Research Article
BibTex RIS Cite

The effect of 3D printer-supported project applications on the scientific creativity levels and material development self-efficacy beliefs of pre-service teachers

Year 2025, , 178 - 205, 31.01.2025
https://doi.org/10.21764/maeuefd.1498077

Abstract

The current study the effect of 3D printer-supported project applications in the course of Science Teaching and Laboratory Practices 2 on the scientific creativity levels and material development self-efficacy beliefs of pre-service teachers were investigated. The study used a one-group pre-test/post-test design from pre-experimental models (n=14). The implementation lasted for one semester, spanning fourteen weeks. The scientific creativity scale developed by Hu and Adey (2002) and a self-efficacy belief scale for material development developed by the researchers were utilized in the study. These measurement instruments were administered to the study group as pre-tests and post-tests. According to the results obtained from the research, it was observed that the post-test scores of pre-service teachers in scientific creativity (z=2.63; p=0.08<.05) and self-efficacy belief scale for material development (z=3.24; p=.001<.05) were significantly different from the pre-test scores. When the scores from the scientific creativity scale were evaluated according to its sub-dimensions, it was determined that the post-test scores of science teachers significantly increased compared to the pre-test scores in the sub-dimensions of originality (z=2.26; p=.024<.05), flexibility (z=2.15; p=.032<.05), and fluency (z=2.81; p=.005<.05), while there was no significant difference between pre-test and post-test scores for the functionality sub-dimension (z=1.31; p=.190>.05).

Project Number

BAP2020-117

References

  • Arslan A., & Edoğan, İ. (2021). Use of 3D printers for teacher training and sample activities International Journal of Progressive Education, 17(3), 343-360. https://doi.org/10.29329/ijpe.2021.346.22
  • Asal Özkan, R., & Sarıkaya, R. (2023). Mühendislik tasarım temelli fen etkinliklerinin dördüncü sınıf öğrencilerinin bilimsel yaratıcılıklarına etkisi. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi, (55), 154-167. https://doi.org/10.53444/deubefd.1208412
  • Aslan A., Durukan Ü. G., & Batman, D. (2021). Fizik, kimya ve biyoloji öğretmenlerinin 3-boyutlu katı model tasarım ve kullanım ihtiyaçlarına genel bir bakış. International Journal of 3D Printing Technologies and Digital Industry, 5(3), 515-534. https://doi.org/10.46519/ij3dptdi.991955
  • Assante, D., Cennamo, G. M., & Placidi, L. (2020, Nisan). 3D Printing in education: an European perspective. A. Cardoso, G. R. Alves, & T. Restivo (Editörler), Proceedings of the 2020 IEEE Global Engineering Education Conference içinde (1133-1138. ss.). Piscataway, New Jersey, https://doi.org/10.1109/EDUCON45650.2020
  • Avinal M., & Aydın, A. (2022). The effects of activities designed with three-dimensional printing technology on science education. Journal of Turkish Science Education, 19(3), 887-910. http://doi:10.36681/tused.2022.155
  • Bakaç, E., & Özen, R. (2017). Öğretmen adaylarının materyal tasarımı öz-yeterlik inanç düzeylerinin teknolojik pedagojik alan yeterlikleri bağlamında incelenmesi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 18(2), 613-632. https://dergipark.org.tr/tr/download/article-file/1486973
  • Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191–215. https://doi.org/10.1037/0033-295X.84.2.191
  • Bandura, A. (1986). Social Foundations of Thought and Action: A Social Cognitive Theory. Englewood Cliffs
  • Bandura, A. (1997). Self-efficacy: The exercise of control, Freeman.
  • Bediroğlu, R. (2021). Fen bilgisi öğretmen adaylarının dijital öğretim materyali geliştirme öz- yeterlikleri [Yayınlanmamış Doktora Tezi]. Yıldız Teknik Üniversitesi
  • Bi, H., Mi, S., Lu, S., & Hu, X. (2020). Meta-analysis of interventions and their effectiveness in students’ scientific creativity. Thinking Skills and Creativity 38(100750), 1-15. https://doi.org/10.1016/j.tsc.2020.100750
  • Bicer, A., Nite, S. B., Capraro, R. M., Barroso, L. R., Capraro, M. M., & Lee, Y. (2017, Ekim). Moving from STEM to STEAM: the effects of informal STEM learning on students' creativity and problem-solving skills with 3D printing. IEEE Frontiers in Education Conference, Indianapolis, United States. https://doi.org/10.1109/fie.2017.8190545
  • Birişçi, S., Kul, Ü., Aksu, Z., Akaslan, D. & Çelik, S. (2018). Web 2.0 hızlı içerik geliştirme öz-yeterlik inancı belirlemeye yönelik ölçek (W2ÖYİÖ) geliştirme çalışması. Eğitim Teknolojisi Kuram ve Uygulama, 8(1), 187-208. https://doi.org/10.17943/etku.335164
  • Blonder, R., Jonatan, M., Bar-Dov, Z., Benny, N., Rap, S., & Sakhnini, S. (2013). Can you tube it? Providing chemistry teachers with technological tools and enhanching their self-efficacy beliefs. Chemistry Education Research and Practice, 14(3), 269-285. https://www.researchgate.net/publication/255772920
  • Budinski, N., Lavicza, Z. & Houghton, T. (2022). Opportunities for 3D printing in hybrid education. Open Education Studies, 4(1), 339-344. https://doi.org/10.1515/edu-2022-0175
  • Bursal, M., & Yigit, N. (2012). Pre-service science and technology teachers' efficacy beliefs about information and communication technologies (ict) usage and material design. Educational Sciences: Theory and Practice, 12(2), 1084-1088. https://files.eric.ed.gov/fulltext/EJ981831.pdf
  • Büyüköztürk, Ş. (2006). Sosyal Bilimler için Veri Analizi El Kitabı. Pegem Akademi
  • Chen, J., & Cheng, L. (2021). The influence of 3D printing on the education of primary and secondary school students. Journal of Physics: Conference Series, 1976(1), 012072. https://doi.org/10.1088/1742-6596/ 1976/1/012072
  • Chin, M. K., & Siew, N. M. (2015). The development and validation of a figural scientific creativity test for preschool pupils. Creative Education, 6(12), 1391-1402. http://dx.doi.org/10.4236/ce.2015.612139
  • Chun, H. (2021). A study on the impact of 3D printing and artificial intelligence on education and learning process. Scientific Programming, 1-5. https://doi.org/10.1155/2021/2247346
  • Cohen, L., Manion, L., & Morrison, K. (2005). Reserach methods in education. New York, NY, USA:Routledge
  • Cremin, T., & Chappell, K. (2021). Creative pedagogies: A systemic review. Research Papers in Education, 36(3), 299-331. https://doi.org/10.1080/02671522.2019.1677757
  • Çaydere, O., & Akgün, N. (2023). Eğitimde yenilikçi teknolojilerin kullanımı ve çağdaş içerik tasarlama. Stratejik ve Sosyal Araştırmalar Dergisi, 7(2), 439-451. https://doi.org/10.30692/sisad.1254245
  • Çuhadar, C., & Yücel, M. (2010). Yabancı dil öğretmeni adaylarının bilgi ve iletişim teknolojilerinin öğretim amaçlı kullanımına yönelik özyeterlik algıları. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 27(27), 199-210. http://pauegitimdergi.pau.edu.tr/Makaleler/288588672_ss.199-210.pdf
  • Daud, A., M., Omar, J., Turiman, P., & Osman, K. (2012). Creativity in science education. Procedia-Social and Behavioral Sciences, 59, 467-474. https://doi.org/10.1016/j.sbspro.2012.09.302
  • Deniş Çeliker, H. (2012). Fen ve teknoloji dersi “güneş sistemi ve ötesi: uzay bilmecesi” ünitesinde proje tabanlı öğrenme uygulamalarının öğrenci başarılarına, yaratıcı düşünmelerine, fen ve teknolojiye yönelik tutumlarına etkisi. Dokuz Eylül Üniversitesi.
  • Deniş, H., & Balım, A. G. (2012). Bilimsel yaratıcılık ölçeğinin Türkçeye uyarlama süreci ve değerlendirme ölçütleri. Uşak Üniversitesi Sosyal Bilimler Dergisi, 5(2), 1-21. https://dergipark.org.tr/en/pub/usaksosbil/issue/21646/232705
  • Diakidoy, I. A. N., & Constantinou, C. P. (2001). Creativity in physics: Response fluency and task specificity. Creativity Research Journal, 13(3-4), 401-410. https://doi.org/10.1207/S15326934CRJ1334_17
  • Eroğlu, S., & Bektaş, O. (2022). The effect of 5E-based STEM education on academic achievement, scientific creativity, and views on the nature of science. Learning and Individual Differences, 98, 102781. https://doi.org/10.1016/j.lindif.2022.102181
  • Flores, J. E. (2019). LNU Pre-service Secondary Science Teachers’ Scientific Literacy and Science Teaching Self-Efficacy. Journal of Physics: Conference Series, 1254. https://doi:10.1088/1742-6596/1254/1/012043
  • Guenther, C., Hayes, M., Davis, A., & Stern, M. (2021). Building confidence: Engaging students through 3D printing in biology courses. Bioscene: Journal of College Biology Teaching, 47(1), 40-58. https://files.eric.ed.gov/fulltext/EJ1304735.pdf
  • Ha, H., & Ha, M. (2022). Exploring Korean scientists’ perceptions of scientific creativity and education for scientific creativity. International Journal of Science Education, 44(11), 1767-1791. https://doi.org/10.1080/09500693.2022.2095680
  • Hadzigeorgiou, Y., Fokialis, P., & Kabouropoulou, M. (2012). Thinking about creativity in science education. Creative Education, 3(5), 603-611. https://doi: 10.4236/ce.2012.35089.
  • Henson, R. K. (2001). The effects of participation in teacher research on teacher efficacy. Teaching and Teacher Education, 17(7), 819-836. http://dx.doi.org/10.1016/S0742-051X(01)00033-6
  • Hoffmann, J. D., Ivcevic, Z., & Maliakkal, N. (2021). Emotions, creativity, and the arts: Evaluating a course for children. Empirical Studies of the Arts, 39(2), 123-148. https://doi.org/10.1177/0276237420907
  • Hsiao, H-S., Chen, J-C., Lin, C-Y., Zhuo, P-W., & Lin, K-Y. (2018). Using 3D printing technology with experiential learning strategies to improve preengineering students’ comprehension of abstract scientific concepts and hands-on ability. Journal of Computer Assisted Learning, 35(2), 178-187. https://doi.org/10.1111/jcal.12319
  • Hu, L. & Bentler, P. M. (1999). Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives. Structural Equation Modeling, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
  • Hu, W., & Adey, P. (2002). A scientific creativity test for secondary school students. International Journal of Science Education, 24(4), 389-403. https://doi.org/10.1080/09500690110098912
  • Huang, P. S., Peng, S. L., Chen, H. C., Tseng, L. C., & Hsu, L. C. (2017). The relative influences of domain knowledge and domain-general divergent thinking on scientific creativity and mathematical creativity. Thinking Skills and Creativity, 25, 1-9. https://doi.org/10.1016/j.tsc.2017.06.001
  • Huleihil, M. (2017). 3D printing technology as innovative tool for math and geometry teaching applications. IOP Conference Series: Materials Science and Engineering, 164(1), 012023. doi:10.1088/1757-899X/164/1/012023
  • Karaduman, H. (2018). Soyuttan somuta, sanaldan gerçeğe: öğretmen adaylarının bakış açısıyla üç boyutlu yazıcılar. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 18(1), 273-303. https://doi.org/10.17240/aibuefd.2018..-358818
  • Karagöz. B. & Şahin Çakır, Ç. (2020). Fen bilgisi öğretmen adaylarının 3 boyutlu yazılar hakkında görüşlerinin belirlenmesi. Karaelmas Journal of Educational Sciences, 8(2), 303-317. https://dergipark.org.tr/tr/pub/kebd/issue/67544/1051092#article_cite
  • Kelloway, E. K. (1998). Using lisrel for structural equation modeling: a researcher’s guide, Sage Publications.
  • Kim, N., Im, S., & Slater, S. F. (2013). Impact of knowledge type and strategic orientation on new product creativity and advantage in high‐technology firms. Journal of Product Innovation Management, 30(1), 136-153. https://doi.org/10.1111/j.1540-5885.2012.00992.x
  • Kiras, B., & Bezir Akçay, B. (2016). Yedinci sınıf vücudumuzda sistemler ünitesinin öğretiminde aktif öğrenme yöntemi uygulamalarının öğrencilerin bilimsel yaratıcılığına etkisi. International Journal of Active Learning, 1(2), 1-20.
  • Kline, R. B. (1998). Principal and practice of structural equation modeling. The Guilford Press.
  • Korkmaz, Ö., Arıkaya, C., & Altıntaş, Y. (2019). Öğretmenlerin dijital öğretim materyali geliştirme öz-yeterlik ölçeğinin geliştirilmesi çalışması. Turkish Journal of Primary Education, 4(2), 40-56. https://dergipark.org.tr/en/download/article-file/880832
  • Kurbanoğlu, S. S. (2004). Öz yeterlik inancı ve bilgi profesyonelleri için önemi. Bilgi Dünyası, 5(2), 137-152. https://doi.org/10.15612/BD.2004.484
  • Kwon, H. (2017). Effects of 3D printing and design software on students overall performance. Journal of STEM Education, 18(4), 37-42. https://eric.ed.gov/?id=EJ1163773
  • LeBow, V., Bernhardt-Barry, M. L., & Datta, J. (2018). Improving spatial visualization abilities using 3D printed blocks. Proceedings of 2018 ASEE Annual Conference & Exposition Konferansında. Salt Lake City, UT. https://doi.org/10.18260/1-2--30634
  • Lee, D., & Kwon, H. (2023). Meta analysis on effects of using 3D printing in South Korea K-12 classrooms. Education and Information Technologies, 28, 11733-11758. https://doi.org/10.1007/s10639-023-11644-5
  • Lee, Y. C., & Kim, H. P. (2015). The effects of an invention education program using 3D design and 3D printers on elementary school students' creativity. Journal of Korean Practical Arts Education, 21(3), 39-54. https://doi.org/10.17055/jpaer.2015.21.3.39
  • Levitt, K. E. (2002). An analysis of elementary teachers' beliefs regarding the teaching and learning of science. Science Education, 86(1), 1-22. https://doi.org/10.1002/sce.1042
  • Lim, C., Kim, J., Hong, M., Seo, S., Lee, C., Yoo, S., ..., & Bak, J. (2016). A study on the application and effects of smart support system for creativity in engineering education. Journal of Engineering Education Research, 19(2), 34-44. https://doi.org/10.18108/jeer.2016.19.2.34
  • Lin, K-Y., Lu, S-C., Hsiao, H-H., Kao, C-P., & Williams, P. J. (2021). Developing student imagination and career interest through a STEM project using 3D printing with repetitive modeling. Interactive Learning Environments, 31(5), 2884- 2898. https://doi.org/10.1080/10494820.2021.1913607
  • Liu, S. C., & Lin, H. S. (2014). Primary teachers' beliefs about scientific creativity in the classroom context. International Journal of Science Education, 36(10), 1551-1567. https://doi.org/10.1080/09500693.2013.868619
  • McGregor, D., & Frodsham, S. (2019). Epistemic insights: Contemplating tensions between policy influences and creativity in school science. British Educational Research Journal, 45(4), 770-790. https://doi.org/10.1002/berj.3525
  • Manochehri, N., & Sharif, K. (2010). A Model-Based Investigation of Learner Attitude towards Recently Introduced Classroom Technology. J. Inf. Technol. Educ., 9, 31-52. https://doi.org/10.28945/1107.
  • Novak, E., & Wisdom, S. (2018). Effects of 3D printing project-based learning on preservice elementary teachers' science attitudes, science content knowledge, and anxiety about teaching science. Journal of Science Education and Technology, 5(2), 412-432. https://doi.org/10.1007/s10956-018-9733-5
  • Novak, E., & Wisdom, S. (2020). Using 3D printing in science for elementary teachers. J. J. Mintzes, E. ve M. Walter (Ed.), Active Learning in College Science içinde (s. 729-739). Springer International Publishing. https://doi.org/10. 1007/978-3-030-33600-4_45
  • Ocak, G., & Karakuş, G. (2018). Öğretmen adaylarının dijital okuryazarlık öz-yeterliliği ölçek geliştirme çalışması. Kastamonu Eğitim Dergisi, 26(5), 1427-1436. https://doi.org/10.24106/kefdergi.1931
  • OECD (2014). PISA 2012 results: creative problem solving. Students' skills in tackling real-life problems. PISA, OECD Publishing. https://doi.org/10.1787/9789264208070-en.
  • Pearson, H. A., & Dubé, A. K. (2021). 3D printing as an educational technology: Theoretical perspectives, learning outcomes, and recommendations for practice. Education and Information Technologies, 27, 3037-3064. https://doi.org/10.1007/s10639-021-10733-7
  • Peters-Burton, E. E., & Martin-Hansen, L. M. (2016). Implications of gifted student selection techniques for scientific creativity. In Interplay of Creativity and Giftedness in Science (pp. 45-69). Brill.
  • Say, S., & Yıldırım, F. S. (2020). Investigation of pre-service teachers' web 2.0 rapid content development self-efficacy belief levels and their views on web 2.0 tools. International Journal of Educational Methodology, 6(2), 345-354. https://doi.org/10.12973/ijem.6.2.345
  • Scalfani, F. V., & Vaid, T. P. (2014). 3D printed molecules and extended solid models for teaching symmetry and point groups. Journal of Chemical Education, 91, 1174-1180. https://doi.org/10.1021/ed400887t
  • Schunk, D.H., & Zimmerman, B.J. (2003). Self-regulation and learning. In Reynolds, W.M.& Miller, G.E. (Ed.), Handbook of psychology Volume 7 Educational Psychology içinde (s. 59-78). John Wiley & Sons, Inc.
  • Shi, B., Cao, X., Chen, Q., Zhuang, K., & Qiu, J. (2017). Different brain structures associated with artistic and scientific creativity: a voxel-based morphometry study. Scientific reports, 7(1), 1-8. https://doi.org/10.1038/srep42911
  • Song, J. (2018). Learning to teach 3D printing in schools: how do teachers in Korea prepare to integrate 3D printing technology into classrooms?, Educational Media International, 55(3), 183-198. https://doi.org/10.1080/09523987.2018.1512448
  • Sönmez, V. (2005). Bilimsel araştırmalarda yapılan yanlışlıklar. Eğitim Araştırmaları Dergisi, 18, 150-170. https://openurl.ebsco.com/EPDB%3Agcd%3A6%3A1942/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A17085923&crl=f
  • Sun, M., Wang, M., & Wegerif, R. (2020). Effects of divergent thinking training on students’ scientific creativity: The impact of individual creative potential and domain knowledge. Thinking Skills and Creativity, 37, 100682. https://doi.org/10.1016/j.tsc.2020.100682
  • Sypros, P., Georgios, S., Konstantinos, K. T., & Konstantinos, G. (2021). The effect of 3D printing technology on primary school students’ content knowledge, anxiety and interest toward science. International Journal of Educational Innovation, 3(1), 38-50. https://www.researchgate.net/publication/349810239
  • Şahin Pekmez, E., Aktamış, H., & Can, B. (2010). Fen laboratuarı dersinin öğretmen adaylarının bilimsel süreç becerileri ve bilimsel yaratıcılıklarına etkisi. İnönü Üniversitesi Eğitim Fakültesi Dergisi, 11(1), 93-112. http://hdl.handle.net/11616/4352
  • Şimşek, C. L., Demirhan, E., & Köklükaya, A. N. (2018). Projeye dayalı öğrenmenin öğretmen adaylarının eleştirel düşünme eğilimleri, problem çözme becerileri ve bilimsel yaratıcılıklarına etkisi. Fen Bilimleri Öğretimi Dergisi, 6(2), 197-212. https://dergipark.org.tr/en/download/article-file/2581372
  • Tran, N-H., Huang, C-F., Hsiao, K-H., Lin, K-L., & Hung, J-F. (2021). Investigation on the influences of steam-based curriculum on scientific creativity of elementary school students. Frontiers in Education. 6(694516), 1-8. https://doi.org/10.3389/feduc.2021.694516
  • Trust, T., & Maloy, R. W. (2017). Why 3D print? The 21st-century skills students develop while engaging in 3D printing projects. Computers in the Schools, 34(4), 253-266, https://doi.org/10.1080/07380569.2017.1384684
  • Usher, E. L., & Pajares, F. (2009). Sources of self-efficacy in mathematics: A validation study. Contemporary Educational Psychology, 34(1), 89-101. https://doi.org/10.1016/j.cedpsych.2008.09.002
  • Uzunöz, A., Aktepe, V., & Gündüz. M. (2017). Öğretim teknolojileri ve materyal tasarımı dersinin mesleki açıdan kazandırdıklarına ilişkin öğretmen adaylarının görüşleri: nitel bir çalışma. Eğitimde Nitel Araştırmalar Dergisi, 5(3), 317-339. https://doi.org/10.14689/issn.2148-2624.1.5c3s14m
  • Üçgül, M., & Altıok, S. (2023). The perceptions of prospective ICT teachers towards the integration of 3D printing into education and their views on the 3D modeling and printing cours. Education and Information Technologies, 28, 10151-10181. https://doi.org/10.1007/s10639-023-11593-z
  • Ünsal, Y. (2011). Öğretim teknolojileri ve materyal tasarımı derslerinde üretilen üç boyutlu nesnelerin değerlendirilmesinde kullanılabilecek bir ölçek önerisi. 2nd International Conference on New Trends in Education and Their Implications (ss.817-822). Antalya.
  • Üredi I., & Üredi, L. (2006). Sınıf öğretmeni adaylarının cinsiyetlerine, bulundukları sınıflara ve başarı düzeylerine göre fen öğretimine ilişkin öz yeterlik inançlarının karşılaştırılması. Yeditepe Üniversitesi Eğitim Fakültesi Dergisi, 2(1), 98110. https://search.trdizin.gov.tr/yayin/detay/75097/
  • Vries, H. B., & Lubart, T. I. (2017). Scientific creativity: divergent and convergent thinking and the impact of culture. The Journal of Creative Behavior, 53(2), 145-155. https://doi.org/10.1002/jocb.184
  • Walia, C. (2019). A dynamic definition of creativity. Creativity Research Journal, 31(3), 237-247. https://doi.org/10.1080/10400419.2019.1641787
  • Willerson, A., & Mullet, D. R. (2017). Creativity research in education from 2005-2015: a systematic review and synthesis. The International Journal of Creativity and Problem Solving, 27(2), 5-22.https://link.gale.com/apps/doc/A533556208/AONE?u=anon~a6f11cae&sid=googleScholar&xid=1b57ce43
  • Wilson, M., Ritzhaupt, A., & Cheng, L. (2020). The impact of teacher education courses for technology integration on pre-service teacher knowledge: A meta-analysis study. Comput. Educ., 156, 103941. https://doi.org/10.1016/j.compedu.2020.103941.
  • World Economic Forum. (2016). Future of jobs report. http://www3.weforum.org/docs/WEF_Future_of_Jobs.pdf
  • Yang, K., Lee, L., Hong, Z., & Lin, H. (2016). Investigation of effective strategies for developing creative science thinking. International Journal of Science Education, 38(13), 2133-2151. https://doi.org/10.1080/09500693.2016.1230685

3D yazıcı destekli proje uygulamalarının öğretmen adaylarının bilimsel yaratıcılık düzeyleri ile materyal geliştirmeye yönelik öz-yeterlik inançları üzerindeki etkisi

Year 2025, , 178 - 205, 31.01.2025
https://doi.org/10.21764/maeuefd.1498077

Abstract

Bu çalışmada fen öğretimi ve laboratuvar uygulamaları 2 dersinde 3D yazıcı destekli proje uygulamalarının fen bilgisi öğretmen adaylarının bilimsel yaratıcılık düzeyleri ile materyal geliştirme öz-yeterlik inanç düzeyleri üzerindeki etkisi araştırılmıştır. Bu bağlamda çalışma, üçüncü sınıf fen öğretimi ve laboratuvar uygulamaları 2 dersinde öğrenim gören katılımcılar ile deney öncesi modellerden tek grup ön test son test desen kullanılarak gerçekleştirilmiştir (n=14). Uygulama bir dönem ve on dört hafta boyunca sürdürülmüştür. Çalışmada Hu ve Adey (2002) tarafından geliştirilen bilimsel yaratıcılık ölçeği kullanılmış ve materyal geliştirmeye yönelik öz-yeterlik inanç ölçeği araştırmacılar tarafından geliştirilmiştir. Söz konusu ölçme araçları çalışma grubuna ön test ve son test olarak uygulanmıştır. Araştırmadan elde edilen sonuçlar doğrultusunda öğretmen adaylarının, bilimsel yaratıcılık (z=2.63; p=0.08<.05) ve materyal geliştirmeye yönelik öz-yeterlik inanç ölçeğinden (z=3.24; p=.001<.05) almış oldukları son test puanlarının ön teste göre anlamlı düzeyde farklılaştığı görülmüştür. Ayrıca bilimsel yaratıcılık ölçeğinden alınan puanlar ölçeğin alt boyutlarına göre değerlendirildiğinde öğretmen adaylarının orijinallik (z=2,26; p=.024<.05), esneklik (z=2,15; p=.032<.05) ve akıcılık (z=2,81; p=.005<.05) alt boyutlarında son test puanlarının ön test puanlarına göre anlamlı düzeyde arttığı, bununla birlikte işlevsellik alt boyutuna yönelik ön test son test puanları arasında anlamlı bir farklılık olmadığı belirlenmiştir (z=1,31; p=.190>.05).

Supporting Institution

BAP

Project Number

BAP2020-117

References

  • Arslan A., & Edoğan, İ. (2021). Use of 3D printers for teacher training and sample activities International Journal of Progressive Education, 17(3), 343-360. https://doi.org/10.29329/ijpe.2021.346.22
  • Asal Özkan, R., & Sarıkaya, R. (2023). Mühendislik tasarım temelli fen etkinliklerinin dördüncü sınıf öğrencilerinin bilimsel yaratıcılıklarına etkisi. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi, (55), 154-167. https://doi.org/10.53444/deubefd.1208412
  • Aslan A., Durukan Ü. G., & Batman, D. (2021). Fizik, kimya ve biyoloji öğretmenlerinin 3-boyutlu katı model tasarım ve kullanım ihtiyaçlarına genel bir bakış. International Journal of 3D Printing Technologies and Digital Industry, 5(3), 515-534. https://doi.org/10.46519/ij3dptdi.991955
  • Assante, D., Cennamo, G. M., & Placidi, L. (2020, Nisan). 3D Printing in education: an European perspective. A. Cardoso, G. R. Alves, & T. Restivo (Editörler), Proceedings of the 2020 IEEE Global Engineering Education Conference içinde (1133-1138. ss.). Piscataway, New Jersey, https://doi.org/10.1109/EDUCON45650.2020
  • Avinal M., & Aydın, A. (2022). The effects of activities designed with three-dimensional printing technology on science education. Journal of Turkish Science Education, 19(3), 887-910. http://doi:10.36681/tused.2022.155
  • Bakaç, E., & Özen, R. (2017). Öğretmen adaylarının materyal tasarımı öz-yeterlik inanç düzeylerinin teknolojik pedagojik alan yeterlikleri bağlamında incelenmesi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 18(2), 613-632. https://dergipark.org.tr/tr/download/article-file/1486973
  • Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191–215. https://doi.org/10.1037/0033-295X.84.2.191
  • Bandura, A. (1986). Social Foundations of Thought and Action: A Social Cognitive Theory. Englewood Cliffs
  • Bandura, A. (1997). Self-efficacy: The exercise of control, Freeman.
  • Bediroğlu, R. (2021). Fen bilgisi öğretmen adaylarının dijital öğretim materyali geliştirme öz- yeterlikleri [Yayınlanmamış Doktora Tezi]. Yıldız Teknik Üniversitesi
  • Bi, H., Mi, S., Lu, S., & Hu, X. (2020). Meta-analysis of interventions and their effectiveness in students’ scientific creativity. Thinking Skills and Creativity 38(100750), 1-15. https://doi.org/10.1016/j.tsc.2020.100750
  • Bicer, A., Nite, S. B., Capraro, R. M., Barroso, L. R., Capraro, M. M., & Lee, Y. (2017, Ekim). Moving from STEM to STEAM: the effects of informal STEM learning on students' creativity and problem-solving skills with 3D printing. IEEE Frontiers in Education Conference, Indianapolis, United States. https://doi.org/10.1109/fie.2017.8190545
  • Birişçi, S., Kul, Ü., Aksu, Z., Akaslan, D. & Çelik, S. (2018). Web 2.0 hızlı içerik geliştirme öz-yeterlik inancı belirlemeye yönelik ölçek (W2ÖYİÖ) geliştirme çalışması. Eğitim Teknolojisi Kuram ve Uygulama, 8(1), 187-208. https://doi.org/10.17943/etku.335164
  • Blonder, R., Jonatan, M., Bar-Dov, Z., Benny, N., Rap, S., & Sakhnini, S. (2013). Can you tube it? Providing chemistry teachers with technological tools and enhanching their self-efficacy beliefs. Chemistry Education Research and Practice, 14(3), 269-285. https://www.researchgate.net/publication/255772920
  • Budinski, N., Lavicza, Z. & Houghton, T. (2022). Opportunities for 3D printing in hybrid education. Open Education Studies, 4(1), 339-344. https://doi.org/10.1515/edu-2022-0175
  • Bursal, M., & Yigit, N. (2012). Pre-service science and technology teachers' efficacy beliefs about information and communication technologies (ict) usage and material design. Educational Sciences: Theory and Practice, 12(2), 1084-1088. https://files.eric.ed.gov/fulltext/EJ981831.pdf
  • Büyüköztürk, Ş. (2006). Sosyal Bilimler için Veri Analizi El Kitabı. Pegem Akademi
  • Chen, J., & Cheng, L. (2021). The influence of 3D printing on the education of primary and secondary school students. Journal of Physics: Conference Series, 1976(1), 012072. https://doi.org/10.1088/1742-6596/ 1976/1/012072
  • Chin, M. K., & Siew, N. M. (2015). The development and validation of a figural scientific creativity test for preschool pupils. Creative Education, 6(12), 1391-1402. http://dx.doi.org/10.4236/ce.2015.612139
  • Chun, H. (2021). A study on the impact of 3D printing and artificial intelligence on education and learning process. Scientific Programming, 1-5. https://doi.org/10.1155/2021/2247346
  • Cohen, L., Manion, L., & Morrison, K. (2005). Reserach methods in education. New York, NY, USA:Routledge
  • Cremin, T., & Chappell, K. (2021). Creative pedagogies: A systemic review. Research Papers in Education, 36(3), 299-331. https://doi.org/10.1080/02671522.2019.1677757
  • Çaydere, O., & Akgün, N. (2023). Eğitimde yenilikçi teknolojilerin kullanımı ve çağdaş içerik tasarlama. Stratejik ve Sosyal Araştırmalar Dergisi, 7(2), 439-451. https://doi.org/10.30692/sisad.1254245
  • Çuhadar, C., & Yücel, M. (2010). Yabancı dil öğretmeni adaylarının bilgi ve iletişim teknolojilerinin öğretim amaçlı kullanımına yönelik özyeterlik algıları. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 27(27), 199-210. http://pauegitimdergi.pau.edu.tr/Makaleler/288588672_ss.199-210.pdf
  • Daud, A., M., Omar, J., Turiman, P., & Osman, K. (2012). Creativity in science education. Procedia-Social and Behavioral Sciences, 59, 467-474. https://doi.org/10.1016/j.sbspro.2012.09.302
  • Deniş Çeliker, H. (2012). Fen ve teknoloji dersi “güneş sistemi ve ötesi: uzay bilmecesi” ünitesinde proje tabanlı öğrenme uygulamalarının öğrenci başarılarına, yaratıcı düşünmelerine, fen ve teknolojiye yönelik tutumlarına etkisi. Dokuz Eylül Üniversitesi.
  • Deniş, H., & Balım, A. G. (2012). Bilimsel yaratıcılık ölçeğinin Türkçeye uyarlama süreci ve değerlendirme ölçütleri. Uşak Üniversitesi Sosyal Bilimler Dergisi, 5(2), 1-21. https://dergipark.org.tr/en/pub/usaksosbil/issue/21646/232705
  • Diakidoy, I. A. N., & Constantinou, C. P. (2001). Creativity in physics: Response fluency and task specificity. Creativity Research Journal, 13(3-4), 401-410. https://doi.org/10.1207/S15326934CRJ1334_17
  • Eroğlu, S., & Bektaş, O. (2022). The effect of 5E-based STEM education on academic achievement, scientific creativity, and views on the nature of science. Learning and Individual Differences, 98, 102781. https://doi.org/10.1016/j.lindif.2022.102181
  • Flores, J. E. (2019). LNU Pre-service Secondary Science Teachers’ Scientific Literacy and Science Teaching Self-Efficacy. Journal of Physics: Conference Series, 1254. https://doi:10.1088/1742-6596/1254/1/012043
  • Guenther, C., Hayes, M., Davis, A., & Stern, M. (2021). Building confidence: Engaging students through 3D printing in biology courses. Bioscene: Journal of College Biology Teaching, 47(1), 40-58. https://files.eric.ed.gov/fulltext/EJ1304735.pdf
  • Ha, H., & Ha, M. (2022). Exploring Korean scientists’ perceptions of scientific creativity and education for scientific creativity. International Journal of Science Education, 44(11), 1767-1791. https://doi.org/10.1080/09500693.2022.2095680
  • Hadzigeorgiou, Y., Fokialis, P., & Kabouropoulou, M. (2012). Thinking about creativity in science education. Creative Education, 3(5), 603-611. https://doi: 10.4236/ce.2012.35089.
  • Henson, R. K. (2001). The effects of participation in teacher research on teacher efficacy. Teaching and Teacher Education, 17(7), 819-836. http://dx.doi.org/10.1016/S0742-051X(01)00033-6
  • Hoffmann, J. D., Ivcevic, Z., & Maliakkal, N. (2021). Emotions, creativity, and the arts: Evaluating a course for children. Empirical Studies of the Arts, 39(2), 123-148. https://doi.org/10.1177/0276237420907
  • Hsiao, H-S., Chen, J-C., Lin, C-Y., Zhuo, P-W., & Lin, K-Y. (2018). Using 3D printing technology with experiential learning strategies to improve preengineering students’ comprehension of abstract scientific concepts and hands-on ability. Journal of Computer Assisted Learning, 35(2), 178-187. https://doi.org/10.1111/jcal.12319
  • Hu, L. & Bentler, P. M. (1999). Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives. Structural Equation Modeling, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
  • Hu, W., & Adey, P. (2002). A scientific creativity test for secondary school students. International Journal of Science Education, 24(4), 389-403. https://doi.org/10.1080/09500690110098912
  • Huang, P. S., Peng, S. L., Chen, H. C., Tseng, L. C., & Hsu, L. C. (2017). The relative influences of domain knowledge and domain-general divergent thinking on scientific creativity and mathematical creativity. Thinking Skills and Creativity, 25, 1-9. https://doi.org/10.1016/j.tsc.2017.06.001
  • Huleihil, M. (2017). 3D printing technology as innovative tool for math and geometry teaching applications. IOP Conference Series: Materials Science and Engineering, 164(1), 012023. doi:10.1088/1757-899X/164/1/012023
  • Karaduman, H. (2018). Soyuttan somuta, sanaldan gerçeğe: öğretmen adaylarının bakış açısıyla üç boyutlu yazıcılar. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 18(1), 273-303. https://doi.org/10.17240/aibuefd.2018..-358818
  • Karagöz. B. & Şahin Çakır, Ç. (2020). Fen bilgisi öğretmen adaylarının 3 boyutlu yazılar hakkında görüşlerinin belirlenmesi. Karaelmas Journal of Educational Sciences, 8(2), 303-317. https://dergipark.org.tr/tr/pub/kebd/issue/67544/1051092#article_cite
  • Kelloway, E. K. (1998). Using lisrel for structural equation modeling: a researcher’s guide, Sage Publications.
  • Kim, N., Im, S., & Slater, S. F. (2013). Impact of knowledge type and strategic orientation on new product creativity and advantage in high‐technology firms. Journal of Product Innovation Management, 30(1), 136-153. https://doi.org/10.1111/j.1540-5885.2012.00992.x
  • Kiras, B., & Bezir Akçay, B. (2016). Yedinci sınıf vücudumuzda sistemler ünitesinin öğretiminde aktif öğrenme yöntemi uygulamalarının öğrencilerin bilimsel yaratıcılığına etkisi. International Journal of Active Learning, 1(2), 1-20.
  • Kline, R. B. (1998). Principal and practice of structural equation modeling. The Guilford Press.
  • Korkmaz, Ö., Arıkaya, C., & Altıntaş, Y. (2019). Öğretmenlerin dijital öğretim materyali geliştirme öz-yeterlik ölçeğinin geliştirilmesi çalışması. Turkish Journal of Primary Education, 4(2), 40-56. https://dergipark.org.tr/en/download/article-file/880832
  • Kurbanoğlu, S. S. (2004). Öz yeterlik inancı ve bilgi profesyonelleri için önemi. Bilgi Dünyası, 5(2), 137-152. https://doi.org/10.15612/BD.2004.484
  • Kwon, H. (2017). Effects of 3D printing and design software on students overall performance. Journal of STEM Education, 18(4), 37-42. https://eric.ed.gov/?id=EJ1163773
  • LeBow, V., Bernhardt-Barry, M. L., & Datta, J. (2018). Improving spatial visualization abilities using 3D printed blocks. Proceedings of 2018 ASEE Annual Conference & Exposition Konferansında. Salt Lake City, UT. https://doi.org/10.18260/1-2--30634
  • Lee, D., & Kwon, H. (2023). Meta analysis on effects of using 3D printing in South Korea K-12 classrooms. Education and Information Technologies, 28, 11733-11758. https://doi.org/10.1007/s10639-023-11644-5
  • Lee, Y. C., & Kim, H. P. (2015). The effects of an invention education program using 3D design and 3D printers on elementary school students' creativity. Journal of Korean Practical Arts Education, 21(3), 39-54. https://doi.org/10.17055/jpaer.2015.21.3.39
  • Levitt, K. E. (2002). An analysis of elementary teachers' beliefs regarding the teaching and learning of science. Science Education, 86(1), 1-22. https://doi.org/10.1002/sce.1042
  • Lim, C., Kim, J., Hong, M., Seo, S., Lee, C., Yoo, S., ..., & Bak, J. (2016). A study on the application and effects of smart support system for creativity in engineering education. Journal of Engineering Education Research, 19(2), 34-44. https://doi.org/10.18108/jeer.2016.19.2.34
  • Lin, K-Y., Lu, S-C., Hsiao, H-H., Kao, C-P., & Williams, P. J. (2021). Developing student imagination and career interest through a STEM project using 3D printing with repetitive modeling. Interactive Learning Environments, 31(5), 2884- 2898. https://doi.org/10.1080/10494820.2021.1913607
  • Liu, S. C., & Lin, H. S. (2014). Primary teachers' beliefs about scientific creativity in the classroom context. International Journal of Science Education, 36(10), 1551-1567. https://doi.org/10.1080/09500693.2013.868619
  • McGregor, D., & Frodsham, S. (2019). Epistemic insights: Contemplating tensions between policy influences and creativity in school science. British Educational Research Journal, 45(4), 770-790. https://doi.org/10.1002/berj.3525
  • Manochehri, N., & Sharif, K. (2010). A Model-Based Investigation of Learner Attitude towards Recently Introduced Classroom Technology. J. Inf. Technol. Educ., 9, 31-52. https://doi.org/10.28945/1107.
  • Novak, E., & Wisdom, S. (2018). Effects of 3D printing project-based learning on preservice elementary teachers' science attitudes, science content knowledge, and anxiety about teaching science. Journal of Science Education and Technology, 5(2), 412-432. https://doi.org/10.1007/s10956-018-9733-5
  • Novak, E., & Wisdom, S. (2020). Using 3D printing in science for elementary teachers. J. J. Mintzes, E. ve M. Walter (Ed.), Active Learning in College Science içinde (s. 729-739). Springer International Publishing. https://doi.org/10. 1007/978-3-030-33600-4_45
  • Ocak, G., & Karakuş, G. (2018). Öğretmen adaylarının dijital okuryazarlık öz-yeterliliği ölçek geliştirme çalışması. Kastamonu Eğitim Dergisi, 26(5), 1427-1436. https://doi.org/10.24106/kefdergi.1931
  • OECD (2014). PISA 2012 results: creative problem solving. Students' skills in tackling real-life problems. PISA, OECD Publishing. https://doi.org/10.1787/9789264208070-en.
  • Pearson, H. A., & Dubé, A. K. (2021). 3D printing as an educational technology: Theoretical perspectives, learning outcomes, and recommendations for practice. Education and Information Technologies, 27, 3037-3064. https://doi.org/10.1007/s10639-021-10733-7
  • Peters-Burton, E. E., & Martin-Hansen, L. M. (2016). Implications of gifted student selection techniques for scientific creativity. In Interplay of Creativity and Giftedness in Science (pp. 45-69). Brill.
  • Say, S., & Yıldırım, F. S. (2020). Investigation of pre-service teachers' web 2.0 rapid content development self-efficacy belief levels and their views on web 2.0 tools. International Journal of Educational Methodology, 6(2), 345-354. https://doi.org/10.12973/ijem.6.2.345
  • Scalfani, F. V., & Vaid, T. P. (2014). 3D printed molecules and extended solid models for teaching symmetry and point groups. Journal of Chemical Education, 91, 1174-1180. https://doi.org/10.1021/ed400887t
  • Schunk, D.H., & Zimmerman, B.J. (2003). Self-regulation and learning. In Reynolds, W.M.& Miller, G.E. (Ed.), Handbook of psychology Volume 7 Educational Psychology içinde (s. 59-78). John Wiley & Sons, Inc.
  • Shi, B., Cao, X., Chen, Q., Zhuang, K., & Qiu, J. (2017). Different brain structures associated with artistic and scientific creativity: a voxel-based morphometry study. Scientific reports, 7(1), 1-8. https://doi.org/10.1038/srep42911
  • Song, J. (2018). Learning to teach 3D printing in schools: how do teachers in Korea prepare to integrate 3D printing technology into classrooms?, Educational Media International, 55(3), 183-198. https://doi.org/10.1080/09523987.2018.1512448
  • Sönmez, V. (2005). Bilimsel araştırmalarda yapılan yanlışlıklar. Eğitim Araştırmaları Dergisi, 18, 150-170. https://openurl.ebsco.com/EPDB%3Agcd%3A6%3A1942/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A17085923&crl=f
  • Sun, M., Wang, M., & Wegerif, R. (2020). Effects of divergent thinking training on students’ scientific creativity: The impact of individual creative potential and domain knowledge. Thinking Skills and Creativity, 37, 100682. https://doi.org/10.1016/j.tsc.2020.100682
  • Sypros, P., Georgios, S., Konstantinos, K. T., & Konstantinos, G. (2021). The effect of 3D printing technology on primary school students’ content knowledge, anxiety and interest toward science. International Journal of Educational Innovation, 3(1), 38-50. https://www.researchgate.net/publication/349810239
  • Şahin Pekmez, E., Aktamış, H., & Can, B. (2010). Fen laboratuarı dersinin öğretmen adaylarının bilimsel süreç becerileri ve bilimsel yaratıcılıklarına etkisi. İnönü Üniversitesi Eğitim Fakültesi Dergisi, 11(1), 93-112. http://hdl.handle.net/11616/4352
  • Şimşek, C. L., Demirhan, E., & Köklükaya, A. N. (2018). Projeye dayalı öğrenmenin öğretmen adaylarının eleştirel düşünme eğilimleri, problem çözme becerileri ve bilimsel yaratıcılıklarına etkisi. Fen Bilimleri Öğretimi Dergisi, 6(2), 197-212. https://dergipark.org.tr/en/download/article-file/2581372
  • Tran, N-H., Huang, C-F., Hsiao, K-H., Lin, K-L., & Hung, J-F. (2021). Investigation on the influences of steam-based curriculum on scientific creativity of elementary school students. Frontiers in Education. 6(694516), 1-8. https://doi.org/10.3389/feduc.2021.694516
  • Trust, T., & Maloy, R. W. (2017). Why 3D print? The 21st-century skills students develop while engaging in 3D printing projects. Computers in the Schools, 34(4), 253-266, https://doi.org/10.1080/07380569.2017.1384684
  • Usher, E. L., & Pajares, F. (2009). Sources of self-efficacy in mathematics: A validation study. Contemporary Educational Psychology, 34(1), 89-101. https://doi.org/10.1016/j.cedpsych.2008.09.002
  • Uzunöz, A., Aktepe, V., & Gündüz. M. (2017). Öğretim teknolojileri ve materyal tasarımı dersinin mesleki açıdan kazandırdıklarına ilişkin öğretmen adaylarının görüşleri: nitel bir çalışma. Eğitimde Nitel Araştırmalar Dergisi, 5(3), 317-339. https://doi.org/10.14689/issn.2148-2624.1.5c3s14m
  • Üçgül, M., & Altıok, S. (2023). The perceptions of prospective ICT teachers towards the integration of 3D printing into education and their views on the 3D modeling and printing cours. Education and Information Technologies, 28, 10151-10181. https://doi.org/10.1007/s10639-023-11593-z
  • Ünsal, Y. (2011). Öğretim teknolojileri ve materyal tasarımı derslerinde üretilen üç boyutlu nesnelerin değerlendirilmesinde kullanılabilecek bir ölçek önerisi. 2nd International Conference on New Trends in Education and Their Implications (ss.817-822). Antalya.
  • Üredi I., & Üredi, L. (2006). Sınıf öğretmeni adaylarının cinsiyetlerine, bulundukları sınıflara ve başarı düzeylerine göre fen öğretimine ilişkin öz yeterlik inançlarının karşılaştırılması. Yeditepe Üniversitesi Eğitim Fakültesi Dergisi, 2(1), 98110. https://search.trdizin.gov.tr/yayin/detay/75097/
  • Vries, H. B., & Lubart, T. I. (2017). Scientific creativity: divergent and convergent thinking and the impact of culture. The Journal of Creative Behavior, 53(2), 145-155. https://doi.org/10.1002/jocb.184
  • Walia, C. (2019). A dynamic definition of creativity. Creativity Research Journal, 31(3), 237-247. https://doi.org/10.1080/10400419.2019.1641787
  • Willerson, A., & Mullet, D. R. (2017). Creativity research in education from 2005-2015: a systematic review and synthesis. The International Journal of Creativity and Problem Solving, 27(2), 5-22.https://link.gale.com/apps/doc/A533556208/AONE?u=anon~a6f11cae&sid=googleScholar&xid=1b57ce43
  • Wilson, M., Ritzhaupt, A., & Cheng, L. (2020). The impact of teacher education courses for technology integration on pre-service teacher knowledge: A meta-analysis study. Comput. Educ., 156, 103941. https://doi.org/10.1016/j.compedu.2020.103941.
  • World Economic Forum. (2016). Future of jobs report. http://www3.weforum.org/docs/WEF_Future_of_Jobs.pdf
  • Yang, K., Lee, L., Hong, Z., & Lin, H. (2016). Investigation of effective strategies for developing creative science thinking. International Journal of Science Education, 38(13), 2133-2151. https://doi.org/10.1080/09500693.2016.1230685
There are 87 citations in total.

Details

Primary Language Turkish
Subjects Science Education
Journal Section Makaleler
Authors

Ahmet Çetin 0000-0003-4453-1906

Fatma Şaşmaz Ören 0000-0002-4015-9978

Ertuğ Evrekli 0000-0002-3567-8132

Ayşegül Karapınar 0000-0002-8501-289X

Emrullah Şerenli 0000-0002-0389-691X

Feride Şahin 0000-0003-0059-901X

İbrahim Varol 0000-0002-3274-2311

Sinan Bekmezci 0000-0001-5190-1894

Ali Murat Ateş

Project Number BAP2020-117
Publication Date January 31, 2025
Submission Date June 9, 2024
Acceptance Date October 30, 2024
Published in Issue Year 2025

Cite

APA Çetin, A., Şaşmaz Ören, F., Evrekli, E., Karapınar, A., et al. (2025). 3D yazıcı destekli proje uygulamalarının öğretmen adaylarının bilimsel yaratıcılık düzeyleri ile materyal geliştirmeye yönelik öz-yeterlik inançları üzerindeki etkisi. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi(73), 178-205. https://doi.org/10.21764/maeuefd.1498077