Research Article
BibTex RIS Cite

Examining in-Service and Pre-Service Mathematics Teachers’ Instructional Explanations in the Context of Mathematical Models

Year 2024, Volume: 20 Issue: 2, 175 - 198, 22.08.2024
https://doi.org/10.17860/mersinefd.1443293

Abstract

The aim of this research is to examine the instructional explanations of mathematics teachers and pre-service teachers about dividing by fractions in the context of mathematical models. Within the scope of the research, the case study survey method was used. The participants of the research consist of two mathematics teachers working in different public schools in the same city and two senior students studying in the Primary Mathematics Teaching program of a state university. In this research, eight open-ended questions and semi-structured interviews were used as data collection tools. The mathematical models used by the participants in the study were evaluated in two different dimensions. These are mathematical and pedagogical dimensions. The mathematical dimension includes the features of the models, whereas the pedagogical dimension includes their levels of usage. As a result of the research, it was seen that although the instructional explanations and models used by the participants were generally mathematically correct and valid, they did not always reflect the mathematical situation to which they were related in all aspects, and in the pedagogical dimension, they were generally suitable for the conceptual and problem-solving level. The lowest performance in the pedagogical dimension belongs to the epistemic level. As a result of the research, it was also concluded that the instructional explanations and models used by the teachers were more compatible with the indicators in the mathematical and pedagogical dimensions compared to the pre-service teachers. The findings were discussed in relation to the literature and some suggestions were made in line with the results.

References

  • Akyıldız, P. (2019). Matematik öğretmeni adaylarının öğretimsel açıklamalarının matematiksel inanç perspektifinden incelenmesi (Tez No: 588885). [Doktora tezi, Gazi Üniversitesi].
  • Baki, A., & Bütün, M. (2009). İlköğretim matematik öğretmenlerinin bölme kavramı ile ilgili alan eğitimi bilgilerinin yapısı. e-Journal of New World Sciences Academy, 4(4), 1243-1256. https://dergipark.org.tr/en/download/article-file/185882
  • Baki, M. (2013). Sınıf öğretmeni adaylarının bölme işlemi ile ilgili matematiksel bilgileri ve öğretimsel açıklamaları. Eğitim ve Bilim, 38(167), 300-311. https://egitimvebilim.ted.org.tr/index.php/EB/article/view/1837/484
  • Ball, D. L. (1990). Prospective elementary and secondary teachers' understanding of division. Journal for Research in Mathematics Education, 21(2), 132-144. https://doi.org/10.5951/jresematheduc.21.2.0132
  • Ball, D. L. (1993). Halves, pieces, and twoths: Constructing and using representational contexts in teaching fractions. T. P. Carpenter, E. Fennema, & T. A. Romberg (Ed.), Rational numbers: An integration of research (pp. 157–195). Lawrence Erlbaum Associates, Inc.
  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/00224871083245
  • Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., Klusmann, U., Krauss, S., Neubrand, M., & Tsai, Y. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47(1), 133–180. https://doi.org/10.3102/0002831209345157
  • Bayazit, İ., Aksoy, Y., & Kırnap, M. (2011). Öğretmenlerin matematiksel modelleri anlama ve model oluşturma yeterlilikleri. NWSA: Education Sciences, 6(4), 2495-2516. https://dergipark.org.tr/en/download/article-file/185520
  • Behr, M., Lesh, R., Post, T., & Silver E. (1983). Rational Number Concepts. R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 91-125). Academic Press.
  • Ben-Peretz, M. (2011). Teacher knowledge: What is it? How do we uncover it? What are its implications for schooling? Teaching and Teacher Education, 27(1), 3-9. https://doi.org/10.1016/j.tate.2010.07.015
  • Biber, A. Ç., Tuna, A., & Aktaş, O. (2013). Öğrencilerin kesirler konusundaki kavram yanılgıları ve bu yanılgıların kesir problemleri çözümlerine etkisi. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 3(2), 152-162.
  • Blum, W. (1993). Mathematical modelling in mathematics education and instruction. T. Breiteig, I. Huntley & G. Kaiser Messmer (Eds.), Teaching and learning mathematics in context (pp. 3-14). Ellis Horwood Limited.
  • Borko, H., Eisenhart, M., Brown, C. A., Underhill, R. G., Jones, D., & Agard, P. C. (1992). Learning to teach hard mathematics: Do novice teachers and their instructors give up too easily? Journal for Research in Mathematics Education, 23(3), 194-222. https://doi.org/10.5951/jresematheduc.23.3.0194
  • Bulgar, S. (2003). Children’s sense-making of division of fractions. The Journal of Mathematical Behavior, 22(3), 319-334. https://doi.org/10.1016/S0732-3123(03)00024-5
  • Bütün, M. (2012). İlköğretim matematik öğretmeni adaylarının uygulanan zenginleştirilmiş program sürecinde matematiği öğretme bilgilerinin gelişimi (Tez No: 321920). [Doktora tezi, Karadeniz Teknik Üniversitesi].
  • Can, H. N. (2019). Ortaokul matematik öğretmenlerinin kesirlerde işlemler konusu ile ilgili pedagojik alan bilgilerinin öğrenci zorlukları ve kavram yanılgıları bileşeninde incelenmesi (Tez No: 569175). [Yüksek lisans tezi, Marmara Üniversitesi].
  • Çelik, B., & Çiltaş, A. (2015). Beşinci sınıf kesirler konusunun öğretim sürecinin matematiksel modeller açısından incelenmesi. Bayburt Eğitim Fakültesi Dergisi, 10(1), 180-204.
  • Charalambous, C. Y. (2008). Preservice teachers’ mathematical knowledge for teaching and their performance in selected teaching practices: Exploring a complex relationship. [Doctoral thesis, University of Michigan]. https://deepblue.lib.umich.edu/bitstream/handle/2027.42/61673/chcharal_1.pdf?sequence=1&isAllowed=y
  • Charalambous, C. Y., Hill, H. C., & Ball, D. L. (2011). Prospective teachers’ learning to provide instructional explanations: How does it look and what might it take? Journal of Mathematics Teacher Education, 14(6), 441- 463. https://doi.org/10.1007/s10857-011-9182-z
  • Chick, H. L. (2010). Aspects of teachers’ knowledge for helping students learn about ratio. Mathematics Education Research Group of Australasia, 33, 145-152.
  • Cochran, K. F., DeRuiter, J. A., & King, R. A. (1993). Pedagogical content knowing: An integrative model for teacher preparation, Journal of Teacher Education, 44, 263–272. https://doi.org/10.1177/0022487193044004004
  • Cohen, L., Manion, L. & Morrison, K. (2007). Research method in education (6th edition). Taylor & Francis e- Library.
  • Doğan, A. (2018). Sınıf öğretmenlerinin kesrin anlamlarına yönelik bilgileri ve kesirlerin öğretiminde kullandıkları modeller (Tez No: 528969). [Doktora tezi, Gazi Üniversitesi].
  • Duran, N. B. (2017). Ortaokul matematik öğretmen adaylarının alan ve pedagojik alan bilgileri çerçevesinde kesirlerle çarpma ve bölme işlemlerinin öğretimine ilişkin kullandıkları modeller (Tez No: 469524). [Yüksek lisans tezi, Pamukkale Üniversitesi].
  • Erdem, E., Gökkurt, B., Şahin, Ö., Başıbüyük, K., & Soylu, Y. (2015). Examining prospective middle school mathematics teachers’ modelling skills of multiplication and division in fractions. Croatian Journal of Education, 17(1), 11-36. https://doi.org/10.15516/cje.v17i1.830
  • Fennema, E. F., & Franke, M. L. (1992). Teachers' knowledge and its impact. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (pp. 147-164). Macmillan.
  • Gess-Newsome, J. (1999). Pedagogical content knowledge: An introduction and orientation. In Examining pedagogical content knowledge: The construct and its implications for science education (pp. 3-17). Springer Netherlands.
  • Gökkurt, B. (2014). Ortaokul matematik öğretmenlerinin geometrik cisimler konusuna ilişkin pedagojik alan bilgilerinin incelenmesi (Tez No: 381641). [Doktora tezi, Atatürk Üniversitesi].
  • Gökkurt, B., Şahin, Ö., Soylu, Y., & Soylu, C. (2013). Examining pre-service teachers' pedagogical content knowledge on fractions in terms of students’ errors. International Online Journal of Educational Sciences, 5(3), 719-735. https://iojes.net/?mod=tammetin&makaleadi=&makaleurl=IOJES_1104.pdf&key=41106
  • Gravetter, J. F., & Forzano, L. B. (2012). Research methods for the behavioral sciences (4. Baskı). Linda Schreiber-Ganster.
  • Grossman, P. (1990). The making of a teacher. Teacher’s College Press.
  • Grossman, P., & McDonald, M. (2008). Back to the future: Directions for research in teaching and teacher education. American Educational Research Journal, 45(1), 184– 205. https://doi.org/10.3102/0002831207312906
  • Gürbüz, R., Erdem, E., & Gülburnu, M. (2013). Sınıf öğretmenlerinin matematik yeterliklerini etkileyen faktörlerin incelenmesi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 14(2), 255-272. https://dergipark.org.tr/en/download/article-file/1490593
  • Hill, H. C., Blunk, M. L., Charalambous, C. Y., Lewis, J. M., Phelps, G. C., Sleep, L., & Ball, D. L. (2008). Mathematical knowledge for teaching and the mathematical quality of instruction: An exploratory study. Cognition and Instruction, 26(4), 430-511. https://doi.org/10.1080/07370000802177235
  • İpek, A. S., Işık, C., & Albayrak, M. (2005). Sınıf öğretmeni adaylarının kesir işlemleri konusundaki kavramsal performansları. Kazım Karabekir Eğitim Fakültesi Dergisi, 11, 538-547. https://dergipark.org.tr/en/download/article-file/31446
  • Işık, C. (2011). İlköğretim matematik öğretmeni adaylarının kesirlerde çarpma ve bölmeye yönelik kurdukları problemlerin kavramsal analizi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 41, 231-243. http://www.efdergi.hacettepe.edu.tr/yonetim/icerik/makaleler/694-published.pdf
  • Işık, C., & Kar, T. (2012). 7. sınıf öğrencilerinin kesirlerde toplama işlemine kurdukları problemlerin analizi. İlköğretim Online, 11(4), 1021-1035. https://core.ac.uk/download/pdf/230029927.pdf
  • Işıksal, M. (2006). A study on pre-service elementary mathematics teachers’ subject matter knowledge and pedagogical content knowledge regarding the multiplication and division of fractions (Thesis No: 181012). [Doctoral thesis, Middle East Technical University].
  • Işıksal-Bostan, M., & Osmanoğlu, A. (2016). Pedagojik alan bilgisi. E. Bingölbali, S. Arslan, İ. Ö. Zembat (Ed.), Matematik eğitiminde teoriler içinde (s. 677-699). Pegem.
  • Kinach, B. M. (2002a). Understanding and learning-to-explain by representing mathematics: epistemological dilemmas facing teacher educators in the secondary mathematics “methods'' course. Journal of Mathematics Teacher Education, 5(2), 153-186. https://doi.org/10.1023/A:1015822104536
  • Kinach, B. M. (2002b). A cognitive strategy for developing pedagogical content knowledge in the secondary mathematics methods course: Toward a model of effective practice. Teaching and Teacher Education, 18(1), 51-71. https://doi.org/10.1016/S0742-051X(01)00050-6
  • Kocaoğlu, T., & Yenilmez, K. (2010). Beşinci sınıf öğrencilerinin kesir problemlerinde yaptıkları hatalar ve kavram yanılgıları. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 14, 71-85. https://dergipark.org.tr/en/download/article-file/787095
  • Lachner, A., & Nückles, M. (2015). Bothered by abstractness or engaged by cohesion? Experts’ explanations enhance novices’ deep learning. Journal of Experimental Psychology: Applied, 21(1), 101-115. https://doi.org/10.1037/xap0000038
  • Lamon, S. (1996). The development of unitizing: Its role in children’s partitioning strategies. Journal for Research in Mathematics Education, 27, 170-193. https://doi.org/10.5951/jresematheduc.27.2.0170
  • Lee, J. E., & Lee, M. Y. (2023). How elementary prospective teachers use three fraction models: their perceptions and difficulties. Journal of Mathematics Teacher Education, 26(4), 455-480. https://doi.org/10.1007/s10857-022-09537-4
  • Leinhardt, G. (2001). Instructional explanations: A commonplace for teaching and location for contrast. V. Richardson (Ed.), Handbook for research on teaching (4th Edition). American Educational Research Association.
  • Leinhardt, G., Putnam, R. T., Stein, M. K., & Baxter, J. (1991). Where subject knowledge matters. J. Brophy (Ed.), Advances in research on teaching (Vol. 2, pp. 87–113). JAI Press Inc.
  • Lesh, R., & Doerr, H. M. (2000). Symbolizing, communicating, and mathematizing: Key com¬ponents of models and modeling. In P. Cobb, E. Yackel, & K. McClain (Eds.), Symbolizing and communicating in mathematics classrooms: Perspectives on discourse, tools, and instruc¬tional design (pp. 361 –383). Lawrence Erlbaum Associates.
  • Lo, J. J., & Luo, F. (2012). Prospective elementary teachers’ knowledge of fraction division. Journal of Mathematics Teacher Education, 15, 481-500. https://doi.org/10.1007/s10857-012-9221-4
  • Ma, L. (1999). Knowing and teaching elementary mathematics. Lawrence Erlbaum Associates.
  • Macit, E. (2019). 6. sınıf öğrencilerinin kesirler konusundaki imajlarının kavram yanılgıları ve başarıları ile ilişkisinin incelenmesi (Tez No: 610998). [Doktora tezi, İnönü Üniversitesi].
  • Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of pedagogical content knowledge for science teaching. In Examining pedagogical content knowledge: The construct and its implications for science education (pp. 95-132). Springer Netherlands.
  • Martin, J. R. (1970). Explaining, understanding, and teaching. McGraw-Hill.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage.
  • Milli Eğitim Bakanlığı [MEB] (2009). İlköğretim matematik dersi 6-8. sınıflar öğretim programı. MEB.
  • Milli Eğitim Bakanlığı [MEB] (2013). Ortaokul matematik dersi (5, 6, 7 ve 8. sınıflar) öğretim programı. MEB.
  • Milli Eğitim Bakanlığı [MEB] (2018). Matematik dersi öğretim programları (ilkokul ve ortaokul 1., 2., 3., 4.,5.,6., 7. ve 8. sınıflar). MEB.
  • Monte-Sano, C. (2011). Beyond reading comprehension and summary: Learning to read and write in history by focusing on evidence, perspective, and interpretation. Curriculum Inquiry, 41(2), 212-249. https://doi.org/10.1111/j.1467-873X.2011.00547.x
  • National Council of Teachers of Mathematics [NCTM] (2000). Principles and standards for school mathematics. NCTM.
  • Nemirovsky, R. (1994). On ways of symbolizing: The case of Laura and the velocity sign. The Journal of Mathematical Behavior, 13(4), 389-422. https://doi.org/10.1016/0732-3123(94)90002-7
  • Niss, M. (1987). Applications and modelling in the mathematics curriculum—state and trends. International Journal of Mathematical Education in Science and Technology, 18(4), 487-505. https://doi.org/10.1080/0020739870180401
  • Olkun, S., & Toluk-Uçar, Z. (2012). İlköğretimde etkinlik temelli matematik öğretimi. Eğiten Kitap.
  • Özer, A. (2020). Ortaokul 6. sınıf kesirler konusunun görselleştirme ile öğretiminin akademik başarıya etkisinin incelenmesi (Tez No: 616475). [Yüksek lisans tezi, Kırıkkale Üniversitesi].
  • Park, S., & Oliver, J. S. (2008). Revisiting the conceptualisation of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38, 261-284. https://doi.org/10.1007/s11165-007-9049-6
  • Parmar, R. (2003). Understanding the concept of “division”: assessment considerations. Exceptionality, 11(3), 177-189. http://dx.doi.org/10.1207/S15327035EX1103_05
  • Patton, M. Q. (2014). Nitel araştırma ve değerlendirme yöntemleri (M. Bütün ve S. B. Demir, çev.). Pegem Akademi.
  • Perkins, D. N. (1992). Smart schools: Better thinking and learning for every child. Free Press.
  • Perry, M. (2000). Explanations of mathematical concepts in Japanese, Chinese, and US first-and fifth-grade classrooms. Cognition and Instruction, 18(2), 181-207. https://doi.org/10.1207/S1532690XCI1802_02
  • Rey, G. D., & Fischer, A. (2013). The expertise reversal effect concerning instructional explanations. Instructional Science, 41(2), 407-429. https://doi.org/10.1007/s11251-012-9237-2
  • Rosli, R., Han, S., Capraro, R. M., & Capraro, M. M. (2013). Exploring preservice teachers' computational and representational knowledge of content and teaching fractions. Research in Mathematical Education, 17(4), 221-241. http://dx.doi.org/10.7468/jksmed.2013.17.4.221
  • Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject knowledge: The knowledge quartet and the case of Naomi. Journal of Mathematics Teacher Education, 8(3), 255-281.
  • Şahin, Ö., Gökkurt, B., & Soylu, Y. (2013, Nisan). Matematik öğretmeni adaylarının kesirlerle ilgili pedagojik alan bilgilerinin öğrenci hataları bağlamında incelenmesi. 4th International Conference on New Trends in Education and Their Implications konferansında sunulan sözlü bildiri, Antalya. https://www.demo.emuder.com/icontedemo/wp-content/uploads/2024/02/4._iconte_bildiri_ozetleriii-2013.pdf
  • Schmidt-Thieme, B. (2009). Erklären als fachspezifische Kompetenz in fächerübergreifender perspektive [Explanation as a subject-specific competence from an interdisciplinary perspective]. In: Beiträge zum Mathematikunterricht [Contributions to mathematics teaching] (239-242). WTM.
  • Seçir, S. (2017). İlköğretim matematik öğretmen adaylarının kesirlerle çarpma ve bölme işlemlerine ilişkin özelleştirilmiş alan bilgilerinin gelişiminin incelenmesi (Tez No: 461458). [Doktora tezi, Gazi Üniversitesi].
  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14. https://doi.org/10.3102/0013189X015002004
  • Şiap, İ. & Duru, A. (2004). Kesirlerde geometriksel modelleri kullanabilme becerisi. Kastamonu Eğitim Dergisi, 2(1), 89-96.
  • Sowder, J., & Wearne, D. (2006). What do we know about eighth-grade student achievement? Mathematics Teaching in the Middle School, 11(6), 285–293. https://www.jstor.org/stable/pdf/41182306.pdf
  • Staley, K. N. (2004). Tracing the development of understanding rate of change: A case of changes in a pre-service teacher’s pedagogical content knowledge. [Doctoral thesis, North Carolina State University]. https://www.proquest.com/docview/305165371
  • Tarkan-Yurtsever, N. (2012). A study on fifth grade students mistakes, difficulties and misconceptions regarding basic fractional concepts and operations (Tez No: 321086). [Master thesis, Middle East Technical University].
  • Tirosh, D. (2000). Enhancing prospective teachers’ knowledge of children’s conceptions: the case of division of fractions. Journal for Research in Mathematics Education, 31(1), 5–25. https://doi.org/10.2307/749817
  • Toluk Uçar, Z. (2009). Developing pre-service teachers understanding of fractions through problem posing. Teaching and Teacher Education, 25, 166–175. https://doi.org/10.1016/j.tate.2008.08.003
  • Tuna, A.., Biber, A. Ç., & Yurt, N. (2013). Matematik öğretmeni adaylarının matematiksel modelleme becerileri. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 33(1), 129-146. https://dergipark.org.tr/en/download/article-file/76918
  • Turan, Y. (2023). Ortaokul matematik öğretmenlerinin farklı kesir şemaları bağlamında model kullanmaya yönelik pedagojik tercihlerinin incelenmesi (Tez No: 863226). [Yüksek lisans tezi, Ordu Üniversitesi].
  • Van de Walle, J. A. (2004). Elementary and middle school mathematics: Teaching developmentally. Fifth edition. Allyn & Bacon.
  • Watson, J., Beswick, K., & Brown, N. (2006). Teachers’ knowledge of their students as learners and how to intervene. In P. Grootenboer, R. Zevenbergen, & M. Chinnappan (Eds.), Identities, cultures and learning spaces (Proceedings of the 29th annual conference of the Mathematics Education Research Group of Australasia, pp. 551-558). Sydney: MERGA.
  • Wittwer, J., & Renkl, A. (2008). Why instructional explanations often do not work: A framework for understanding the effectiveness of instructional explanations. Educational Psychologist, 43(1), 49-64. https://doi.org/10.1080/00461520701756420
  • Xie, J., & Masingila, J. O. (2017). Examining interactions between problem posing and problem solving with prospective primary teachers: A case of using fractions. Educational Studies in Mathematics, 96, 101–111. https://doi.org/10.1007/s10649-017-9760-9
  • Yavuz Mumcu, H. (2018). Kesir işlemlerinde matematiksel modellerin kullanımı: Bir durum çalışması. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 12 (1), 122-151.
  • Yin, R. K. (2017). Case study research and applications: Design and methods. Sage Publications.
  • Zbiek, R. M. (1998). Prospective teachers’ use of computing tools to develop and validate function as mathematical models. Journal for Research in Mathematics Education, 29(2), 184–201. https://doi.org/10.5951/jresematheduc.29.2.0184
  • Zembat, İ. Ö. (2007). Sorun aynı-kavramlar; kitle aynı-öğretmen adayları. İlköğretim Online, 6(2), 305-312. https://dergipark.org.tr/en/download/article-file/91015

Matematik Öğretmenleri ile Öğretmen Adaylarının Öğretimsel Açıklamalarının Matematiksel Modeller Bağlamında İncelenmesi

Year 2024, Volume: 20 Issue: 2, 175 - 198, 22.08.2024
https://doi.org/10.17860/mersinefd.1443293

Abstract

Bu araştırmanın amacı matematik öğretmenleri ile öğretmen adaylarının kesirlerle bölmeye yönelik öğretimsel açıklamalarının matematiksel modeller bağlamında incelenmesidir. Araştırma kapsamında durum çalışması tarama araştırması yönteminden yararlanılmıştır. Araştırmanın katılımcılarını aynı ilde yer alan farklı devlet okullarında görev yapmakta olan 2 matematik öğretmeni ile bir devlet üniversitesinin İlköğretim Matematik Öğretmenliği programında öğrenim görmekte olan 2 son sınıf öğrencisi oluşturmaktadır. Bu araştırmada veri toplama aracı olarak araştırmacılar tarafından oluşturulan sekiz adet açık uçlu soru ile yarı yapılandırılmış görüşmeler kullanılmıştır. Araştırma kapsamında yer alan katılımcıların öğretimsel açıklamalarında kullandıkları matematiksel modeller iki farklı boyutta değerlendirilmiştir. Bunlar matematiksel ve pedagojik boyutlardır. Matematiksel boyutta kullanılan modellerin özelliklerine, pedagojik boyutta ise kullanım düzeylerine yer verilmiştir. Araştırma sonucunda katılımcıların kullandıkları öğretimsel açıklama ve modellerin matematiksel olarak genelde doğru ve geçerli olmakla birlikte ilişkili oldukları matematiksel durumu tüm yönleriyle her zaman yansıtmadığı, pedagojik boyutta ise genel olarak kavramsal düzeye ve problem çözme düzeyine uygun olduğu görülmüştür. Pedagojik boyutta en düşük performans ise epistemik düzeye aittir. Araştırma sonucunda ayrıca öğretmenlerin kullandıkları öğretimsel açıklama ve modellerin, öğretmen adaylarına nazaran matematiksel ve pedagojik boyutlarda yer alan göstergelerle daha uyumlu olduğu sonucu elde edilmiştir. Elde edilen bulgular alan yazınla ilişkili olarak tartışılmış ve sonuçlar doğrultusunda bazı önerilerde bulunulmuştur.

References

  • Akyıldız, P. (2019). Matematik öğretmeni adaylarının öğretimsel açıklamalarının matematiksel inanç perspektifinden incelenmesi (Tez No: 588885). [Doktora tezi, Gazi Üniversitesi].
  • Baki, A., & Bütün, M. (2009). İlköğretim matematik öğretmenlerinin bölme kavramı ile ilgili alan eğitimi bilgilerinin yapısı. e-Journal of New World Sciences Academy, 4(4), 1243-1256. https://dergipark.org.tr/en/download/article-file/185882
  • Baki, M. (2013). Sınıf öğretmeni adaylarının bölme işlemi ile ilgili matematiksel bilgileri ve öğretimsel açıklamaları. Eğitim ve Bilim, 38(167), 300-311. https://egitimvebilim.ted.org.tr/index.php/EB/article/view/1837/484
  • Ball, D. L. (1990). Prospective elementary and secondary teachers' understanding of division. Journal for Research in Mathematics Education, 21(2), 132-144. https://doi.org/10.5951/jresematheduc.21.2.0132
  • Ball, D. L. (1993). Halves, pieces, and twoths: Constructing and using representational contexts in teaching fractions. T. P. Carpenter, E. Fennema, & T. A. Romberg (Ed.), Rational numbers: An integration of research (pp. 157–195). Lawrence Erlbaum Associates, Inc.
  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/00224871083245
  • Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., Klusmann, U., Krauss, S., Neubrand, M., & Tsai, Y. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47(1), 133–180. https://doi.org/10.3102/0002831209345157
  • Bayazit, İ., Aksoy, Y., & Kırnap, M. (2011). Öğretmenlerin matematiksel modelleri anlama ve model oluşturma yeterlilikleri. NWSA: Education Sciences, 6(4), 2495-2516. https://dergipark.org.tr/en/download/article-file/185520
  • Behr, M., Lesh, R., Post, T., & Silver E. (1983). Rational Number Concepts. R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 91-125). Academic Press.
  • Ben-Peretz, M. (2011). Teacher knowledge: What is it? How do we uncover it? What are its implications for schooling? Teaching and Teacher Education, 27(1), 3-9. https://doi.org/10.1016/j.tate.2010.07.015
  • Biber, A. Ç., Tuna, A., & Aktaş, O. (2013). Öğrencilerin kesirler konusundaki kavram yanılgıları ve bu yanılgıların kesir problemleri çözümlerine etkisi. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 3(2), 152-162.
  • Blum, W. (1993). Mathematical modelling in mathematics education and instruction. T. Breiteig, I. Huntley & G. Kaiser Messmer (Eds.), Teaching and learning mathematics in context (pp. 3-14). Ellis Horwood Limited.
  • Borko, H., Eisenhart, M., Brown, C. A., Underhill, R. G., Jones, D., & Agard, P. C. (1992). Learning to teach hard mathematics: Do novice teachers and their instructors give up too easily? Journal for Research in Mathematics Education, 23(3), 194-222. https://doi.org/10.5951/jresematheduc.23.3.0194
  • Bulgar, S. (2003). Children’s sense-making of division of fractions. The Journal of Mathematical Behavior, 22(3), 319-334. https://doi.org/10.1016/S0732-3123(03)00024-5
  • Bütün, M. (2012). İlköğretim matematik öğretmeni adaylarının uygulanan zenginleştirilmiş program sürecinde matematiği öğretme bilgilerinin gelişimi (Tez No: 321920). [Doktora tezi, Karadeniz Teknik Üniversitesi].
  • Can, H. N. (2019). Ortaokul matematik öğretmenlerinin kesirlerde işlemler konusu ile ilgili pedagojik alan bilgilerinin öğrenci zorlukları ve kavram yanılgıları bileşeninde incelenmesi (Tez No: 569175). [Yüksek lisans tezi, Marmara Üniversitesi].
  • Çelik, B., & Çiltaş, A. (2015). Beşinci sınıf kesirler konusunun öğretim sürecinin matematiksel modeller açısından incelenmesi. Bayburt Eğitim Fakültesi Dergisi, 10(1), 180-204.
  • Charalambous, C. Y. (2008). Preservice teachers’ mathematical knowledge for teaching and their performance in selected teaching practices: Exploring a complex relationship. [Doctoral thesis, University of Michigan]. https://deepblue.lib.umich.edu/bitstream/handle/2027.42/61673/chcharal_1.pdf?sequence=1&isAllowed=y
  • Charalambous, C. Y., Hill, H. C., & Ball, D. L. (2011). Prospective teachers’ learning to provide instructional explanations: How does it look and what might it take? Journal of Mathematics Teacher Education, 14(6), 441- 463. https://doi.org/10.1007/s10857-011-9182-z
  • Chick, H. L. (2010). Aspects of teachers’ knowledge for helping students learn about ratio. Mathematics Education Research Group of Australasia, 33, 145-152.
  • Cochran, K. F., DeRuiter, J. A., & King, R. A. (1993). Pedagogical content knowing: An integrative model for teacher preparation, Journal of Teacher Education, 44, 263–272. https://doi.org/10.1177/0022487193044004004
  • Cohen, L., Manion, L. & Morrison, K. (2007). Research method in education (6th edition). Taylor & Francis e- Library.
  • Doğan, A. (2018). Sınıf öğretmenlerinin kesrin anlamlarına yönelik bilgileri ve kesirlerin öğretiminde kullandıkları modeller (Tez No: 528969). [Doktora tezi, Gazi Üniversitesi].
  • Duran, N. B. (2017). Ortaokul matematik öğretmen adaylarının alan ve pedagojik alan bilgileri çerçevesinde kesirlerle çarpma ve bölme işlemlerinin öğretimine ilişkin kullandıkları modeller (Tez No: 469524). [Yüksek lisans tezi, Pamukkale Üniversitesi].
  • Erdem, E., Gökkurt, B., Şahin, Ö., Başıbüyük, K., & Soylu, Y. (2015). Examining prospective middle school mathematics teachers’ modelling skills of multiplication and division in fractions. Croatian Journal of Education, 17(1), 11-36. https://doi.org/10.15516/cje.v17i1.830
  • Fennema, E. F., & Franke, M. L. (1992). Teachers' knowledge and its impact. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (pp. 147-164). Macmillan.
  • Gess-Newsome, J. (1999). Pedagogical content knowledge: An introduction and orientation. In Examining pedagogical content knowledge: The construct and its implications for science education (pp. 3-17). Springer Netherlands.
  • Gökkurt, B. (2014). Ortaokul matematik öğretmenlerinin geometrik cisimler konusuna ilişkin pedagojik alan bilgilerinin incelenmesi (Tez No: 381641). [Doktora tezi, Atatürk Üniversitesi].
  • Gökkurt, B., Şahin, Ö., Soylu, Y., & Soylu, C. (2013). Examining pre-service teachers' pedagogical content knowledge on fractions in terms of students’ errors. International Online Journal of Educational Sciences, 5(3), 719-735. https://iojes.net/?mod=tammetin&makaleadi=&makaleurl=IOJES_1104.pdf&key=41106
  • Gravetter, J. F., & Forzano, L. B. (2012). Research methods for the behavioral sciences (4. Baskı). Linda Schreiber-Ganster.
  • Grossman, P. (1990). The making of a teacher. Teacher’s College Press.
  • Grossman, P., & McDonald, M. (2008). Back to the future: Directions for research in teaching and teacher education. American Educational Research Journal, 45(1), 184– 205. https://doi.org/10.3102/0002831207312906
  • Gürbüz, R., Erdem, E., & Gülburnu, M. (2013). Sınıf öğretmenlerinin matematik yeterliklerini etkileyen faktörlerin incelenmesi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 14(2), 255-272. https://dergipark.org.tr/en/download/article-file/1490593
  • Hill, H. C., Blunk, M. L., Charalambous, C. Y., Lewis, J. M., Phelps, G. C., Sleep, L., & Ball, D. L. (2008). Mathematical knowledge for teaching and the mathematical quality of instruction: An exploratory study. Cognition and Instruction, 26(4), 430-511. https://doi.org/10.1080/07370000802177235
  • İpek, A. S., Işık, C., & Albayrak, M. (2005). Sınıf öğretmeni adaylarının kesir işlemleri konusundaki kavramsal performansları. Kazım Karabekir Eğitim Fakültesi Dergisi, 11, 538-547. https://dergipark.org.tr/en/download/article-file/31446
  • Işık, C. (2011). İlköğretim matematik öğretmeni adaylarının kesirlerde çarpma ve bölmeye yönelik kurdukları problemlerin kavramsal analizi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 41, 231-243. http://www.efdergi.hacettepe.edu.tr/yonetim/icerik/makaleler/694-published.pdf
  • Işık, C., & Kar, T. (2012). 7. sınıf öğrencilerinin kesirlerde toplama işlemine kurdukları problemlerin analizi. İlköğretim Online, 11(4), 1021-1035. https://core.ac.uk/download/pdf/230029927.pdf
  • Işıksal, M. (2006). A study on pre-service elementary mathematics teachers’ subject matter knowledge and pedagogical content knowledge regarding the multiplication and division of fractions (Thesis No: 181012). [Doctoral thesis, Middle East Technical University].
  • Işıksal-Bostan, M., & Osmanoğlu, A. (2016). Pedagojik alan bilgisi. E. Bingölbali, S. Arslan, İ. Ö. Zembat (Ed.), Matematik eğitiminde teoriler içinde (s. 677-699). Pegem.
  • Kinach, B. M. (2002a). Understanding and learning-to-explain by representing mathematics: epistemological dilemmas facing teacher educators in the secondary mathematics “methods'' course. Journal of Mathematics Teacher Education, 5(2), 153-186. https://doi.org/10.1023/A:1015822104536
  • Kinach, B. M. (2002b). A cognitive strategy for developing pedagogical content knowledge in the secondary mathematics methods course: Toward a model of effective practice. Teaching and Teacher Education, 18(1), 51-71. https://doi.org/10.1016/S0742-051X(01)00050-6
  • Kocaoğlu, T., & Yenilmez, K. (2010). Beşinci sınıf öğrencilerinin kesir problemlerinde yaptıkları hatalar ve kavram yanılgıları. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 14, 71-85. https://dergipark.org.tr/en/download/article-file/787095
  • Lachner, A., & Nückles, M. (2015). Bothered by abstractness or engaged by cohesion? Experts’ explanations enhance novices’ deep learning. Journal of Experimental Psychology: Applied, 21(1), 101-115. https://doi.org/10.1037/xap0000038
  • Lamon, S. (1996). The development of unitizing: Its role in children’s partitioning strategies. Journal for Research in Mathematics Education, 27, 170-193. https://doi.org/10.5951/jresematheduc.27.2.0170
  • Lee, J. E., & Lee, M. Y. (2023). How elementary prospective teachers use three fraction models: their perceptions and difficulties. Journal of Mathematics Teacher Education, 26(4), 455-480. https://doi.org/10.1007/s10857-022-09537-4
  • Leinhardt, G. (2001). Instructional explanations: A commonplace for teaching and location for contrast. V. Richardson (Ed.), Handbook for research on teaching (4th Edition). American Educational Research Association.
  • Leinhardt, G., Putnam, R. T., Stein, M. K., & Baxter, J. (1991). Where subject knowledge matters. J. Brophy (Ed.), Advances in research on teaching (Vol. 2, pp. 87–113). JAI Press Inc.
  • Lesh, R., & Doerr, H. M. (2000). Symbolizing, communicating, and mathematizing: Key com¬ponents of models and modeling. In P. Cobb, E. Yackel, & K. McClain (Eds.), Symbolizing and communicating in mathematics classrooms: Perspectives on discourse, tools, and instruc¬tional design (pp. 361 –383). Lawrence Erlbaum Associates.
  • Lo, J. J., & Luo, F. (2012). Prospective elementary teachers’ knowledge of fraction division. Journal of Mathematics Teacher Education, 15, 481-500. https://doi.org/10.1007/s10857-012-9221-4
  • Ma, L. (1999). Knowing and teaching elementary mathematics. Lawrence Erlbaum Associates.
  • Macit, E. (2019). 6. sınıf öğrencilerinin kesirler konusundaki imajlarının kavram yanılgıları ve başarıları ile ilişkisinin incelenmesi (Tez No: 610998). [Doktora tezi, İnönü Üniversitesi].
  • Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of pedagogical content knowledge for science teaching. In Examining pedagogical content knowledge: The construct and its implications for science education (pp. 95-132). Springer Netherlands.
  • Martin, J. R. (1970). Explaining, understanding, and teaching. McGraw-Hill.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage.
  • Milli Eğitim Bakanlığı [MEB] (2009). İlköğretim matematik dersi 6-8. sınıflar öğretim programı. MEB.
  • Milli Eğitim Bakanlığı [MEB] (2013). Ortaokul matematik dersi (5, 6, 7 ve 8. sınıflar) öğretim programı. MEB.
  • Milli Eğitim Bakanlığı [MEB] (2018). Matematik dersi öğretim programları (ilkokul ve ortaokul 1., 2., 3., 4.,5.,6., 7. ve 8. sınıflar). MEB.
  • Monte-Sano, C. (2011). Beyond reading comprehension and summary: Learning to read and write in history by focusing on evidence, perspective, and interpretation. Curriculum Inquiry, 41(2), 212-249. https://doi.org/10.1111/j.1467-873X.2011.00547.x
  • National Council of Teachers of Mathematics [NCTM] (2000). Principles and standards for school mathematics. NCTM.
  • Nemirovsky, R. (1994). On ways of symbolizing: The case of Laura and the velocity sign. The Journal of Mathematical Behavior, 13(4), 389-422. https://doi.org/10.1016/0732-3123(94)90002-7
  • Niss, M. (1987). Applications and modelling in the mathematics curriculum—state and trends. International Journal of Mathematical Education in Science and Technology, 18(4), 487-505. https://doi.org/10.1080/0020739870180401
  • Olkun, S., & Toluk-Uçar, Z. (2012). İlköğretimde etkinlik temelli matematik öğretimi. Eğiten Kitap.
  • Özer, A. (2020). Ortaokul 6. sınıf kesirler konusunun görselleştirme ile öğretiminin akademik başarıya etkisinin incelenmesi (Tez No: 616475). [Yüksek lisans tezi, Kırıkkale Üniversitesi].
  • Park, S., & Oliver, J. S. (2008). Revisiting the conceptualisation of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38, 261-284. https://doi.org/10.1007/s11165-007-9049-6
  • Parmar, R. (2003). Understanding the concept of “division”: assessment considerations. Exceptionality, 11(3), 177-189. http://dx.doi.org/10.1207/S15327035EX1103_05
  • Patton, M. Q. (2014). Nitel araştırma ve değerlendirme yöntemleri (M. Bütün ve S. B. Demir, çev.). Pegem Akademi.
  • Perkins, D. N. (1992). Smart schools: Better thinking and learning for every child. Free Press.
  • Perry, M. (2000). Explanations of mathematical concepts in Japanese, Chinese, and US first-and fifth-grade classrooms. Cognition and Instruction, 18(2), 181-207. https://doi.org/10.1207/S1532690XCI1802_02
  • Rey, G. D., & Fischer, A. (2013). The expertise reversal effect concerning instructional explanations. Instructional Science, 41(2), 407-429. https://doi.org/10.1007/s11251-012-9237-2
  • Rosli, R., Han, S., Capraro, R. M., & Capraro, M. M. (2013). Exploring preservice teachers' computational and representational knowledge of content and teaching fractions. Research in Mathematical Education, 17(4), 221-241. http://dx.doi.org/10.7468/jksmed.2013.17.4.221
  • Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject knowledge: The knowledge quartet and the case of Naomi. Journal of Mathematics Teacher Education, 8(3), 255-281.
  • Şahin, Ö., Gökkurt, B., & Soylu, Y. (2013, Nisan). Matematik öğretmeni adaylarının kesirlerle ilgili pedagojik alan bilgilerinin öğrenci hataları bağlamında incelenmesi. 4th International Conference on New Trends in Education and Their Implications konferansında sunulan sözlü bildiri, Antalya. https://www.demo.emuder.com/icontedemo/wp-content/uploads/2024/02/4._iconte_bildiri_ozetleriii-2013.pdf
  • Schmidt-Thieme, B. (2009). Erklären als fachspezifische Kompetenz in fächerübergreifender perspektive [Explanation as a subject-specific competence from an interdisciplinary perspective]. In: Beiträge zum Mathematikunterricht [Contributions to mathematics teaching] (239-242). WTM.
  • Seçir, S. (2017). İlköğretim matematik öğretmen adaylarının kesirlerle çarpma ve bölme işlemlerine ilişkin özelleştirilmiş alan bilgilerinin gelişiminin incelenmesi (Tez No: 461458). [Doktora tezi, Gazi Üniversitesi].
  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14. https://doi.org/10.3102/0013189X015002004
  • Şiap, İ. & Duru, A. (2004). Kesirlerde geometriksel modelleri kullanabilme becerisi. Kastamonu Eğitim Dergisi, 2(1), 89-96.
  • Sowder, J., & Wearne, D. (2006). What do we know about eighth-grade student achievement? Mathematics Teaching in the Middle School, 11(6), 285–293. https://www.jstor.org/stable/pdf/41182306.pdf
  • Staley, K. N. (2004). Tracing the development of understanding rate of change: A case of changes in a pre-service teacher’s pedagogical content knowledge. [Doctoral thesis, North Carolina State University]. https://www.proquest.com/docview/305165371
  • Tarkan-Yurtsever, N. (2012). A study on fifth grade students mistakes, difficulties and misconceptions regarding basic fractional concepts and operations (Tez No: 321086). [Master thesis, Middle East Technical University].
  • Tirosh, D. (2000). Enhancing prospective teachers’ knowledge of children’s conceptions: the case of division of fractions. Journal for Research in Mathematics Education, 31(1), 5–25. https://doi.org/10.2307/749817
  • Toluk Uçar, Z. (2009). Developing pre-service teachers understanding of fractions through problem posing. Teaching and Teacher Education, 25, 166–175. https://doi.org/10.1016/j.tate.2008.08.003
  • Tuna, A.., Biber, A. Ç., & Yurt, N. (2013). Matematik öğretmeni adaylarının matematiksel modelleme becerileri. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 33(1), 129-146. https://dergipark.org.tr/en/download/article-file/76918
  • Turan, Y. (2023). Ortaokul matematik öğretmenlerinin farklı kesir şemaları bağlamında model kullanmaya yönelik pedagojik tercihlerinin incelenmesi (Tez No: 863226). [Yüksek lisans tezi, Ordu Üniversitesi].
  • Van de Walle, J. A. (2004). Elementary and middle school mathematics: Teaching developmentally. Fifth edition. Allyn & Bacon.
  • Watson, J., Beswick, K., & Brown, N. (2006). Teachers’ knowledge of their students as learners and how to intervene. In P. Grootenboer, R. Zevenbergen, & M. Chinnappan (Eds.), Identities, cultures and learning spaces (Proceedings of the 29th annual conference of the Mathematics Education Research Group of Australasia, pp. 551-558). Sydney: MERGA.
  • Wittwer, J., & Renkl, A. (2008). Why instructional explanations often do not work: A framework for understanding the effectiveness of instructional explanations. Educational Psychologist, 43(1), 49-64. https://doi.org/10.1080/00461520701756420
  • Xie, J., & Masingila, J. O. (2017). Examining interactions between problem posing and problem solving with prospective primary teachers: A case of using fractions. Educational Studies in Mathematics, 96, 101–111. https://doi.org/10.1007/s10649-017-9760-9
  • Yavuz Mumcu, H. (2018). Kesir işlemlerinde matematiksel modellerin kullanımı: Bir durum çalışması. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 12 (1), 122-151.
  • Yin, R. K. (2017). Case study research and applications: Design and methods. Sage Publications.
  • Zbiek, R. M. (1998). Prospective teachers’ use of computing tools to develop and validate function as mathematical models. Journal for Research in Mathematics Education, 29(2), 184–201. https://doi.org/10.5951/jresematheduc.29.2.0184
  • Zembat, İ. Ö. (2007). Sorun aynı-kavramlar; kitle aynı-öğretmen adayları. İlköğretim Online, 6(2), 305-312. https://dergipark.org.tr/en/download/article-file/91015
There are 91 citations in total.

Details

Primary Language Turkish
Subjects Mathematics Education
Journal Section Makaleler
Authors

Emine Aktaş 0000-0001-5530-8887

Hayal Yavuz Mumcu 0000-0002-6720-509X

Publication Date August 22, 2024
Submission Date February 27, 2024
Acceptance Date June 24, 2024
Published in Issue Year 2024 Volume: 20 Issue: 2

Cite

APA Aktaş, E., & Yavuz Mumcu, H. (2024). Matematik Öğretmenleri ile Öğretmen Adaylarının Öğretimsel Açıklamalarının Matematiksel Modeller Bağlamında İncelenmesi. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 20(2), 175-198. https://doi.org/10.17860/mersinefd.1443293

Makaleler dergide yayınlandıktan sonra yayım hakları dergiye ait olur.
Dergide yayınlanan tüm makaleler, diğerleri tarafından paylaşılmasına olanak veren Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası (CC BY-NC-ND 4.0) lisansı altında lisanslanır.