composition and antioxidant capacity. Analytica Chimica Acta 659(1-2):208-215.
  • OIV, O. (2009). Compendium of international methods of wine and must analysis. International Organisation of Vine and Wine: Paris, France, 154-196.
  • Pastor, R. F., Restani, P., Di Lorenzo, C., Orgiu, F., Teissedre, P. L., Stockley, C., Iermoli, R. H. (2019). Resveratrol, human health and winemaking perspectives. Critical reviews in food science and nutrition, 59(8): 1237-1255.
  • Pertuzatti, P. B., Mendonça, S. C., Alcoléa, M., Guedes, C. T., da Encarnação Amorim, F., Beckmann, A. P. S., Gama, L.A., Américo, M. F. (2020). Bordo grape marc (Vitis labrusca): Evaluation of bioactive compounds in vitro and in vivo. LWT 129: 109625.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice–Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Biology and Medicine 26:1231–1237.
  • Rockenbach, I.V., Rodrigues, E., Valdemiro Gonzaga, L. Genovese, V., Gonçalves, A., Fett, R. 2011. Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chemistry Volume 127(1):174-179.
  • Salehi, B.; Mishra, A.P.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.V.T.; Martins, N.; Sharifi-Rad, J. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines 2018, 6, 91.
  • Santos, L. P., Morais, D. R., Souza, N. E., Cottica, S. M., Boroski, M., Visentainer, J. V. (2011). Phenolic compounds and fatty acids in different parts of Vitis labrusca and V. vinifera grapes. Food Research International 44(5): 1414-1418.
  • Sato, A. J., Silva, B. J., Santos, C. E., Bertolucci, R., Santos, R., Carielo, M., Roberto, S. R. (2008). Características físico-químicas e produtivas das uvas ‘Isabel’e ‘BRS-rúbea’ sobre diferentes porta-enxertos na região norte do Paraná. Revista Brasileira de Fruticultura 30: 553–556.
  • Singleton, V.L., Rossi, J.J.A.(1965). Colorimetric of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture 16(3):144–158.
  • Tabeshpour, J., Mehri, S., Shaebani Behbahani, F., Hosseinzadeh, H. (2018). Protective effects of Vitis vinifera (grapes) and one of its biologically active constituents, resveratrol, against natural and chemical toxicities: A comprehensive review. Phytotherapy research 32(11): 2164-2190.
  • Tahmaz, H., Söylemezoğlu, G., Yüksel, D., Baydar, N. G. (2013). Bazı Sofralık ve Şaraplık Üzüm Çeşitlerinin Fenolik Bileşik İçeriklerinin Belirlenmesi. Selcuk Journal of Agriculture and Food Sciences 27: 375-383.
  • Tahmaz, H, Söylemezoğlu, G . (2019). Denizli–Çal Yöresinde Yetiştirilen Şaraplık Üzüm Çeşitlerinin Farklı Dokularında Fenolik Bileşik İçeriklerinin Belirlenmesi. Bahçe 48(1):39-48.
  • Tahmaz, H , Yüksel Küskü, D , Söylemezoğlu, G . (2020). Üzüm (Vitis vinifera L.) Çeşitlerine Ait 49 Adet Salkım İskeletinin Toplam Fenolik Bileşik ve Trans-Resveratrol Düzeyleri . Harran Tarım ve Gıda Bilimleri Dergisi 24 (2) , 222-228 .
  • Tiwari, B.K., Valdramidis, V.P., O' Donnell, C.P., Muthukumarappan, K., Bourke, P., Cullen, P.J. (2009).Application of natural antimicrobials for food preservation. Journal of Agricultural and Food Chemistry 57 (14): 5987-6000.
  • Toaldo, I. M., Cruz, F. A., da Silva, E. L., - Bordignon-Luiz, M. T. (2016). Acute consumption of organic and conventional tropical grape juices (Vitis labrusca L.) increases antioxidants in plasma and erythrocytes, but not glucose and uric acid levels, in healthy individuals. Nutrition Research 36(8): 808-817.
  • Vislocky, L. M. and Fernandez, M. L. (2010). Biomedical effects of grape products. Nutrition Reviews 68: 656–670.
  • Waffo-Teguo, P., Krisa, S., Pawlus, D.A., Richard, T., Monti, J.P., Me’rillon, J.M. (2013). Grapevine stilbenoids: Bioavailability and neuroprotection. In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Chapter 73; Gopal Ramawat, K., Mérillon, J.-M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 2275–2309.
  • Waterhouse, A.L.(2005). Determination of total phenolics, in handbook of food analytical chemistry, ed. by Wrolstad, R.E., Acree, T.E., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Smith, D.M., Sporns, P. John Wiley & Sons, 463–470, New Jersey.
  • Xu, C., Zhang, Y., Cao, L., Lu, J. (2010). Phenolic compounds and antioxidant properties of different grape cultivars grown in China. Food Chemistry 119(4): 1557-1565.
  • Yadav, M., Jain, S., Bhardwaj, A., Nagpal, R., Puniya, M., Tomar, R., Singh, V., Parkash, O., Prasad, G.B., Marotta, F. and Yadav, H. (2009). Biological and medicinal properties of grapes and their bioactive constituents: An update. Journal of Medicinal Food 12: 473–484.
  • Yahia, E. M., Carrillo-López, A., Barrera, G. M., Suzán-Azpiri, H., Bolaños, M. Q. (2019). Photosynthesis. In Postharvest physiology and biochemistry of fruits and vegetables (pp. 47-72). Woodhead Publishing.
  • Yang, J., Xiao, Y.Y. (2013) Grape Phytochemicals and Associated Health Benefits. Critical Reviews in Food Science and Nutrition 53:(11):1202-1225.
  • Yu, W., Fu, Y.C., Wang, W. (2011). Cellular and molecular effects of resveratrol in health and disease. Journal of Cellular Biochemistry 113: 752–759.

Vitis labrusca L. Genotiplerinin Fenolik Bileşik ve Antioksidan Kapasite İçerikleri

Year 2022, Volume: 19 Issue: 2, 318 - 331, 31.05.2022
https://doi.org/10.33462/jotaf.952108

Abstract

Fenolik bileşikler özellikle sağlığın ve sağlıklı beslenmenin ön plana çıktığı son zamanlarda, üzerinde en yoğun çalışılan konulardan birisi olmuştur. Üzümlerin kabuk, çekirdek, yaprak ve salkım iskeletlerinde bulunan fenolik bileşiklerin sağlık üzerine kanıtlanmış yararları mevcuttur. Vitis vinifera L. türüne ait çeşitlerde insan sağlığına pozitif katkıları olan fenolik içerikler ile ilgili çok sayıda araştırma mevcut olmasına rağmen, Vitis labrusca L. genotipleri ile ilgili araştırmalar yok denecek kadar az sayıdadır. Bu sebeple araştırmada Türkiye’nin Karadeniz bölgesinde yetiştiriciliği yapılan on altı adet kırmızı Vitis labrusca L. genotipinin kabuk, çekirdek, salkım iskeleti ve yapraklarında toplam fenolik bileşik, antioksidan kapasite ve toplam antosiyanin düzeylerinin belirlenmesi amaçlanmıştır. Ayrıca insan sağlığına olan yararları bilinmekte olan kateşin, epikateşin ve trans-resveratrol içerikleri de tespit edilmiştir. Araştırma sonuçlarına göre analiz edilen örneklerde toplam fenolik bileşik içeriği 115.650-5.650 mg GAE kg-1 KA, antioksidan kapasite düzeyi 709-45 µmol troloks g-1 KA, toplam antosiyanin miktarı 32.788-2.037 mg kg-1, kateşin, epikateşin ve trans-resveratrol düzeyleri ise sırasıyla 13.131-0 mg kg-1 KA, 5.080-0 mg kg-1 KA, 98-0 mg kg-1 KA aralıklarında belirlenmiştir. En yüksek toplam fenolik bileşik içeriği Steuben çeşidinin salkım iskeletinde, en yüksek antioksidan kapasite Champbell Early çeşidinin çekirdeğinde ve en yüksek toplam antosiyanin içeriği Vailant çeşidinin kabuğunda saptanmıştır. İnsan sağlığına olan faydaları ile tanınan trans-resveratrol düzeyi ise en yüksek miktarda 98 mg kg-1 KA olarak yine Steuben çeşidinin yapraklarında ölçülmüştür. Vitis labrusca türü Karadeniz bölgesinin nemli iklimine dayanıklı tek türdür ancak bölgede yetiştiriciliği yapılan bu genotipler sofralık tüketimde tercih edilmemektedirler. Araştırma sonuçlarında yüksek fenolik bileşik içeriklerine sahip oldukları ortaya konmuş olan Vitis labrusca kabuk, çekirdek, salkım iskeleti ve yapraklarının yeni doğal antioksidan kaynakları olarak kullanılabileceği ve bu sayede önemli ekonomik faydaların sağlanabileceği düşünülmektedir.

References

  • Abe, L. T., Mota, R. V. D., Lajolo, F. M., Genovese, M. I. (2007). Compostos fenólicos e capacidade antioxidante de cultivares de uvas Vitis labrusca L. e Vitis vinifera L. Food Science and Technology 27: 394-400.
  • Anonim (2021a). Türkiye İstatistik Kurumu (TÜİK), http:// https://data.tuik.gov.tr/, (Erişim tarihi: 18.05.2021).
  • Anonim (2021b). Pubmed. https://pubmed.ncbi.nlm.nih.gov/, (Erişim tarihi: 20.05.2021).
  • Ardağ, A. (2008). Antioksidan Kapasite Tayin Yöntemlerinin Analitik Açıdan Karşılaştırılması. (Yüksek Lisans Tezi) Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, Aydın.
  • Aouey, B., Samet, A.M., Fetoui, H., Simmonds, M.S.J., Bouaziz, M. (2016). Anti-oxidant, anti-inflammatory, analgesic and antipyretic activities of grapevine leaf extract (Vitis vinifera) in mice and identification of its active constituents by LC–MS/MS analyses. Biomedicine and Pharmacotherapy, 84:1088-1098.
  • Bal, E., Kök, D., Çelik, S. (2011). Kozak Siyahı üzüm çeşidi üzerine hasat sonrası bazı uygulamaların etkisi. Tekirdağ Ziraat Fakültesi Dergisi 8(2), 65-76.
  • Braidot, E., Zancani, M., Petrussa, E., Peresson, C., Bertolini, A., Patui, S., Macrì, F., Vianello, A. (2008). Transport and accumulation of flavonoids in grapevine (Vitis vinifera L.). Plant Signaling and Behavior 2008, (3): 626–632.
  • Burin, V.M., Ferreira-Lima, N. E, Panceri, C. P., Bordignon-Luiz, M.T. (2014). Bioactive compounds and antioxidant activity of Vitis vinifera and Vitis labrusca grapes: Evaluation of different extraction methods. Microchemical Journal 114: 155-163.
  • Camargo, U. A., Maia, J. D. G., Ritschel, P. (2010). Novas Cultivares Brasileiras de Uva. Bento Gonçalves: Embrapa Uva e Vinho.
  • Cantos, E., Espín, J. C., & Tomás-Barberán, F. A. (2002). Varietal differences among the polyphenol profiles of seven table grape cultivars studied by LC–DAD–MS–MS. Journal of Agricultural and Food Chemistry 50(20): 5691–5696.
  • Castilla, P., Echarri, R., Dávalos, A., Cerrato, F., Ortega, H., Teruel, J. L., Lucas, M. F., Gómez-Coronado, D., Ortuño, J., & Lasunción, M. A. (2006). Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects. The American Journal of Clinical Nutrition 84(1): 252–262.
  • Corrales, M., Fernandez, A., Vizoso Pinto, M.G. , Butz, P., Franz, C.M.A.P., Schuele, E. (2010). Characterization of phenolic content, in vitro biological activity, and pesticide loads of extracts from white grape skins from organic and conventional cultivars. Food and Chemical Toxicology 48 (12): 3471-3476.
  • Dal Magro, L., Goetze, D., Ribeiro, C. T., Paludo, N., Rodrigues, E., Hertz, P. F., Rodrigues, R. C. (2016). Identification of bioactive compounds from Vitis labrusca L. variety concord grape juice treated with commercial enzymes: improved yield and quality parameters. Food and Bioprocess Technology 9(2), 365-377.
  • Dani, C., Oliboni, L. S., Vanderlinde, R., Bonatto, D., Salvador, M., Henriques, J. A. P. (2007). Phenolic content and antioxidant activities of white and purple juices manufactured with organically- or conventionally-produced grapes. Food and Chemical Toxicology 45(12): 2574–2580.
  • Gabaston, J., Villar, C.E., Biais, B., Teguo, W.P., Renouf, E., Corio-Costet, M.F., Richard, T., Mérillon, J.M. (2017). Stilbenes from Vitis vinifera L. waste: A sustainable tool for controlling Plasmopara Viticola. Journal of Agricultural Food Chemistry 65: 2711–2718.
  • Giusti, M.M., Wrolstad, R.E.(2001). Characterization and measurement of anthocyanins by UV–visible spectroscopy. Current Protocols in Food Analytical Chemistry, New York.
  • Gliemann, L., Nyberg, M., Hellsten, Y. (2016). Effects of exercise training and resveratrol on vascular health in aging. Free Radical Biology and Medicine 98:165–176.
  • Gueguen, N.,Desquiret-Dumas, V., Leman, G.,Chupin, S., Baron, S., Nivet-Antoine, V.,Vessières, E., Ayer, A., Henrion, D., Lenaers, G. (2015). Resveratrol directly binds to mitochondrial complex I and increases oxidative stress in brain mitochondria of aged mice. Plos One 18,10(12):e0144290.
  • Guthrie, A.R., Chow, H.H.S., Martinez, J.A. (2017). Effects of resveratrol on drug- and carcinogen-metabolizing enzymes, implications for cancer prevention. Pharmacology Research and Perspective 5, e00294.
  • Haskell-Ramsay, C.F., Stuart, R.C., Okello, E.J., Watson, A.W. (2017). Cognitive and mood improvements following acute supplementation with purple grape juice in healthy young adults. European Journal of Nutrition Journal 56:2621–2631.
  • Jayaprakasha, G.K., Singh, R.P., Sakariah, K.K. (2001). Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chemistry 73: 285–290.
  • Katiyar, S. K. 2008. Grape seed proanthocyanidines and skin cancer prevention: Inhibition of oxidative stress and protection of immune system. Molecular Nutrition and Food Research 52: S71–S76.
  • Kavgacı, M. (2019). İzabella Üzümünün (Vitis Labrusca L.) Resveratrol ve Fenolik Kompozisyonu ile Antioksidan Özelliklerinin Belirlenmesi. Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Enstitüsü Kimya Anabilim Dalı Yüksek Lisans Tezi.
  • Keskin, N., Bilir Ekbic, H., Kaya, O., Keskin, S. (2021). Antioxidant Activity and Biochemical Compounds of Vitis vinifera L. (cv.‘Katıkara’) and Vitis labrusca L. (cv.‘Isabella’) Grown in Black Sea Coast of Turkey. Erwerbs-Obstbau 63(1): 115-122.
  • Kim, S.Y., Jeong, S.M., Park, W.P., Nam, K.C., Ahn, D.U., Lee, S.C. (2006). Effect of heating conditions of grape seeds on the antioxidant activity of grape seed extracts. Food Chemistry 97: 472–479.
  • Kök, D , Bahar, E , Korkutal, I , Bal, E , Alço, T , Candar, S , Yaşasın, A . (2018). Ganos Dağlarinda Doğal Olarak Yetişen Üzüm Tiplerinin (V. vinifera L.) Fitokimyasal Özelliklerinin Belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi 15 (3): 52-60.
  • Lacerda, D. S., Santos, C. F., Oliveira, A. S., Zimmermann, R., Schneider, R., Agostini, F., Dani, C., Funchal, C., Gomez, R. (2014). Antioxidant and hepatoprotective effects of an organic grapevine leaf (Vitis labrusca L.) extract in diabetic rats. RSC Advances 4(95): 52611–52619.
  • Le Blanc, M.R. (2006). Cultivar, juice extraction, ultra violet irradiation and storage influence the stilbene content of muscadine grape (Vitis rotundifolia Michx.). Ph.D. Dissertation, Louisiana State University, LA, the USA, 112 p.
  • Lau, D.W., King, A.J. (2003). Pre- and post-mortem use of grape seed extract in dark poultry meat to inhibit development of thiobarbituric acid reactive substances. Journal of Agricultural and Food Chemistry 51: 1602–1607.
  • Nassiri-Asl, M., Hosseinzadeh, H. (2009). Review of the pharmacological effects of Vitis vinifera (grape) and its bioactive compounds. Phytotheraphy Researchs 23: 1197–1204.
  • Nixdorf, S. L., Hermosín-Gutiérrez, I. (2010). Brazilian red wines made from the hybrid grape cultivar Isabel: Phenolic composition and antioxidant capacity. Analytica Chimica Acta 659(1-2):208-215.
  • OIV, O. (2009). Compendium of international methods of wine and must analysis. International Organisation of Vine and Wine: Paris, France, 154-196.
  • Pastor, R. F., Restani, P., Di Lorenzo, C., Orgiu, F., Teissedre, P. L., Stockley, C., Iermoli, R. H. (2019). Resveratrol, human health and winemaking perspectives. Critical reviews in food science and nutrition, 59(8): 1237-1255.
  • Pertuzatti, P. B., Mendonça, S. C., Alcoléa, M., Guedes, C. T., da Encarnação Amorim, F., Beckmann, A. P. S., Gama, L.A., Américo, M. F. (2020). Bordo grape marc (Vitis labrusca): Evaluation of bioactive compounds in vitro and in vivo. LWT 129: 109625.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice–Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Biology and Medicine 26:1231–1237.
  • Rockenbach, I.V., Rodrigues, E., Valdemiro Gonzaga, L. Genovese, V., Gonçalves, A., Fett, R. 2011. Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chemistry Volume 127(1):174-179.
  • Salehi, B.; Mishra, A.P.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.V.T.; Martins, N.; Sharifi-Rad, J. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines 2018, 6, 91.
  • Santos, L. P., Morais, D. R., Souza, N. E., Cottica, S. M., Boroski, M., Visentainer, J. V. (2011). Phenolic compounds and fatty acids in different parts of Vitis labrusca and V. vinifera grapes. Food Research International 44(5): 1414-1418.
  • Sato, A. J., Silva, B. J., Santos, C. E., Bertolucci, R., Santos, R., Carielo, M., Roberto, S. R. (2008). Características físico-químicas e produtivas das uvas ‘Isabel’e ‘BRS-rúbea’ sobre diferentes porta-enxertos na região norte do Paraná. Revista Brasileira de Fruticultura 30: 553–556.
  • Singleton, V.L., Rossi, J.J.A.(1965). Colorimetric of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture 16(3):144–158.
  • Tabeshpour, J., Mehri, S., Shaebani Behbahani, F., Hosseinzadeh, H. (2018). Protective effects of Vitis vinifera (grapes) and one of its biologically active constituents, resveratrol, against natural and chemical toxicities: A comprehensive review. Phytotherapy research 32(11): 2164-2190.
  • Tahmaz, H., Söylemezoğlu, G., Yüksel, D., Baydar, N. G. (2013). Bazı Sofralık ve Şaraplık Üzüm Çeşitlerinin Fenolik Bileşik İçeriklerinin Belirlenmesi. Selcuk Journal of Agriculture and Food Sciences 27: 375-383.
  • Tahmaz, H, Söylemezoğlu, G . (2019). Denizli–Çal Yöresinde Yetiştirilen Şaraplık Üzüm Çeşitlerinin Farklı Dokularında Fenolik Bileşik İçeriklerinin Belirlenmesi. Bahçe 48(1):39-48.
  • Tahmaz, H , Yüksel Küskü, D , Söylemezoğlu, G . (2020). Üzüm (Vitis vinifera L.) Çeşitlerine Ait 49 Adet Salkım İskeletinin Toplam Fenolik Bileşik ve Trans-Resveratrol Düzeyleri . Harran Tarım ve Gıda Bilimleri Dergisi 24 (2) , 222-228 .
  • Tiwari, B.K., Valdramidis, V.P., O' Donnell, C.P., Muthukumarappan, K., Bourke, P., Cullen, P.J. (2009).Application of natural antimicrobials for food preservation. Journal of Agricultural and Food Chemistry 57 (14): 5987-6000.
  • Toaldo, I. M., Cruz, F. A., da Silva, E. L., - Bordignon-Luiz, M. T. (2016). Acute consumption of organic and conventional tropical grape juices (Vitis labrusca L.) increases antioxidants in plasma and erythrocytes, but not glucose and uric acid levels, in healthy individuals. Nutrition Research 36(8): 808-817.
  • Vislocky, L. M. and Fernandez, M. L. (2010). Biomedical effects of grape products. Nutrition Reviews 68: 656–670.
  • Waffo-Teguo, P., Krisa, S., Pawlus, D.A., Richard, T., Monti, J.P., Me’rillon, J.M. (2013). Grapevine stilbenoids: Bioavailability and neuroprotection. In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Chapter 73; Gopal Ramawat, K., Mérillon, J.-M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 2275–2309.
  • Waterhouse, A.L.(2005). Determination of total phenolics, in handbook of food analytical chemistry, ed. by Wrolstad, R.E., Acree, T.E., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Smith, D.M., Sporns, P. John Wiley & Sons, 463–470, New Jersey.
  • Xu, C., Zhang, Y., Cao, L., Lu, J. (2010). Phenolic compounds and antioxidant properties of different grape cultivars grown in China. Food Chemistry 119(4): 1557-1565.
  • Yadav, M., Jain, S., Bhardwaj, A., Nagpal, R., Puniya, M., Tomar, R., Singh, V., Parkash, O., Prasad, G.B., Marotta, F. and Yadav, H. (2009). Biological and medicinal properties of grapes and their bioactive constituents: An update. Journal of Medicinal Food 12: 473–484.
  • Yahia, E. M., Carrillo-López, A., Barrera, G. M., Suzán-Azpiri, H., Bolaños, M. Q. (2019). Photosynthesis. In Postharvest physiology and biochemistry of fruits and vegetables (pp. 47-72). Woodhead Publishing.
  • Yang, J., Xiao, Y.Y. (2013) Grape Phytochemicals and Associated Health Benefits. Critical Reviews in Food Science and Nutrition 53:(11):1202-1225.
  • Yu, W., Fu, Y.C., Wang, W. (2011). Cellular and molecular effects of resveratrol in health and disease. Journal of Cellular Biochemistry 113: 752–759.
There are 54 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Hande Tahmaz Karaman 0000-0003-4842-6441

Damla Yüksel Küskü 0000-0001-5398-1146

Gökhan Söylemezoğlu 0000-0002-7959-0407

Hüseyin Çelik 0000-0003-1403-7464

Early Pub Date May 17, 2022
Publication Date May 31, 2022
Submission Date June 14, 2021
Acceptance Date December 7, 2021
Published in Issue Year 2022 Volume: 19 Issue: 2

Cite

APA Tahmaz Karaman, H., Yüksel Küskü, D., Söylemezoğlu, G., Çelik, H. (2022). Vitis labrusca L. Genotiplerinin Fenolik Bileşik ve Antioksidan Kapasite İçerikleri. Tekirdağ Ziraat Fakültesi Dergisi, 19(2), 318-331. https://doi.org/10.33462/jotaf.952108
AMA Tahmaz Karaman H, Yüksel Küskü D, Söylemezoğlu G, Çelik H. Vitis labrusca L. Genotiplerinin Fenolik Bileşik ve Antioksidan Kapasite İçerikleri. JOTAF. May 2022;19(2):318-331. doi:10.33462/jotaf.952108
Chicago Tahmaz Karaman, Hande, Damla Yüksel Küskü, Gökhan Söylemezoğlu, and Hüseyin Çelik. “Vitis Labrusca L. Genotiplerinin Fenolik Bileşik Ve Antioksidan Kapasite İçerikleri”. Tekirdağ Ziraat Fakültesi Dergisi 19, no. 2 (May 2022): 318-31. https://doi.org/10.33462/jotaf.952108.
EndNote Tahmaz Karaman H, Yüksel Küskü D, Söylemezoğlu G, Çelik H (May 1, 2022) Vitis labrusca L. Genotiplerinin Fenolik Bileşik ve Antioksidan Kapasite İçerikleri. Tekirdağ Ziraat Fakültesi Dergisi 19 2 318–331.
IEEE H. Tahmaz Karaman, D. Yüksel Küskü, G. Söylemezoğlu, and H. Çelik, “Vitis labrusca L. Genotiplerinin Fenolik Bileşik ve Antioksidan Kapasite İçerikleri”, JOTAF, vol. 19, no. 2, pp. 318–331, 2022, doi: 10.33462/jotaf.952108.
ISNAD Tahmaz Karaman, Hande et al. “Vitis Labrusca L. Genotiplerinin Fenolik Bileşik Ve Antioksidan Kapasite İçerikleri”. Tekirdağ Ziraat Fakültesi Dergisi 19/2 (May 2022), 318-331. https://doi.org/10.33462/jotaf.952108.
JAMA Tahmaz Karaman H, Yüksel Küskü D, Söylemezoğlu G, Çelik H. Vitis labrusca L. Genotiplerinin Fenolik Bileşik ve Antioksidan Kapasite İçerikleri. JOTAF. 2022;19:318–331.
MLA Tahmaz Karaman, Hande et al. “Vitis Labrusca L. Genotiplerinin Fenolik Bileşik Ve Antioksidan Kapasite İçerikleri”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 19, no. 2, 2022, pp. 318-31, doi:10.33462/jotaf.952108.
Vancouver Tahmaz Karaman H, Yüksel Küskü D, Söylemezoğlu G, Çelik H. Vitis labrusca L. Genotiplerinin Fenolik Bileşik ve Antioksidan Kapasite İçerikleri. JOTAF. 2022;19(2):318-31.

Cited By