General electrical characterisation of Ag/TiO2/n-InP/Au Schottky Diode
Year 2021,
, 328 - 339, 15.12.2021
Ahmet Kursat Bılgılı
,
Rabia Çağatay
Mustafa Ozturk
,
Metin Özer
Abstract
In this study Ag/TiO2/n-InP/Au structures are formed on 500 μm thick, (100) oriented n-InP semiconductor having 3.13x1018 cm-3 carrier density, by using sputtering method. TiO2 is grown as an interface with thickness of 60 Å. Some parameters of this structure are investigated in temperature range of 120- 360 K. It is noticed that there are two linear regions in forward bias current-voltage (I-V) plot. These two regions are called as LBR (low bias region) and MBR(middle bias region). Richardson coefficient is determined and mean barrier height is calculated with double Gaussian distribution.
References
- Chand S., Kumar, J. (1997). “Effects of barrier height distribution on the behavior of a Schottky diode.” Journal of Applied Physics 82 (10) 5005.
- Çokduygulular, E., Çetinkaya, Ç., Yalçın, Y. et al. (2020). “A comprehensive study on Cu-doped ZnO (CZO) interlayered MOS structure”. J Mater Sci: Mater Electron 31, 13646–13656 https://doi.org/10.1007/s10854-020-03922-6
- Güzelçimen, F.,Tanören, B., Çetinkaya, Ç., Kaya, M., Efkere, H., Özen, Y., Bingöl, D., Sirkeci, M., Kınacı, B., Ünlü, M., Özçelik, S. (2020). “The effect of thickness on surface structure of rf sputtered TiO2 thin films by XPS, SEM/EDS, AFM and SAM” Vacuum. doi.org/10.1016/j.vacuum.2020.109766
- Hudait, M.K., Venkateswarlu, P., and Krupanidhi, S.B. (2001). “Electrical transport characteristics of Au/n-GaAs Schottky diodes on n-Ge at low temperatures.” Solid-State Electronics. 45 (1) 133-141.
- Janardhanam V., Ashok Kumar, A., Rajagopal Reddy V., Narasimha Reddy, P., (2009) “Study of current-voltage-temperature (I-V-T) and capacitance-voltage-temperature (C-V-T) characteristics of molybdenum Schottky contacts on n-InP (1 0 0)” Journal of Alloys and Compounds 485 (1) 467.
- Janardhanam, V., Jyothi, I., Ahn, K.S., Choi C.J., (2013) “Temperature-dependent current-voltage characteristics of Se Schottky contact to n-type Ge” Thin Solid Films 546 63.
- Özdemir, A. F., Turut, A., Kökçe, A. (2006). “The double Gaussian distribution of barrier heights in Au/n-GaAs Schottky diodes from I-V-T characteristics” Semiconductor Science and Technology 21 298.
- Padovani, F. A. and Stratton, R., (1966). “Field and Thermionic-Field EMSsion in Schottky Barriers.” Solid- State Electronics. 9 (7) 695-707.
- Rhoderick, E.H., Williams, R.H. (1988). Metal Semiconductor Contacts. Oxford: Oxford Press, 257-264.
- Saxena, A.N. (1969). “Forward current-voltage characteristics of Schottky barriers on n-type silicon.” Surface Science, 13 151-171.
- Schmitsdorf, R.F. Kampen, T.U. Mönch, W. (1997). “Explanation of the linear correlation between barrier heights and ideality factors of real metal-semiconductor contacts by laterally nonuniform Schottky barriers.” Journal of Vacuum Science & Technology B. 15 (4) 1221.
- Shenoy, S.L., Bates, W.D., Frisch, H.L., Wnek, G.E. (2005). “Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit” Polymer 46 10 3372
- Song, Y.P.,Van Meirhaeghe, R.L., Laflère, W.H., Cardon, F. (1986). “On the difference in apparent barrier height as obtained from capacitance-voltage and current-voltage-temperature measurements on Al/p-InP Schottky barriers.” Solid State Electronics. 29 (6) 633-638.
- Sze, S.M., Kwok, K. Ng. (2007). Physics of Semiconductor Devices (3rd ed.). New Jersey: John Wiley & Sons, 362-390.
- Tecimer, H., Aksu, S., Uslu, H., Atasoy, Y., Bacaksız, E., Altındal, Ş. (2012). “Schottky diode properties of CuInSe2 films prepared by a two-step growth technique” Sensors and Actuators A: Physical. 185 73-181.
- Tecimer, H., Türüt, A., Uslu, H., Altındal, Ş., Uslu, İ. (2013). “Temperatures dependent current-transport mechanism in Au/(Zn-doped)PVA/n-GaAs Schottky barrier diodes (SBDs).” Sensors and Actuators A: Physical. 199. 194-201.
- Tung, R.T., (2001) “Recent advances in Schottky barrier concepts.” Materials Science & Engineering R-Reports 35 (1) 1.
Ag/TiO2/n-InP/Au Schottky diyodu için Gaussian dağılımı
Year 2021,
, 328 - 339, 15.12.2021
Ahmet Kursat Bılgılı
,
Rabia Çağatay
Mustafa Ozturk
,
Metin Özer
Abstract
Bu çalışmada, püskürtme metodu ile Ag/TiO2/n-InP/Au yapılar, 500 m kalınlığında (100) yönelimli ve3.13x1018 cm-3 taşıyıcı yoğunluğuna sahip n-InP yarı iletkeni ile büyütülmüştür. TiO2 , 60 A kalınlığında bir arayüz olarak büyütülmüştür. Bu yapının bazı parametreleri 120-360 K aralığında incelenmiştir. Akım-Voltaj (I-V) grafiğinde iki farklı lineer bölgenin olduğu farkedilmiştir. Bu iki bölge LBR (düşük beslem bölgesi) ve MBR (orta beslem bölgesi) olarak adlandırılmıştır. Richardson sabiti ve ortalama bariyer yüksekliği, çift Gaussian dağılımı ile hesaplanmıştır.
References
- Chand S., Kumar, J. (1997). “Effects of barrier height distribution on the behavior of a Schottky diode.” Journal of Applied Physics 82 (10) 5005.
- Çokduygulular, E., Çetinkaya, Ç., Yalçın, Y. et al. (2020). “A comprehensive study on Cu-doped ZnO (CZO) interlayered MOS structure”. J Mater Sci: Mater Electron 31, 13646–13656 https://doi.org/10.1007/s10854-020-03922-6
- Güzelçimen, F.,Tanören, B., Çetinkaya, Ç., Kaya, M., Efkere, H., Özen, Y., Bingöl, D., Sirkeci, M., Kınacı, B., Ünlü, M., Özçelik, S. (2020). “The effect of thickness on surface structure of rf sputtered TiO2 thin films by XPS, SEM/EDS, AFM and SAM” Vacuum. doi.org/10.1016/j.vacuum.2020.109766
- Hudait, M.K., Venkateswarlu, P., and Krupanidhi, S.B. (2001). “Electrical transport characteristics of Au/n-GaAs Schottky diodes on n-Ge at low temperatures.” Solid-State Electronics. 45 (1) 133-141.
- Janardhanam V., Ashok Kumar, A., Rajagopal Reddy V., Narasimha Reddy, P., (2009) “Study of current-voltage-temperature (I-V-T) and capacitance-voltage-temperature (C-V-T) characteristics of molybdenum Schottky contacts on n-InP (1 0 0)” Journal of Alloys and Compounds 485 (1) 467.
- Janardhanam, V., Jyothi, I., Ahn, K.S., Choi C.J., (2013) “Temperature-dependent current-voltage characteristics of Se Schottky contact to n-type Ge” Thin Solid Films 546 63.
- Özdemir, A. F., Turut, A., Kökçe, A. (2006). “The double Gaussian distribution of barrier heights in Au/n-GaAs Schottky diodes from I-V-T characteristics” Semiconductor Science and Technology 21 298.
- Padovani, F. A. and Stratton, R., (1966). “Field and Thermionic-Field EMSsion in Schottky Barriers.” Solid- State Electronics. 9 (7) 695-707.
- Rhoderick, E.H., Williams, R.H. (1988). Metal Semiconductor Contacts. Oxford: Oxford Press, 257-264.
- Saxena, A.N. (1969). “Forward current-voltage characteristics of Schottky barriers on n-type silicon.” Surface Science, 13 151-171.
- Schmitsdorf, R.F. Kampen, T.U. Mönch, W. (1997). “Explanation of the linear correlation between barrier heights and ideality factors of real metal-semiconductor contacts by laterally nonuniform Schottky barriers.” Journal of Vacuum Science & Technology B. 15 (4) 1221.
- Shenoy, S.L., Bates, W.D., Frisch, H.L., Wnek, G.E. (2005). “Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit” Polymer 46 10 3372
- Song, Y.P.,Van Meirhaeghe, R.L., Laflère, W.H., Cardon, F. (1986). “On the difference in apparent barrier height as obtained from capacitance-voltage and current-voltage-temperature measurements on Al/p-InP Schottky barriers.” Solid State Electronics. 29 (6) 633-638.
- Sze, S.M., Kwok, K. Ng. (2007). Physics of Semiconductor Devices (3rd ed.). New Jersey: John Wiley & Sons, 362-390.
- Tecimer, H., Aksu, S., Uslu, H., Atasoy, Y., Bacaksız, E., Altındal, Ş. (2012). “Schottky diode properties of CuInSe2 films prepared by a two-step growth technique” Sensors and Actuators A: Physical. 185 73-181.
- Tecimer, H., Türüt, A., Uslu, H., Altındal, Ş., Uslu, İ. (2013). “Temperatures dependent current-transport mechanism in Au/(Zn-doped)PVA/n-GaAs Schottky barrier diodes (SBDs).” Sensors and Actuators A: Physical. 199. 194-201.
- Tung, R.T., (2001) “Recent advances in Schottky barrier concepts.” Materials Science & Engineering R-Reports 35 (1) 1.