İlköğretim Matematik Öğretmeni Adaylarının Cebir ve Geometri Alanlarındaki İspat Özellikleri
Yıl 2024,
Cilt: 20 Sayı: 3, 546 - 564, 23.12.2024
Muhammet Doruk
,
Fikret Cihan
Öz
Bu çalışmanın amacı ilköğretim matematik öğretmeni adaylarının cebir ve geometri alanında yaptıkları ispatların özelliklerini ortaya çıkarmaktır. Bu bağlamda öğretmen adaylarının cebir ve geometri alanında yaptıkları ispatların; ispat yapılarına ve şemalarına odaklanılmıştır. Araştırmanın çalışma grubunu Türkiye’deki bir devlet üniversitesinin ilköğretim matematik öğretmenliği bölümü dördüncü sınıfında öğrenim gören 29 öğretmen adayı oluşturmaktadır. Araştırmanın verileri Cebir-Geometri İspat Formu aracılığı ile toplanmıştır. Formda öğretmen adaylarının cebir ve geometri alanından ispat yapmaları gereken iki açık uçlu soru yer almıştır. Bu ispatların çözümlenmesinde betimsel analiz kullanılmıştır. İspat yapılarının analiz sonuçları ilköğretim matematik öğretmen adaylarının hem cebir hem de geometri alanındaki ispatlarda çoğunlukla tümevarımsal ve yapısal-sezgisel yapıda ispat üretebildiklerini, her iki alanda da çok sınırlı sayıda tümdengelimsel yapıda geçerli ispat üretebildiklerini ortaya koymuştur. İspat şemalarının analizi öğretmen adaylarının cebir alanındaki ispatlarda çoğunlukla tümevarımsal ve referanssız-sembolik ispat şemalarını kullandıklarını, geometri alanındaki ispatlarda ise çoğunlukla tümevarımsal ve algısal ispat şemalarını kullandıklarını ortaya çıkarmıştır. Bu sonuçlar öğretmen adaylarının hem cebir hem de geometri alanında ispat yapmada başarısız olduklarını gözler önüne sermiştir. Cebir ve geometri alanlarındaki ispatlar arasındaki yapısal bütünlük durumları incelendiğinde bu iki alandaki ispatlar arasında yapısal sürekliliğin olmadığı, çoğunlukla yapısal mesafenin olduğu bunu da spantone sürekliliklerin takip ettiği belirlenmiştir.
Kaynakça
- Balacheff, N., & Margolinas, C. (2005). Ck¢ modèle de connaissances pour le calcul de situations didactiques. In A. Mercier & C. Margolinas (Eds.), Balises pour la didactique des mathématique (pp. 75–106). La Pensèe Sauvage.
- Boero, P., Douek, N., Morselli, F., & Pedemonte, B. (2010). Argumentation and proof: A contribution to theoretical perspectives and their classroom implementation. In Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education (pp. 179–204). Belo-Horizonte, Brazil.
- Bozkurt, A., Şimşekler-Dizmen, T. H., & Tutan, S., (2022). Investigation of classroom practices of middle school mathematics teachers in the context of geometric reasoning processes. Psycho-Educational Research Reviews, 11(2), 70-87. https://doi.org/10.52963/PERR_Biruni_V11.N2.05
- Bülbül, A., & Urhan, S. (2016). Argümantasyon ve matematiksel kanıt süreçleri arasındaki ilişkiler. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 10(1), 351-373. https://doi.org/10.17522/nefefmed.00387
- Chin, E. & Lin, F. (2009). A comparative study on junior high school students’ proof conceptions in algebra between Taiwan and the UK. Journal of Mathematics Education, 2(2), 52-67. https://sid.ir/paper/618677/en
- Chrysostomou, M., Pitta-Pantazi, D., Tsingi, C., Cleanthous, E., & Christou, C. (2013). Examining number sense and algebraic reasoning through cognitive styles. Educational Studies in Mathematics, 83(2), 205-223. http://www.jstor.org/stable/23434217
- Cihan, F., & Akkoç, H. (2023). An intervention study for improving pre-service mathematics teachers’ proof schemes. Mathematics Teaching-Research Journal, 15(2), 56-80. https://eric.ed.gov/?id=EJ1394137
- Cihan, F. (2024). Matematiksel ispat yöntemlerine ilişkin YoutubeTM videolarının ve video yorumlarının analizi. İnönü Üniversitesi Eğitim Fakültesi Dergisi, 25(2), 437-460. https://doi.org/10.17679/inuefd.1378938
- Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 420–464). Macmillan.
- Cusi, A., & Malara, N. (2007). Proofs problems in elementary number theory: Analysis of trainee teachers' productions. In D. Pitta-Pantazi, & G. Philippou (Eds.), Proceedings ofthe Fifth Congress of the European Societyfor Research in Mathematics Education (pp. 591–600). Cyprus, Larnaca.
- Çontay, E. G., & Duatepe-Paksu, A. (2019). The proof schemes of preservice middle school mathematics teachers and investigating the expressions revealing these schemes. Turkish Journal of Computer and Mathematics Education, 10(1), 59-100. https://doi.org/10.16949/turkbilmat.397109
- Doruk, M. (2016). İlköğretim matematik öğretmeni adaylarının analiz alanındaki argümantasyon ve ispat süreçlerinin incelenmesi (Tez No: 433823). [Doktora tezi, Atatürk Üniversitesi].
- Douek, N. (1999). Argumentative aspects of proving: analysis of some undergraduate mathematics students' performances. In Proceedings of the Conference of the International Group for the Psychology of Mathematics Education (pp.273–280). Haifa, Israel.
- Duatepe-Paksu, A. (2016). Van Hiele geometrik düşünme düzeyleri. E. Bingölbali, S. Arslan & İ. Ö. Zembat (Ed.), Matematik eğitiminde teoriler içinde (s. 266–275). Pegem Akademi.
- Duval, R. (1998). Geometry from a cognitive point of view. In C. Mammana & V. Villani (Eds), Perspectives on the teaching of geometry for the 21st century: an ICMI study. Kluwer.
- Evans, R. (2007). Proof and geometric reasoning. Mathematics Teaching Incorporating Micromath, 201, 38-41. https://eric.ed.gov/?id=EJ768907
- Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2), 139-162. https://doi.org/10.1007/BF01273689
- Friel, S., Rachlin, S., Doyle, D., Nygard, C., Pugalee, D., & Ellis, M. (2001). Navigating through algebra in grades 6–8. Principles and standards for school mathematics navigations series. National Council of Teachers of Mathematics.
- Furinghetti, F., & Paola, D. (1997). Shadows on proof. In E. Pehkonen (Ed.), Proceedings of 21st Conference of the International Group for the Psychology of Mathematics Education (pp. 273–280). Lahti, Filand.
- Garuti, R., Boero, P., & Lemut, E. (1998). Cognitive unity of theorems and difficulties of proof. In A. Olivier, & K. Newstead (Eds.), Proceedings of the International Group for the Psychology of Mathematics Education (pp. 345–352). Stellenbosch, South Africa.
- Grønmo, L. S. (2018). The role of algebra in school mathematics. In G. Kaiser, H. Forgasz, M. Graven, A. Kuzniak, E. Simmt, & B. Xu (Eds.), Invited Lectures from the 13th International Congress on Mathematical Education (pp. 175–193). ICME-13 Monographs. Springer. https://doi.org/10.1007/978-3-319-72170-5_11
- Guba, E. G., & Lincoln, Y. S. (1981). Effective evaluation: Improving the usefulness of evaluation results through responsive and naturalistic approaches. Jossey-Bass.
- Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate Data Analysis (7th ed.). Pearson Education.
Harel, G. (2001). The development of mathematical induction as a proof scheme: A model for DNR-based instruction. In S. Campbell, & R. Zaskis (Eds.), Learning and teaching number theory (pp.185–212). Ablex Publishing Corporation.
- Harel, G. (2007). Students’ proof schemes revisited. In P. Boero (Ed.), Theorems in school: From history, epistemology and cognition to classroom practice (pp. 65–78). Sense Publishers
- Harel, G. (2008). DNR perspective on mathematics curriculum and instruction, Part I: Focus on proving. ZDM-International Journal of Mathematics Education, 40(3), 487-500. https://dx.doi.org/10.1007/s11858-008-0104-1
- Harel, G. (2014). Deductive reasoning in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 143–147). Springer.
- Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. In A. H. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), Research in collegiate mathematics education III (pp. 234–283). American Mathematical Society.
- Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 805–842). Information Age Publishing.
- Healy, L. & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education, 31(4), 396-428. https://doi.org/10.2307/749651
- Herbert, K. & Brown, R. (1997). Patterns as tools for algebraic reasoning. Teaching Children Mathematics, 3(6), 340-344. https://doi.org/10.5951/TCM.3.6.0340
- Inglis, M., Mejia-Ramos, J. P., & Simpson, A. (2007). Modeling mathematical argumentation: The importance of qualification. Educational Studies in Mathematics, 66, 3-21. https://doi.org/10.1007/s10649-006-9059-8
- İpek, S., & Akkuş-İspir, O. (2011). Preservice elementary mathematics teachers’ geometric and algebraic proof process with dynamic geometry software. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 2(1), 20-34. https://doi.org/10.16949/turcomat.67161
- İskenderoğlu, T., Baki, A., & İskenderoğlu, M. (2010). Proof schemes used by first grade of preservice mathematics teachers about function topic. Procedia - Social and Behavioral Sciences, 9, 531-536. https://doi.org/10.1016/j.sbspro.2010.12.192
- Jones, K. (1998). Theoretical frameworks for the learning of geometrical reasoning. Proceedings of the British Society for Research into Learning Mathematics, 18(1&2), 29-34.
- Jupri, A., Drijvers, P., & van den Heuvel-Panhuizen, M. (2014). Difficulties in initial algebra learning in Indonesia. Mathematics Education Research Journal, 26(4), 683-710. https://doi.org/10.1007/s13394-013-0097-0
- Kaput, J., & Blanton, M. (2005). Algebrafying the elementary mathematics experience in a teacher-centered, systemic way. In T. A. Romberg, T. P. Carpenter, & F. Dremock (Eds.), Understanding Mathematics and Science Matters. Lawrence Erlbaum Associates.
- Karpuz, Y., & Atasoy, E. (2020). High school mathematics teachers’ content knowledge of the logical structure of proof deriving from figural-concept interaction in geometry. International Journal of Mathematical Education in Science and Technology, 51(4), 585-603. https://doi.org/10.1080/0020739X.2020.1736347
- Kaya, D., & Keşan, C. (2014). İlköğretim seviyesindeki öğrencilerden cebirsel düşünme ve cebirsel muhakeme becerisinin önemi. International Journal of New Trends in Arts, Sports and Science Education, 3(2), 38-47. https://acikerisim.nevsehir.edu.tr/bitstream/handle/20.500.11787/6649/IJTASE.pdf?sequence=1&isAllowed=y
- Knuth, E. J., Choppin, J., & Bieda, K. (2009). Middle school students’ productions of mathematical justification. In D. Stylianou, M. Blanton, & E. Knuth (Eds.), Teaching and learning proof across the grades: A K-16 perspective (pp. 153–170). Routledge.
- Kramarski, B. (2008). Promoting teachers’ algebraic reasoning and self-regulation with metacognitive guidance. Metacognition and Learning, 3, 83-99. https://doi.org/10.1007/s11409-008-9020-6
- Mariotti, M. A. (2000). Introduction to proof: The mediation of a dynamic software environment. Educational Studies in Mathematics, 44, 25-53
- Mariotti, M. A., Bartolini-Bussi, M.G., Boero, P., Ferri, F., & Garuti, R. (1997). Approaching geometry theorems in contexts: from history and epistemology to cognition. In Proceedings of the 21th PME Conference, Lathi (pp.180–195). University of Helsinki.
- Martinez, M. V., Brizuela, B. M., & Superfine, A. C. (2011). Integrating algebra and proof in high school mathematics: An exploratory study. The Journal of Mathematical Behavior, 30(1), 30-47. https://doi.org/10.1016/j.jmathb.2010.11.002
- Martinez, M. V., & Pedemonte, B. (2014). Relationship between inductive arithmetic argumentation and deductive algebraic proof. Educational studies in mathematics, 86(1), 125-149. https://doi.org/10.1007/s10649-013-9530-2
- McCrone, S. M. S., & Martin, T. S. (2004). Assessing high school students’ understanding of geometric proof. Canadian Journal of Science, Mathematics and Technology Education, 4(2), 223-242. https://doi.org/10.1080/14926150409556607
- Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd ed.). Sage Publications.
- Morselli, F., & Robotti, E. (2023). Designing inclusive educational activities in mathematics: The case of algebraic proof. In K. M. Robinson, D. Kotsopoulos, A. K. Dubé (Eds.), Mathematical teaching and learning (pp.69–87). Springer. https://doi.org/10.1007/978-3-031-31848-1_5
- Öztürk, M., & Kaplan, A. (2019). Cognitive analysis of constructing algebraic proof processes a mixed method research. Education and Science, 44(197), 25-64. https://dx.doi.org/10.15390/EB.2018.7504
- Öztürk, M., & Kaplan, A. (2022). Ortaöğretim matematik öğretmeni adaylarının geometrik ispat yapma süreci: Bir durum çalışması. Eurasian Journal of Teacher Education, 3(1), 39-54. https://dergipark.org.tr/en/pub/ejte/issue/69452/995010
- Pala, O., & Narlı, S. (2018). Examining proof schemes of prospective mathematics teachers towards countability concept. Necatibey Faculty of Education Electronic Journal of Science & Mathematics Education, 12(2), 136-166. http://doi.org/10.17522/balikesirnef.506425
- Pedemonte, B. (2007a). How can the relationship between argumentation and proof be analysed? Educational studies in mathematics, 66(1), 23-41. https://doi.org/10.1007/s10649-006-9057-x
- Pedemonte, B. (2007b). Structural relationships between argumentation and proof in solving open problems in algebra. Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education/European Research in Mathematics Education (CERME 5), 643-653.
- Pedemonte, B. (2008). Argumentation and algebraic proof. Zentralblatt fur Didaktik der Mathematik [Central Journal for Didactics of Mathematics], 40(3), 385-400. https://doi.org/10.1007/s11858-008-0085-0
- Pedemonte, B., & Buchbinder, O. (2011). Examining the role of examples in proving processes through a cognitive lens: the case of triangular numbers. ZDM Mathematics Education, 43(2), 257-267. https://doi.org/10.1007/s11858-011-0311-z
- Pedemonte, B., & Reid, D. (2011). The role of abduction in proving processes. Educational studies in mathematics, 76(3), 281-303. https://doi.org/10.1007/s10649-010-9275-0
- Ramlan, A. M., & Ramlan, S. M. (2017). Analysis of the students’ geometric reasoning ability. Journal of Mathematics Education, 2(1), 11-16. https://doi.org/10.31327/jomedu.v2i1.250
- Reyhani, E., Hamidi, F., & Kolahdouz, F. (2012). A study on algebraic proof conception of high school second graders. Procedia - Social and Behavioral Sciences, 31, 236-241. https://doi.org/10.1016/j.sbspro.2011.12.048
- Rosyidi, A. H., & Kohar, A. W. (2018). Student teachers’ proof schemes on proof tasks involving inequality: Deductive or inductive? Journal of Physics: Conference Series, 947(1), 012028. https://doi.org/10.1088/1742-6596/947/1/012028
- Samkoff, A., & Weber, K. (2015). Lessons learned from an instructional intervention on proof comprehension. The Journal of Mathematical Behavior, 39, 28-50. https://doi.org/10.1016/j.jmathb.2015.05.002
- Sarı, M., Altun, A., & Aşkar, P. (2007). Üniversite öğrencilerinin analiz dersi kapsamında matematiksel kanıtlama süreçleri: Örnek olay çalışması. Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 40(2), 295-319. http://dergipark.gov.tr/auebfd/issue/38396/445309
- Sears, R. (2019). Proof schemes of pre-service middle and secondary mathematics teachers. Investigations in Mathematics Learning, 11(4), 258-274. https://doi.org/10.1080/19477503.2018.1467106
- Smith, J., & Thompson, P. W. (2007). Quantitative reasoning and the development of algebraic reasoning. In J. J. Kaput, D. W. Carraher & M. L. Blanton (Eds.), Algebra in the early grades (pp. 95–132). Erlbaum.
- Sowder, L., & Harel, G. (1998). Types of students’ justifications. The Mathematics Teacher, 91(8), 670-675. Retrieved March 12, 2016 from http://www.jstor.org/stable/27970745
- Stylianou, D., Chae, N., & Blanton, M. (2006). Students' proof schemes: A closer look at what characterizes students' proof conceptions. In S. Alatorre, J. L. Cortina, M. Sáiz, & A. Méndez (Eds.), Proceedings of the 28th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, (pp. 54-60). Mérida, México: Universidad Pedagógica Nacional.
- Stylianides, G. J., Stylianides, A. J., & Weber, K. (2017). Research on the teaching and learning of proof: Taking stock and moving forward. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 237–266). National Council of Teachers of Mathematics.
- Susac, A., Bubic, A., Vrbanc, A., & Planinic, M. (2014). Development of abstract mathematical reasoning: the case of algebra. Frontiers in Human Neuroscience, 8, 679. https://doi.org/10.3389/fnhum.2014.00679
- Şen, C., & Güler, G. (2022). Matematik öğretmeni adaylarının geometrik ispatlarda ispat yazma becerilerinin incelenmesi: van Hiele modeli. Kırşehir Eğitim Fakültesi Dergisi, 23(Özel Sayı), 128-176. https://doi.org/10.29299/kefad.997311
- Şengül, S., & Güner, P. (2013). DNR tabanlı öğretime göre matematik öğretmen adaylarının ispat şemalarının incelenmesi. The Journal of Academic Social Science Studies, 6(2), 869-878. http://dx.doi.org/10.9761/JASSS_401
- Toulmin S. E. (1993). The use of arguments. Cambridge: Cambridge University Press (French translation De Brabanter P. (1958). Les usages de l’argumentation, Presse Universitaire de France).
- van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education. Academic Press, Inc.
- Weber, K., Lew, K., & Mejía-Ramos, J. P. (2020). Using expectancy value theory to account for individuals’ mathematical justifications. Cognition and Instruction, 38(1), 27-56. https://doi.org/10.1080/07370008.2019.1636796
- Woods, N. F., & Calanzaro M. (1980). Nursing research: Theory and practice. Mosby.
- Yeşilyurt-Çetin, A., & Dikici, R. (2020). Matematik öğretmeni adaylarının cebirsel ispat yapabilme durumlarının incelenmesi. Online Journal of Mathematics, Science and Technology Education (OJOMSTE), 1(1), 75-85. https://www.ojomste.com/index.php/1/article/view/7/16
- Yıldırım, A., & Şimşek, H. (2016). Sosyal bilimlerde nitel araştırma yöntemleri (10. baskı). Seçkin Yayınevi.
Proof Characteristics of Primary School Mathematics Teacher Candidates in The Algebra and Geometry Domains
Yıl 2024,
Cilt: 20 Sayı: 3, 546 - 564, 23.12.2024
Muhammet Doruk
,
Fikret Cihan
Öz
The aim of this study is to reveal the characteristics of the proofs made by primary school mathematics teacher candidates in the domains of algebra and geometry. In this context, the focus was on the proof structures and schemes of the proofs made by prospective teachers in the domains of algebra and geometry. The study group consists of 29 teacher candidates studying in the fourth grade of the primary mathematics teaching department of a state university in Türkiye. The research data were collected through the Algebra-Geometry Proof Form. The form included two open-ended questions that prospective teachers had to prove in the domains of algebra and geometry. These proofs were analyzed with the help of descriptive analysis. The analysis results of the proof structures revealed that teacher candidates were mostly able to produce inductive and structural-intuitive proofs in proofs in both algebra and geometry, and that they could produce valid proofs in a very limited number of deductive structures in both domains. The analysis of proof schemes revealed that pre-service teachers mostly used inductive and non-referential symbolic proof schemes in proofs in the domain of algebra, and that they mostly used inductive and perceptual proof schemes in proofs in the domain of geometry. These results revealed that prospective teachers were unsuccessful in making proofs in both algebra and geometry. When the structural unity situations between the proofs in the domains of algebra and geometry were examined, it was determined that there was no structural continuity between the proofs in these two domains, there was mostly structural distance, and this was followed by spontaneous continuity.
Kaynakça
- Balacheff, N., & Margolinas, C. (2005). Ck¢ modèle de connaissances pour le calcul de situations didactiques. In A. Mercier & C. Margolinas (Eds.), Balises pour la didactique des mathématique (pp. 75–106). La Pensèe Sauvage.
- Boero, P., Douek, N., Morselli, F., & Pedemonte, B. (2010). Argumentation and proof: A contribution to theoretical perspectives and their classroom implementation. In Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education (pp. 179–204). Belo-Horizonte, Brazil.
- Bozkurt, A., Şimşekler-Dizmen, T. H., & Tutan, S., (2022). Investigation of classroom practices of middle school mathematics teachers in the context of geometric reasoning processes. Psycho-Educational Research Reviews, 11(2), 70-87. https://doi.org/10.52963/PERR_Biruni_V11.N2.05
- Bülbül, A., & Urhan, S. (2016). Argümantasyon ve matematiksel kanıt süreçleri arasındaki ilişkiler. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 10(1), 351-373. https://doi.org/10.17522/nefefmed.00387
- Chin, E. & Lin, F. (2009). A comparative study on junior high school students’ proof conceptions in algebra between Taiwan and the UK. Journal of Mathematics Education, 2(2), 52-67. https://sid.ir/paper/618677/en
- Chrysostomou, M., Pitta-Pantazi, D., Tsingi, C., Cleanthous, E., & Christou, C. (2013). Examining number sense and algebraic reasoning through cognitive styles. Educational Studies in Mathematics, 83(2), 205-223. http://www.jstor.org/stable/23434217
- Cihan, F., & Akkoç, H. (2023). An intervention study for improving pre-service mathematics teachers’ proof schemes. Mathematics Teaching-Research Journal, 15(2), 56-80. https://eric.ed.gov/?id=EJ1394137
- Cihan, F. (2024). Matematiksel ispat yöntemlerine ilişkin YoutubeTM videolarının ve video yorumlarının analizi. İnönü Üniversitesi Eğitim Fakültesi Dergisi, 25(2), 437-460. https://doi.org/10.17679/inuefd.1378938
- Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 420–464). Macmillan.
- Cusi, A., & Malara, N. (2007). Proofs problems in elementary number theory: Analysis of trainee teachers' productions. In D. Pitta-Pantazi, & G. Philippou (Eds.), Proceedings ofthe Fifth Congress of the European Societyfor Research in Mathematics Education (pp. 591–600). Cyprus, Larnaca.
- Çontay, E. G., & Duatepe-Paksu, A. (2019). The proof schemes of preservice middle school mathematics teachers and investigating the expressions revealing these schemes. Turkish Journal of Computer and Mathematics Education, 10(1), 59-100. https://doi.org/10.16949/turkbilmat.397109
- Doruk, M. (2016). İlköğretim matematik öğretmeni adaylarının analiz alanındaki argümantasyon ve ispat süreçlerinin incelenmesi (Tez No: 433823). [Doktora tezi, Atatürk Üniversitesi].
- Douek, N. (1999). Argumentative aspects of proving: analysis of some undergraduate mathematics students' performances. In Proceedings of the Conference of the International Group for the Psychology of Mathematics Education (pp.273–280). Haifa, Israel.
- Duatepe-Paksu, A. (2016). Van Hiele geometrik düşünme düzeyleri. E. Bingölbali, S. Arslan & İ. Ö. Zembat (Ed.), Matematik eğitiminde teoriler içinde (s. 266–275). Pegem Akademi.
- Duval, R. (1998). Geometry from a cognitive point of view. In C. Mammana & V. Villani (Eds), Perspectives on the teaching of geometry for the 21st century: an ICMI study. Kluwer.
- Evans, R. (2007). Proof and geometric reasoning. Mathematics Teaching Incorporating Micromath, 201, 38-41. https://eric.ed.gov/?id=EJ768907
- Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2), 139-162. https://doi.org/10.1007/BF01273689
- Friel, S., Rachlin, S., Doyle, D., Nygard, C., Pugalee, D., & Ellis, M. (2001). Navigating through algebra in grades 6–8. Principles and standards for school mathematics navigations series. National Council of Teachers of Mathematics.
- Furinghetti, F., & Paola, D. (1997). Shadows on proof. In E. Pehkonen (Ed.), Proceedings of 21st Conference of the International Group for the Psychology of Mathematics Education (pp. 273–280). Lahti, Filand.
- Garuti, R., Boero, P., & Lemut, E. (1998). Cognitive unity of theorems and difficulties of proof. In A. Olivier, & K. Newstead (Eds.), Proceedings of the International Group for the Psychology of Mathematics Education (pp. 345–352). Stellenbosch, South Africa.
- Grønmo, L. S. (2018). The role of algebra in school mathematics. In G. Kaiser, H. Forgasz, M. Graven, A. Kuzniak, E. Simmt, & B. Xu (Eds.), Invited Lectures from the 13th International Congress on Mathematical Education (pp. 175–193). ICME-13 Monographs. Springer. https://doi.org/10.1007/978-3-319-72170-5_11
- Guba, E. G., & Lincoln, Y. S. (1981). Effective evaluation: Improving the usefulness of evaluation results through responsive and naturalistic approaches. Jossey-Bass.
- Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate Data Analysis (7th ed.). Pearson Education.
Harel, G. (2001). The development of mathematical induction as a proof scheme: A model for DNR-based instruction. In S. Campbell, & R. Zaskis (Eds.), Learning and teaching number theory (pp.185–212). Ablex Publishing Corporation.
- Harel, G. (2007). Students’ proof schemes revisited. In P. Boero (Ed.), Theorems in school: From history, epistemology and cognition to classroom practice (pp. 65–78). Sense Publishers
- Harel, G. (2008). DNR perspective on mathematics curriculum and instruction, Part I: Focus on proving. ZDM-International Journal of Mathematics Education, 40(3), 487-500. https://dx.doi.org/10.1007/s11858-008-0104-1
- Harel, G. (2014). Deductive reasoning in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 143–147). Springer.
- Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. In A. H. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), Research in collegiate mathematics education III (pp. 234–283). American Mathematical Society.
- Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 805–842). Information Age Publishing.
- Healy, L. & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education, 31(4), 396-428. https://doi.org/10.2307/749651
- Herbert, K. & Brown, R. (1997). Patterns as tools for algebraic reasoning. Teaching Children Mathematics, 3(6), 340-344. https://doi.org/10.5951/TCM.3.6.0340
- Inglis, M., Mejia-Ramos, J. P., & Simpson, A. (2007). Modeling mathematical argumentation: The importance of qualification. Educational Studies in Mathematics, 66, 3-21. https://doi.org/10.1007/s10649-006-9059-8
- İpek, S., & Akkuş-İspir, O. (2011). Preservice elementary mathematics teachers’ geometric and algebraic proof process with dynamic geometry software. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 2(1), 20-34. https://doi.org/10.16949/turcomat.67161
- İskenderoğlu, T., Baki, A., & İskenderoğlu, M. (2010). Proof schemes used by first grade of preservice mathematics teachers about function topic. Procedia - Social and Behavioral Sciences, 9, 531-536. https://doi.org/10.1016/j.sbspro.2010.12.192
- Jones, K. (1998). Theoretical frameworks for the learning of geometrical reasoning. Proceedings of the British Society for Research into Learning Mathematics, 18(1&2), 29-34.
- Jupri, A., Drijvers, P., & van den Heuvel-Panhuizen, M. (2014). Difficulties in initial algebra learning in Indonesia. Mathematics Education Research Journal, 26(4), 683-710. https://doi.org/10.1007/s13394-013-0097-0
- Kaput, J., & Blanton, M. (2005). Algebrafying the elementary mathematics experience in a teacher-centered, systemic way. In T. A. Romberg, T. P. Carpenter, & F. Dremock (Eds.), Understanding Mathematics and Science Matters. Lawrence Erlbaum Associates.
- Karpuz, Y., & Atasoy, E. (2020). High school mathematics teachers’ content knowledge of the logical structure of proof deriving from figural-concept interaction in geometry. International Journal of Mathematical Education in Science and Technology, 51(4), 585-603. https://doi.org/10.1080/0020739X.2020.1736347
- Kaya, D., & Keşan, C. (2014). İlköğretim seviyesindeki öğrencilerden cebirsel düşünme ve cebirsel muhakeme becerisinin önemi. International Journal of New Trends in Arts, Sports and Science Education, 3(2), 38-47. https://acikerisim.nevsehir.edu.tr/bitstream/handle/20.500.11787/6649/IJTASE.pdf?sequence=1&isAllowed=y
- Knuth, E. J., Choppin, J., & Bieda, K. (2009). Middle school students’ productions of mathematical justification. In D. Stylianou, M. Blanton, & E. Knuth (Eds.), Teaching and learning proof across the grades: A K-16 perspective (pp. 153–170). Routledge.
- Kramarski, B. (2008). Promoting teachers’ algebraic reasoning and self-regulation with metacognitive guidance. Metacognition and Learning, 3, 83-99. https://doi.org/10.1007/s11409-008-9020-6
- Mariotti, M. A. (2000). Introduction to proof: The mediation of a dynamic software environment. Educational Studies in Mathematics, 44, 25-53
- Mariotti, M. A., Bartolini-Bussi, M.G., Boero, P., Ferri, F., & Garuti, R. (1997). Approaching geometry theorems in contexts: from history and epistemology to cognition. In Proceedings of the 21th PME Conference, Lathi (pp.180–195). University of Helsinki.
- Martinez, M. V., Brizuela, B. M., & Superfine, A. C. (2011). Integrating algebra and proof in high school mathematics: An exploratory study. The Journal of Mathematical Behavior, 30(1), 30-47. https://doi.org/10.1016/j.jmathb.2010.11.002
- Martinez, M. V., & Pedemonte, B. (2014). Relationship between inductive arithmetic argumentation and deductive algebraic proof. Educational studies in mathematics, 86(1), 125-149. https://doi.org/10.1007/s10649-013-9530-2
- McCrone, S. M. S., & Martin, T. S. (2004). Assessing high school students’ understanding of geometric proof. Canadian Journal of Science, Mathematics and Technology Education, 4(2), 223-242. https://doi.org/10.1080/14926150409556607
- Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd ed.). Sage Publications.
- Morselli, F., & Robotti, E. (2023). Designing inclusive educational activities in mathematics: The case of algebraic proof. In K. M. Robinson, D. Kotsopoulos, A. K. Dubé (Eds.), Mathematical teaching and learning (pp.69–87). Springer. https://doi.org/10.1007/978-3-031-31848-1_5
- Öztürk, M., & Kaplan, A. (2019). Cognitive analysis of constructing algebraic proof processes a mixed method research. Education and Science, 44(197), 25-64. https://dx.doi.org/10.15390/EB.2018.7504
- Öztürk, M., & Kaplan, A. (2022). Ortaöğretim matematik öğretmeni adaylarının geometrik ispat yapma süreci: Bir durum çalışması. Eurasian Journal of Teacher Education, 3(1), 39-54. https://dergipark.org.tr/en/pub/ejte/issue/69452/995010
- Pala, O., & Narlı, S. (2018). Examining proof schemes of prospective mathematics teachers towards countability concept. Necatibey Faculty of Education Electronic Journal of Science & Mathematics Education, 12(2), 136-166. http://doi.org/10.17522/balikesirnef.506425
- Pedemonte, B. (2007a). How can the relationship between argumentation and proof be analysed? Educational studies in mathematics, 66(1), 23-41. https://doi.org/10.1007/s10649-006-9057-x
- Pedemonte, B. (2007b). Structural relationships between argumentation and proof in solving open problems in algebra. Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education/European Research in Mathematics Education (CERME 5), 643-653.
- Pedemonte, B. (2008). Argumentation and algebraic proof. Zentralblatt fur Didaktik der Mathematik [Central Journal for Didactics of Mathematics], 40(3), 385-400. https://doi.org/10.1007/s11858-008-0085-0
- Pedemonte, B., & Buchbinder, O. (2011). Examining the role of examples in proving processes through a cognitive lens: the case of triangular numbers. ZDM Mathematics Education, 43(2), 257-267. https://doi.org/10.1007/s11858-011-0311-z
- Pedemonte, B., & Reid, D. (2011). The role of abduction in proving processes. Educational studies in mathematics, 76(3), 281-303. https://doi.org/10.1007/s10649-010-9275-0
- Ramlan, A. M., & Ramlan, S. M. (2017). Analysis of the students’ geometric reasoning ability. Journal of Mathematics Education, 2(1), 11-16. https://doi.org/10.31327/jomedu.v2i1.250
- Reyhani, E., Hamidi, F., & Kolahdouz, F. (2012). A study on algebraic proof conception of high school second graders. Procedia - Social and Behavioral Sciences, 31, 236-241. https://doi.org/10.1016/j.sbspro.2011.12.048
- Rosyidi, A. H., & Kohar, A. W. (2018). Student teachers’ proof schemes on proof tasks involving inequality: Deductive or inductive? Journal of Physics: Conference Series, 947(1), 012028. https://doi.org/10.1088/1742-6596/947/1/012028
- Samkoff, A., & Weber, K. (2015). Lessons learned from an instructional intervention on proof comprehension. The Journal of Mathematical Behavior, 39, 28-50. https://doi.org/10.1016/j.jmathb.2015.05.002
- Sarı, M., Altun, A., & Aşkar, P. (2007). Üniversite öğrencilerinin analiz dersi kapsamında matematiksel kanıtlama süreçleri: Örnek olay çalışması. Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 40(2), 295-319. http://dergipark.gov.tr/auebfd/issue/38396/445309
- Sears, R. (2019). Proof schemes of pre-service middle and secondary mathematics teachers. Investigations in Mathematics Learning, 11(4), 258-274. https://doi.org/10.1080/19477503.2018.1467106
- Smith, J., & Thompson, P. W. (2007). Quantitative reasoning and the development of algebraic reasoning. In J. J. Kaput, D. W. Carraher & M. L. Blanton (Eds.), Algebra in the early grades (pp. 95–132). Erlbaum.
- Sowder, L., & Harel, G. (1998). Types of students’ justifications. The Mathematics Teacher, 91(8), 670-675. Retrieved March 12, 2016 from http://www.jstor.org/stable/27970745
- Stylianou, D., Chae, N., & Blanton, M. (2006). Students' proof schemes: A closer look at what characterizes students' proof conceptions. In S. Alatorre, J. L. Cortina, M. Sáiz, & A. Méndez (Eds.), Proceedings of the 28th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, (pp. 54-60). Mérida, México: Universidad Pedagógica Nacional.
- Stylianides, G. J., Stylianides, A. J., & Weber, K. (2017). Research on the teaching and learning of proof: Taking stock and moving forward. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 237–266). National Council of Teachers of Mathematics.
- Susac, A., Bubic, A., Vrbanc, A., & Planinic, M. (2014). Development of abstract mathematical reasoning: the case of algebra. Frontiers in Human Neuroscience, 8, 679. https://doi.org/10.3389/fnhum.2014.00679
- Şen, C., & Güler, G. (2022). Matematik öğretmeni adaylarının geometrik ispatlarda ispat yazma becerilerinin incelenmesi: van Hiele modeli. Kırşehir Eğitim Fakültesi Dergisi, 23(Özel Sayı), 128-176. https://doi.org/10.29299/kefad.997311
- Şengül, S., & Güner, P. (2013). DNR tabanlı öğretime göre matematik öğretmen adaylarının ispat şemalarının incelenmesi. The Journal of Academic Social Science Studies, 6(2), 869-878. http://dx.doi.org/10.9761/JASSS_401
- Toulmin S. E. (1993). The use of arguments. Cambridge: Cambridge University Press (French translation De Brabanter P. (1958). Les usages de l’argumentation, Presse Universitaire de France).
- van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education. Academic Press, Inc.
- Weber, K., Lew, K., & Mejía-Ramos, J. P. (2020). Using expectancy value theory to account for individuals’ mathematical justifications. Cognition and Instruction, 38(1), 27-56. https://doi.org/10.1080/07370008.2019.1636796
- Woods, N. F., & Calanzaro M. (1980). Nursing research: Theory and practice. Mosby.
- Yeşilyurt-Çetin, A., & Dikici, R. (2020). Matematik öğretmeni adaylarının cebirsel ispat yapabilme durumlarının incelenmesi. Online Journal of Mathematics, Science and Technology Education (OJOMSTE), 1(1), 75-85. https://www.ojomste.com/index.php/1/article/view/7/16
- Yıldırım, A., & Şimşek, H. (2016). Sosyal bilimlerde nitel araştırma yöntemleri (10. baskı). Seçkin Yayınevi.