Research Article
BibTex RIS Cite

Bilimsel Bilginin Basitleşmesine Dayalı Didaktik Dönüşümün Kimya Öğretiminin Sorunları ile İlişkisi Hakkında Bir Argüman

Year 2024, Volume: 53 Issue: 242, 907 - 936, 01.05.2024
https://doi.org/10.37669/milliegitim.1217681

Abstract

Öğretim ortamına taşınan bilgilerin, bilim ortamında üretilen bilgilerden farklılaşması didaktik açıdan son derece olağan görünmektedir. Bu farklılaşma sürecini anlamada kullanılan kavram, didaktik dönüşümdür. Kimya öğretiminde önemli bir sorun olan kavram yanılgılarının, en yalın hali ile bilimsel bilgi ile öğrenilen bilginin uyuşmaması olduğu göz önünde bulundurulduğunda, kimya eğitiminde temel amacın, üretilmiş bilimsel bilginin mümkün olduğunca bozulmadan öğretim ortamına taşınması olduğu ifade edilebilir. Bu bağlamda didaktik dönüşümün kimyasal bilgide gerçekleşmesinin kimyasal bilginin epistemik niteliğinde ne tür değişimlere neden olduğu, bu değişimlerin kimya eğitiminin temel amaçları noktasında sorun teşkil edip etmediği, önemli bir soru olarak kendini göstermektedir. Son yıllarda kimya felsefesinde sıkça ele alınan kimyasal bilginin kendine has epistemik doğası ve kimya eğitiminde bu doğaya uygun öğretimin gerçekleşmesi gerektiğine yönelik vurgular dikkate alındığında, söz konusu sorunun önemi daha açık hale gelmektedir. Bu çerçevede bu çalışmada, didaktik dönüşümün en temel eğilimi olan bilimsel bilginin sadeleştirilmesi veya basitleştirilmesinin kimyasal bilgiye uygun olmadığına yönelik bir argümanın geliştirilmesi amaçlanmaktadır. Argümanın teorik ve ampirik olarak temellendirilmesinde didaktik dönüşüm, kimya felsefesi ve epistemolojisinin kimyasal bilginin doğasını tanımlayan yaklaşımı ve kimya eğitiminde karşılaşılan kavram yanılgıları ile ilgili alanyazın dikkate alınmıştır. Ayrıca kimyasal bilgiyi didaktik olarak basitleştirmenin kimya öğretiminde ve öğreniminde karşılaşılan sorunlar ile ilişkisi değerlendirilmiş ve bilimsel çalışmalarla fark edilebilecek olası sorunlara yönelik ön deyilerde bulunulmuştur.

Thanks

Sayın Editörüm merhaba, Çalışmamızın alana katkı getirecek özgün nitelikte bir çalışma olduğuna yürekten inanıyoruz. Şimdiden emeklerinize sağlık. İyi çalışmalar.

References

  • Achiam, M. (2014). Didactic transposition: From theoretical notion to research programme. Paper presented at the biannual ESERA (European Science Education Research Association) doctoral summer school, August 25-29 in Cappadocia, Turkey.
  • Allen, R. T. (2020). Reductionism in education. Paideusis, 5(1), 20–35. https://doi.org/10.7202/1073354ar
  • Arsac, G., Tiberghien, A., and Develay, M. (1989). La transposition didactique en mathématiques, In IREM et LIRDIS de Lyon (eds.), La transposition didactique en mathématiques, en physique et biologie, (pp. 3-36). Lyon
  • Arslan, A. (2014). Felsefeye giriş (21. Baskı). Adres Yayınları.
  • Astolfi, J. P., Darot, E., Ginsburger-Vogel, Y., and Toussaint, J. (1998). Mots-clés de la didactique des sciences. Repères, définitions, bibliographies. De Boeck Université.
  • Banegas, D. L. (2014). Democratizing didactic transposition: Negotiations between learners and their teacher in a secondary school. Latin American Journal of Content & Language Integrated Learning, 7(2), 1–26. https://doi.org/10.5294/laclil.2014.7.2.1
  • Barke, H. D., and Buechter, J. (2023). Laboratory jargon and misconceptions in Chemistry an empirical study. ASEAN Journal of Science and Engineering Education, 3(1), 65–70.
  • Bergsten, C., Jablonka, E., and Klisinska, A. (2010). A remark on didactic transposition theory. In C. Bergsten, E. Jablonka, and T. Wedege (Eds.), Mathematics and mathematics education: Cultural and social dimensions (pp. 58-68). (Skrifter från Svensk förening för matematikdidaktisk forskning). Svensk förening för matematikdidaktisk forskning, SMDF.
  • Bosch, M., and Gascón, J. (2006). Twenty-five years of didactic transposition. ICMI Bulletin, 58, 51–65.
  • Brousseau, G. (2002). Theory of didactical situations in mathematics. Kluwer Academic Publishers.
  • Canpolat, N., Pınarbaşı, T. ve Sözbilir, M. (2003). Kimya öğretmen adaylarının kovalent bağ ve molekül yapıları ile ilgili kavram yanılgıları. Çukurova Üniversitesi Eğitim Fakültesi Dergisi, 2(25), 66-72.
  • Cartwright, N. (1989). Nature’s capacities and their measurement. Oxford University Press.
  • Cevizci, A. (2011). Felsefe sözlüğü. Say Yayınları.
  • Chevallard, Y., and Joshua, M. A. (1982). Un exemple d’analyse de la transposition didactique: La notion de distance. Recherche en Didactique des Mathématiques, 3(2), 157–239.
  • Chevallard, Y. (1991). La transposition didactique. Du savoir savant au savoir enseigné (2ème édition). La Pensée Sauvage Ed.
  • Chevallard, Y. (1992). Fundamental concepts in didactics: Perspectives provided by an anthropological approach. In R. Douady and A. Mercier (Eds.), Research in didactique of mathematics, selected papers (pp. 131–167). La Pensée Sauvage.
  • Conne, F. (1992). Savoir et connaissance dans la perspective de la transposition didactique, Recherches en Didactique des Mathématiques 12(2.3), 221-270.
  • Coştu, B., Karataş, F. Ö. ve Ayas, A. (2003). Kavram öğretiminde çalışma yapraklarının kullanılması. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 14(14), 33–48.
  • DeFever, R. S., Bruce, H., and Bhattacharyya, G. (2015). Mental rolodexing: Senior chemistry majors’ understanding of chemical and physical properties. Journal of Chemical Education, 92(3), 415–426. https://doi.org/10.1021/ed500360g
  • Dowling, P. (2020). Recontextualization in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 717–721). Springer. https://doi.org/10.1007/978-3-030-15789-0_133
  • Erduran, S. (2005). Applying the philosophical concept of reduction to the chemistry of water: Implications for chemical education. Science & Education, 14(2), 161–171. https://doi.org/10.1007/s11191-005-0687-7
  • Erduran, S. (2007). Breaking the law: Promoting domain-specificity in chemical education in the context of arguing about the periodic law. Foundations of Chemistry, 9(3), 247–263. https://doi.org/10.1007/s10698-007-9036-z
  • Erduran, S., and Scerri, E. (2002). The nature of chemical knowledge and chemical education. In J. Gilbert, O. de Jong, R. Justi, D. Treagust, D., and J. van Driel (Eds.), Chemical education: towards research-based practice (pp.7-27). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47977-X_1
  • Erduran, S., Aduriz, A. B., and Naaman, R. M. (2007). Developing epistemologically empowered teachers: Examining the role of philosophy of chemistry in teacher education. Science & Education, 16(9-10), 975–989. https://doi.org/10.1007/s11191-006-9072-4
  • Furió-Más, C., Calatayud, M. L., Guisasola, J., and Furió-Gómez, C. (2005). How are the concepts and theories of acid–base reactions presented? Chemistry in textbooks and as presented by teachers. International Journal of Science Education, 27(11), 1337–1358. https://doi.org/10.1080/09500690500102896
  • Gilbert, J. K., and Treagust, D. F. (2009). Introduction: Macro, sub-micro and symbolic representations and the relationship between them: Key models in chemical education. In Gilbert, J. K., and Treagust, D. F (Eds.), Multiple representations in chemical education, models and modeling in science education (pp.1-8). Springer
  • Hazzan, O., Dubinsky, Y., and Meerbaum-Salant, O. (2010). Didactic transposition in computer science education. ACM Inroads, 1(4), 33–37. https://doi.org/10.1145/1869746.1869759
  • Hendry, R. F. (2011). The metaphysics of chemistry. Oxford University Press.
  • Hendry, R. F. (2012). Reduction, emergence and physicalism. In D. M. Gabbay, P. Thagard, and J. Woods. (Gen. Eds.), R, F. Hendry, P. Needham and A.I. Woody (Vol. Eds.). Handbook of the philosophy of science, philosophy of chemistry (V.6), (pp.367-386). Amsterdam: North Holland- Elsevier. https://doi.org/10.1016/B978-0-444-51675-6.50027-X
  • Hendry, R. F., Needham, P., and Woody, A. I. (2012). Philosophy of chemistry. In D. M. Gabbay, P. Thagard, and John Woods. (Gen. Eds.). R, F. Hendry, P. Needham and A.I. Woody (Vol.Eds.). Handbook of the philosophy of science (pp.3-18). Amsterdam: North Holland- Elsevier.
  • Hin, S. L. F., and Riddle, H. (2023). Students’ Misconceptions in Chemical Equilibria and Suggestions for Improved Instruction. New Directions in the Teaching of Natural Sciences, 18(1). https://journals.le.ac.uk/ojs1/index.php/new-directions/article/view/3900
  • Johnaert, P. (1988). Conflits de savoirs et didactique. Edition De Boeck Université.
  • Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70, 701–705. https://doi.org/10.1021/ed070p701
  • Joshua, S. (1996). Le concept de transposition didactique n’est-il propre qu’au mathématique? In C. Raisky et M. Caillot (dir.), Au-delà des didactiques, le didactique. Débats autour de concepts fédérateurs (p. 61-73). De Bœck.
  • Justi, R. S., and Gilbert, J. K. (2003). Teachers’ views on the nature of models. International Journal of Science Education, 25(11), 1369–1386. https://doi.org/10.1080/0950069032000070324
  • Kareti, M. S., and Howitz, W. J. (2023). A Thin Layer Chromatography Prelaboratory Activity Using a 3D-Printed Model to Address Student Misconceptions about Polarity and Intermolecular Forces. Journal of Chemical Education, 100, 1392−1397 https://pubs.acs.org/doi/full/10.1021/acs.jchemed.2c01142
  • Kaya, E., and Erduran, S. (2013). Integrating epistemological perspectives on chemistry in chemical education: The case of concept duality, chemical language, and structural explanations. Science and Education, 22, 1741–1755. https://doi.org/10.1007/s11191-011-9399-3
  • Kaya, G., and Ergun, M. (2012). An investigation of the particulate nature of matter unit according to didactic transposition theory. Elementary Education Online, 11(4), 1101-1120. http://ilkogretim-online.org.tr
  • Kikas, E. (2004). Teachers’ conceptions and misconceptions concerning three natural phenomena. Journal of Research in Science Teaching, 41(5), 432–448. https://doi.org/10.1002/tea.20012
  • Kılıç, C. (2014). Platon’un metafizik terminolojisi ve mağara alegorisinin mistik temelleri. Journal of International Social Research, 7(34), 686–702.
  • Lecourt, D. (2006). Bilim felsefesi. (Çeviren: Işık Ergüden). Dost Kitabevi, Ankara
  • Levy Nahum T., Mamlok-Naaman R., Hofstein A., and Taber K., (2010), Teaching and learning the concept of chemical bonding. Studies in Science Education, 46(2), 179–207.
  • Lind, H. (1993). A note on fundamental theory and idealizations in economics and physics. The British Journal for the Philosophy of Science, 44(3), 493–503. https://doi.org/10.1093/bjps/44.3.493
  • Luisi, P. L. (2002). Emergence in chemistry: Chemistry as the embodiment of emergence. Foundations of Chemistry, 4, 183–200. https://doi.org/10.1023/A:1020672005348
  • Luxford, C. J., and Bretz, S. L. (2014). Development of the bonding representations inventory to identify student misconceptions about covalent and ionic bonding representations. Journal of Chemical Education, 91(3), 312–320. https://doi.org/10.1021/ed400700q
  • McClary, L., and Talanquer, V. (2011b). Heuristic reasoning in chemistry: Making decisions about acid strength. International Journal of Science Education, 33(10), 1433–1454. https://doi.org/10.1080/09500693.2010.528463 Menkhaus, T. (2013). Eidos, Psyche und Unsterblichkeit. De Gruyter.
  • Mill, J. S. (2015). Auguste Comte and positivism. Cambridge University Press.
  • Moran, M. J. (2006). Factors that influence relative acid strength in water: A simple model. Journal of Chemical Education, 83(5), 800–803. https://doi.org/10.1021/ed083p800
  • Mulford, D. R., and Robinson, W. R. (2002). An Inventory for Alternate Conceptions among First-Semester General Chemistry Students. Journal of Chemical Education, 79(6), 839–844. https://doi.org/10.1021/ed079p739
  • Needham, P. (2012). Modality, mereology and substance, In D. M. Gabbay, P. Thagard and J. Woods. (Gen. Eds.), R, F. Hendry, P. Needham and A.I. Woody (Vol.Eds.). Handbook of the Philosophy of Science, Philosophy of Chemistry (V.6),(pp. 231-254). North Holland- Elsevier
  • Newman, M. (2013). Emergence, supervenience, and introductory chemical education. Science & Education, 22, 1655–1667. https://doi.org/10.1007/s11191-012-9441-0
  • Nola, R. (2004). Pendula, models, constructivism and reality. Science & Education, 13(4), 346–377. https://doi.org/10.1023/B:SCED.0000041832.90947.b1
  • Pabuçcu, A. (2016). Fen bilgisi öğretmen adaylarının gaz basıncıyla ilgili bilgilerini günlük hayatla ilişkilendirebilme seviyeleri. Türkiye Kimya Dernegi Dergisi Kısım C: Kimya Egitimi, 1(2), 1-24. https://dergipark.org.tr/en/pub/jotcsc/issue/32793/364441
  • Palisoa, N., Lumamuly, V. E., and Lumamuly, A. (2023, January). Advance organizer integrated conceptual change learning model to prevent potential misconceptions of high school students in chemical concept. In. AIP Conference Proceedings: Vol. 2642. No. 1 (p. 090016). AIP Publishing LLC. https://doi.org/10.1063/5.0110604
  • Pauling, L. (1970). General chemistry (3rd ed.). Dover Puplication Inc.
  • Paun, E. (2006). Transposition didactique: un processus de construction du savoir scolaire. Carrefours de l’éducation, (2), 3-13. https://doi.org/10.3917/cdle.022.0003
  • Pekdağ, B., and Azizoğlu, N. (2013). Semantic mistakes and didactic difficulties in teaching the “amount of substance” concept: A useful model. Chemistry Education Research and Practice, 14(1), 117–129. https://doi.org/10.1039/C2RP20132A
  • Perrenoud, P. (1998). La transposition didactique à partir de pratiques: Des savoirs aux compétences. Revue des Sciences de l’Education, 24(3), 487–514. https://doi.org/10.7202/031969ar
  • Portides, D. P. (2007). The relation between idealisation and approximation in scientific model construction. Science & Education, 16, 699–724. https://doi.org/10.1007/s11191-006-9001-6
  • Salta, K., and Tzougraki, C. (2011). Conceptual versus algorithmic problem-solving: Focusing on problems dealing with conservation of matter in chemistry. Research in Science Education, 41(4), 587–609. https://doi.org/10.1007/s11165-010-9181-6
  • Sarıtaş, D. ve Tufan, Y. (2013a). Periyodik sistemin epistemolojik niteliğine yönelik anlayışlar. III. Ulusal Kimya Eğitimi Kongresi Kitabı. https://turchemsoc.org/ulusal-kimya-egitimi-kongresi-bildiri-ozet-kitaplari/
  • Sarıtaş, D. ve Tufan, Y. (2012a). Periyodik sistemin öğretiminde epistemolojik bilgi üretme yöntemlerinden biri olan tümevarımın kullanımı. Kastamonu Eğitim Dergisi, 20(1), 203–218.
  • Sarıtaş, D. ve Tufan, Y. (2012b). Öğrencilerin kimyasal bilgilerinin kimyasal semiyotik; sentaks ve semantik açıdan incelenmesi. X. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi, Turkey/Niğde
  • Sarıtaş, D., and Tufan, Y. (2013b). Macro and micro knowledge levels for chemistry teaching in terms of reductionism. Gazi Eğitim Fakültesi Dergisi, 33(2), 165–192.
  • Sarıtaş, D., and Tufan, Y. (2019). How to establish periodic law and periodic system relation? Inferences in the history and philosophy of science for chemistry teaching. Hacettepe University Journal of Education, 34(1), 27–53. https://doi.org/10.16986/HUJE.2018043649
  • Sarıtaş, D., Özcan, H., and Adúriz-Bravo, A. (2021). Observation and inference in chemistry teaching: A model-based approach to the integration of the macro and submicro levels. Science & Education, 30, 1289–1314. https://doi.org/10.1007/s11191-021-00216-z
  • Sarıtaş, D. (2012). Periyodik sistemin öğretim sürecinde oluşan rasyonel bilginin üretimi; epistemolojisi ve metodolojisi (Yayımlanmamış Doktora Tezi). Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.
  • Scerri, E. (2001). The new philosophy of chemistry and its relevance to chemical education. Chemistry Education: Research and Practice In Europe, 2(2), 165-170. http://www.uoi.gr/cerp/2001_May/11.html
  • Scerri, E. (2007). The ambiguity of reduction. [HYLE]. International Journal for Philosophy of Chemistry, 13(2), 67–81. Schummer, J. (2004). Philosophie der chemie: rück- und ausblicke. Erscheint. In K. Griesar (Ed.), Wenn der geist die materie küßt (pp. 1–12). Harry Deutsch.
  • Schummer, J. (2006). The philosophy of chemistry: from infancy towards maturity. In D. Baird, E. Scerri, and L. McIntyre (Eds.), Philosophy of chemistry: Synthesis of a new discipline (pp. 19–43). Springer. https://doi.org/10.1007/1-4020-3261-7_2
  • Şen, Ş. ve Yılmaz, A. (2013). Kimya öğretmen adaylarına göre kavram yanılgılarının nedenleri. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi, (35), 59–95.
  • Şendur, G., Otman, T., Kafadar, F., Aktaş, E. ve Kaya, M. (2020). Modelleme Destekli TaTGA Etkinliklerinin Organik Kimya Dersindeki Etkinliğinin İncelenmesi: Rezonans Konusu. Fen Matematik Girişimcilik ve Teknoloji Eğitimi Dergisi, 3(3), 197-218. https://dergipark.org.tr/en/pub/fmgted/issue/60204/787053
  • Shaffer, M. (2012). Counterfactuals and scientific realism. Palgrave Macmillan. https://doi.org/10.1057/9781137271587
  • Summers, M. (1992). Improving primary school teachers’ understanding of science concepts theory into practice. International Journal of Science Education, 14, 25-40. 32.
  • Taber, K. S., and García-Franco, A. (2010). Learning processes in chemistry: Drawing upon cognitive resources to learn about the particulate structure of matter. Journal of the Learning Sciences, 19(1), 99–142. https://doi.org/10.1080/10508400903452868
  • Talanquer, V. (2013). In G. Tsaparlis and H. Sevian (Eds.), How do students reason about chemical substances and reactions? In Concepts of matter in science education (pp. 331–346). Springer.
  • Tsaparlis, G., Pappa, E. T., and Byers, B. (2018). Teaching and learning chemical bonding: Research-based evidence for misconceptions and conceptual difficulties experienced by students in upper secondary schools and the effect of an enriched text. Chemistry Education Research and Practice, 19(4), 1253–1269. https://doi.org/10.1039/C8RP00035B
  • Tümay, H. (2016a). Emergence, learning difficulties, and misconceptions in chemistry undergraduate students’ conceptualizations of acid strength. Science & Education, 25, 21–46. https://doi.org/10.1007/s11191-015-9799-x
  • Tümay, H. (2016b). Reconsidering learning difficulties and misconceptions in chemistry: Emergence in chemistry and its implications for chemical education. Chemistry Education Research and Practice, 17(2), 229–245. https://doi.org/10.1039/C6RP00008H
  • Vellopoulou, A., and Ravanis, K. (2010). A methodological tool for approaching the didactic transposition of the natural sciences in kindergarten school: The case of the “states and properties of matter” in two Greek curricula. Review of Science. Mathematics and ICT Education, 4(2), 29–42.
  • Weisberg, M. (2006). Water is not H2O. In D. Baird, E. Scerri, and L. Mclntyre (Eds.), Philosophy of chemistry (pp. 337–345). Springer. https://doi.org/10.1007/1-4020-3261-7_18
  • Weisberg, M. (2012). Chemical modeling, In D. M. Gabbay, P. Thagard and John Woods. (Gen.Eds.), R, F. Hendry, P. Needham and A.I. Woody (Vol.Eds.). Handbook of the philosophy of science, philosophy of chemistry (V.6), (pp.351-363). Amsterdam: North Holland- Elsevier.
  • Yıldırım, M. (2008). İlköğretim fen ve teknoloji dersinde genetik ünitesinin bilimsel bilgilerden öğretmen bilgilerine geçişinin “didaktiksel dönüşüm teorisi” yaklaşımıyla değerlendirilmesi (Yayımlanmamış Doktora Tezi). Marmara Üniversitesi Eğitim Bilimleri Enstitüsü, İstanbul.

An Argument about the Relationship between the Didactic Transposition Based on the Simplification of Scientific Knowledge and the Problems of Chemistry Instruction

Year 2024, Volume: 53 Issue: 242, 907 - 936, 01.05.2024
https://doi.org/10.37669/milliegitim.1217681

Abstract

From an educational point of view, it seems perfectly normal that the knowledge transferred to the teaching environment differs from the knowledge produced in the scientific environment. The concept of understanding this differentiation process is a didactical translation. Considering those misconceptions, which are an important problem in chemistry education, are simply the incompatibility of scientific knowledge and learned knowledge, it can be stated that the main purpose of chemistry education is to transfer the naive knowledge produced to the teaching environment as much as possible. In this context, it is an important question as to what kind of changes the realization of didactic transposition in chemical knowledge causes in the epistemic quality of chemical knowledge and whether these changes constitute a problem in terms of the basic aims of chemistry education. Considering the unique epistemic nature of chemical knowledge, which has been frequently discussed in the philosophy of chemistry in recent years, and the emphasis on the necessity of teaching in accordance with this nature in chemistry education, the importance of this question becomes clearer. In this framework, this study aims to develop an argument that the simplification or simplification of scientific knowledge, which is the most basic tendency of didactic transposition, is not suitable for chemical knowledge. In the theoretical and empirical grounding of the argument, didactic transposition, the approach of philosophy and epistemology of chemistry defining the nature of chemical knowledge, and the literature on misconceptions encountered in chemistry education were taken into consideration. In addition, the relationship between the didactic simplification of chemical knowledge and the problems encountered in chemistry teaching and learning was evaluated and preliminary statements were made about possible problems that could be recognized through scientific studies.

References

  • Achiam, M. (2014). Didactic transposition: From theoretical notion to research programme. Paper presented at the biannual ESERA (European Science Education Research Association) doctoral summer school, August 25-29 in Cappadocia, Turkey.
  • Allen, R. T. (2020). Reductionism in education. Paideusis, 5(1), 20–35. https://doi.org/10.7202/1073354ar
  • Arsac, G., Tiberghien, A., and Develay, M. (1989). La transposition didactique en mathématiques, In IREM et LIRDIS de Lyon (eds.), La transposition didactique en mathématiques, en physique et biologie, (pp. 3-36). Lyon
  • Arslan, A. (2014). Felsefeye giriş (21. Baskı). Adres Yayınları.
  • Astolfi, J. P., Darot, E., Ginsburger-Vogel, Y., and Toussaint, J. (1998). Mots-clés de la didactique des sciences. Repères, définitions, bibliographies. De Boeck Université.
  • Banegas, D. L. (2014). Democratizing didactic transposition: Negotiations between learners and their teacher in a secondary school. Latin American Journal of Content & Language Integrated Learning, 7(2), 1–26. https://doi.org/10.5294/laclil.2014.7.2.1
  • Barke, H. D., and Buechter, J. (2023). Laboratory jargon and misconceptions in Chemistry an empirical study. ASEAN Journal of Science and Engineering Education, 3(1), 65–70.
  • Bergsten, C., Jablonka, E., and Klisinska, A. (2010). A remark on didactic transposition theory. In C. Bergsten, E. Jablonka, and T. Wedege (Eds.), Mathematics and mathematics education: Cultural and social dimensions (pp. 58-68). (Skrifter från Svensk förening för matematikdidaktisk forskning). Svensk förening för matematikdidaktisk forskning, SMDF.
  • Bosch, M., and Gascón, J. (2006). Twenty-five years of didactic transposition. ICMI Bulletin, 58, 51–65.
  • Brousseau, G. (2002). Theory of didactical situations in mathematics. Kluwer Academic Publishers.
  • Canpolat, N., Pınarbaşı, T. ve Sözbilir, M. (2003). Kimya öğretmen adaylarının kovalent bağ ve molekül yapıları ile ilgili kavram yanılgıları. Çukurova Üniversitesi Eğitim Fakültesi Dergisi, 2(25), 66-72.
  • Cartwright, N. (1989). Nature’s capacities and their measurement. Oxford University Press.
  • Cevizci, A. (2011). Felsefe sözlüğü. Say Yayınları.
  • Chevallard, Y., and Joshua, M. A. (1982). Un exemple d’analyse de la transposition didactique: La notion de distance. Recherche en Didactique des Mathématiques, 3(2), 157–239.
  • Chevallard, Y. (1991). La transposition didactique. Du savoir savant au savoir enseigné (2ème édition). La Pensée Sauvage Ed.
  • Chevallard, Y. (1992). Fundamental concepts in didactics: Perspectives provided by an anthropological approach. In R. Douady and A. Mercier (Eds.), Research in didactique of mathematics, selected papers (pp. 131–167). La Pensée Sauvage.
  • Conne, F. (1992). Savoir et connaissance dans la perspective de la transposition didactique, Recherches en Didactique des Mathématiques 12(2.3), 221-270.
  • Coştu, B., Karataş, F. Ö. ve Ayas, A. (2003). Kavram öğretiminde çalışma yapraklarının kullanılması. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 14(14), 33–48.
  • DeFever, R. S., Bruce, H., and Bhattacharyya, G. (2015). Mental rolodexing: Senior chemistry majors’ understanding of chemical and physical properties. Journal of Chemical Education, 92(3), 415–426. https://doi.org/10.1021/ed500360g
  • Dowling, P. (2020). Recontextualization in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 717–721). Springer. https://doi.org/10.1007/978-3-030-15789-0_133
  • Erduran, S. (2005). Applying the philosophical concept of reduction to the chemistry of water: Implications for chemical education. Science & Education, 14(2), 161–171. https://doi.org/10.1007/s11191-005-0687-7
  • Erduran, S. (2007). Breaking the law: Promoting domain-specificity in chemical education in the context of arguing about the periodic law. Foundations of Chemistry, 9(3), 247–263. https://doi.org/10.1007/s10698-007-9036-z
  • Erduran, S., and Scerri, E. (2002). The nature of chemical knowledge and chemical education. In J. Gilbert, O. de Jong, R. Justi, D. Treagust, D., and J. van Driel (Eds.), Chemical education: towards research-based practice (pp.7-27). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47977-X_1
  • Erduran, S., Aduriz, A. B., and Naaman, R. M. (2007). Developing epistemologically empowered teachers: Examining the role of philosophy of chemistry in teacher education. Science & Education, 16(9-10), 975–989. https://doi.org/10.1007/s11191-006-9072-4
  • Furió-Más, C., Calatayud, M. L., Guisasola, J., and Furió-Gómez, C. (2005). How are the concepts and theories of acid–base reactions presented? Chemistry in textbooks and as presented by teachers. International Journal of Science Education, 27(11), 1337–1358. https://doi.org/10.1080/09500690500102896
  • Gilbert, J. K., and Treagust, D. F. (2009). Introduction: Macro, sub-micro and symbolic representations and the relationship between them: Key models in chemical education. In Gilbert, J. K., and Treagust, D. F (Eds.), Multiple representations in chemical education, models and modeling in science education (pp.1-8). Springer
  • Hazzan, O., Dubinsky, Y., and Meerbaum-Salant, O. (2010). Didactic transposition in computer science education. ACM Inroads, 1(4), 33–37. https://doi.org/10.1145/1869746.1869759
  • Hendry, R. F. (2011). The metaphysics of chemistry. Oxford University Press.
  • Hendry, R. F. (2012). Reduction, emergence and physicalism. In D. M. Gabbay, P. Thagard, and J. Woods. (Gen. Eds.), R, F. Hendry, P. Needham and A.I. Woody (Vol. Eds.). Handbook of the philosophy of science, philosophy of chemistry (V.6), (pp.367-386). Amsterdam: North Holland- Elsevier. https://doi.org/10.1016/B978-0-444-51675-6.50027-X
  • Hendry, R. F., Needham, P., and Woody, A. I. (2012). Philosophy of chemistry. In D. M. Gabbay, P. Thagard, and John Woods. (Gen. Eds.). R, F. Hendry, P. Needham and A.I. Woody (Vol.Eds.). Handbook of the philosophy of science (pp.3-18). Amsterdam: North Holland- Elsevier.
  • Hin, S. L. F., and Riddle, H. (2023). Students’ Misconceptions in Chemical Equilibria and Suggestions for Improved Instruction. New Directions in the Teaching of Natural Sciences, 18(1). https://journals.le.ac.uk/ojs1/index.php/new-directions/article/view/3900
  • Johnaert, P. (1988). Conflits de savoirs et didactique. Edition De Boeck Université.
  • Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70, 701–705. https://doi.org/10.1021/ed070p701
  • Joshua, S. (1996). Le concept de transposition didactique n’est-il propre qu’au mathématique? In C. Raisky et M. Caillot (dir.), Au-delà des didactiques, le didactique. Débats autour de concepts fédérateurs (p. 61-73). De Bœck.
  • Justi, R. S., and Gilbert, J. K. (2003). Teachers’ views on the nature of models. International Journal of Science Education, 25(11), 1369–1386. https://doi.org/10.1080/0950069032000070324
  • Kareti, M. S., and Howitz, W. J. (2023). A Thin Layer Chromatography Prelaboratory Activity Using a 3D-Printed Model to Address Student Misconceptions about Polarity and Intermolecular Forces. Journal of Chemical Education, 100, 1392−1397 https://pubs.acs.org/doi/full/10.1021/acs.jchemed.2c01142
  • Kaya, E., and Erduran, S. (2013). Integrating epistemological perspectives on chemistry in chemical education: The case of concept duality, chemical language, and structural explanations. Science and Education, 22, 1741–1755. https://doi.org/10.1007/s11191-011-9399-3
  • Kaya, G., and Ergun, M. (2012). An investigation of the particulate nature of matter unit according to didactic transposition theory. Elementary Education Online, 11(4), 1101-1120. http://ilkogretim-online.org.tr
  • Kikas, E. (2004). Teachers’ conceptions and misconceptions concerning three natural phenomena. Journal of Research in Science Teaching, 41(5), 432–448. https://doi.org/10.1002/tea.20012
  • Kılıç, C. (2014). Platon’un metafizik terminolojisi ve mağara alegorisinin mistik temelleri. Journal of International Social Research, 7(34), 686–702.
  • Lecourt, D. (2006). Bilim felsefesi. (Çeviren: Işık Ergüden). Dost Kitabevi, Ankara
  • Levy Nahum T., Mamlok-Naaman R., Hofstein A., and Taber K., (2010), Teaching and learning the concept of chemical bonding. Studies in Science Education, 46(2), 179–207.
  • Lind, H. (1993). A note on fundamental theory and idealizations in economics and physics. The British Journal for the Philosophy of Science, 44(3), 493–503. https://doi.org/10.1093/bjps/44.3.493
  • Luisi, P. L. (2002). Emergence in chemistry: Chemistry as the embodiment of emergence. Foundations of Chemistry, 4, 183–200. https://doi.org/10.1023/A:1020672005348
  • Luxford, C. J., and Bretz, S. L. (2014). Development of the bonding representations inventory to identify student misconceptions about covalent and ionic bonding representations. Journal of Chemical Education, 91(3), 312–320. https://doi.org/10.1021/ed400700q
  • McClary, L., and Talanquer, V. (2011b). Heuristic reasoning in chemistry: Making decisions about acid strength. International Journal of Science Education, 33(10), 1433–1454. https://doi.org/10.1080/09500693.2010.528463 Menkhaus, T. (2013). Eidos, Psyche und Unsterblichkeit. De Gruyter.
  • Mill, J. S. (2015). Auguste Comte and positivism. Cambridge University Press.
  • Moran, M. J. (2006). Factors that influence relative acid strength in water: A simple model. Journal of Chemical Education, 83(5), 800–803. https://doi.org/10.1021/ed083p800
  • Mulford, D. R., and Robinson, W. R. (2002). An Inventory for Alternate Conceptions among First-Semester General Chemistry Students. Journal of Chemical Education, 79(6), 839–844. https://doi.org/10.1021/ed079p739
  • Needham, P. (2012). Modality, mereology and substance, In D. M. Gabbay, P. Thagard and J. Woods. (Gen. Eds.), R, F. Hendry, P. Needham and A.I. Woody (Vol.Eds.). Handbook of the Philosophy of Science, Philosophy of Chemistry (V.6),(pp. 231-254). North Holland- Elsevier
  • Newman, M. (2013). Emergence, supervenience, and introductory chemical education. Science & Education, 22, 1655–1667. https://doi.org/10.1007/s11191-012-9441-0
  • Nola, R. (2004). Pendula, models, constructivism and reality. Science & Education, 13(4), 346–377. https://doi.org/10.1023/B:SCED.0000041832.90947.b1
  • Pabuçcu, A. (2016). Fen bilgisi öğretmen adaylarının gaz basıncıyla ilgili bilgilerini günlük hayatla ilişkilendirebilme seviyeleri. Türkiye Kimya Dernegi Dergisi Kısım C: Kimya Egitimi, 1(2), 1-24. https://dergipark.org.tr/en/pub/jotcsc/issue/32793/364441
  • Palisoa, N., Lumamuly, V. E., and Lumamuly, A. (2023, January). Advance organizer integrated conceptual change learning model to prevent potential misconceptions of high school students in chemical concept. In. AIP Conference Proceedings: Vol. 2642. No. 1 (p. 090016). AIP Publishing LLC. https://doi.org/10.1063/5.0110604
  • Pauling, L. (1970). General chemistry (3rd ed.). Dover Puplication Inc.
  • Paun, E. (2006). Transposition didactique: un processus de construction du savoir scolaire. Carrefours de l’éducation, (2), 3-13. https://doi.org/10.3917/cdle.022.0003
  • Pekdağ, B., and Azizoğlu, N. (2013). Semantic mistakes and didactic difficulties in teaching the “amount of substance” concept: A useful model. Chemistry Education Research and Practice, 14(1), 117–129. https://doi.org/10.1039/C2RP20132A
  • Perrenoud, P. (1998). La transposition didactique à partir de pratiques: Des savoirs aux compétences. Revue des Sciences de l’Education, 24(3), 487–514. https://doi.org/10.7202/031969ar
  • Portides, D. P. (2007). The relation between idealisation and approximation in scientific model construction. Science & Education, 16, 699–724. https://doi.org/10.1007/s11191-006-9001-6
  • Salta, K., and Tzougraki, C. (2011). Conceptual versus algorithmic problem-solving: Focusing on problems dealing with conservation of matter in chemistry. Research in Science Education, 41(4), 587–609. https://doi.org/10.1007/s11165-010-9181-6
  • Sarıtaş, D. ve Tufan, Y. (2013a). Periyodik sistemin epistemolojik niteliğine yönelik anlayışlar. III. Ulusal Kimya Eğitimi Kongresi Kitabı. https://turchemsoc.org/ulusal-kimya-egitimi-kongresi-bildiri-ozet-kitaplari/
  • Sarıtaş, D. ve Tufan, Y. (2012a). Periyodik sistemin öğretiminde epistemolojik bilgi üretme yöntemlerinden biri olan tümevarımın kullanımı. Kastamonu Eğitim Dergisi, 20(1), 203–218.
  • Sarıtaş, D. ve Tufan, Y. (2012b). Öğrencilerin kimyasal bilgilerinin kimyasal semiyotik; sentaks ve semantik açıdan incelenmesi. X. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi, Turkey/Niğde
  • Sarıtaş, D., and Tufan, Y. (2013b). Macro and micro knowledge levels for chemistry teaching in terms of reductionism. Gazi Eğitim Fakültesi Dergisi, 33(2), 165–192.
  • Sarıtaş, D., and Tufan, Y. (2019). How to establish periodic law and periodic system relation? Inferences in the history and philosophy of science for chemistry teaching. Hacettepe University Journal of Education, 34(1), 27–53. https://doi.org/10.16986/HUJE.2018043649
  • Sarıtaş, D., Özcan, H., and Adúriz-Bravo, A. (2021). Observation and inference in chemistry teaching: A model-based approach to the integration of the macro and submicro levels. Science & Education, 30, 1289–1314. https://doi.org/10.1007/s11191-021-00216-z
  • Sarıtaş, D. (2012). Periyodik sistemin öğretim sürecinde oluşan rasyonel bilginin üretimi; epistemolojisi ve metodolojisi (Yayımlanmamış Doktora Tezi). Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.
  • Scerri, E. (2001). The new philosophy of chemistry and its relevance to chemical education. Chemistry Education: Research and Practice In Europe, 2(2), 165-170. http://www.uoi.gr/cerp/2001_May/11.html
  • Scerri, E. (2007). The ambiguity of reduction. [HYLE]. International Journal for Philosophy of Chemistry, 13(2), 67–81. Schummer, J. (2004). Philosophie der chemie: rück- und ausblicke. Erscheint. In K. Griesar (Ed.), Wenn der geist die materie küßt (pp. 1–12). Harry Deutsch.
  • Schummer, J. (2006). The philosophy of chemistry: from infancy towards maturity. In D. Baird, E. Scerri, and L. McIntyre (Eds.), Philosophy of chemistry: Synthesis of a new discipline (pp. 19–43). Springer. https://doi.org/10.1007/1-4020-3261-7_2
  • Şen, Ş. ve Yılmaz, A. (2013). Kimya öğretmen adaylarına göre kavram yanılgılarının nedenleri. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi, (35), 59–95.
  • Şendur, G., Otman, T., Kafadar, F., Aktaş, E. ve Kaya, M. (2020). Modelleme Destekli TaTGA Etkinliklerinin Organik Kimya Dersindeki Etkinliğinin İncelenmesi: Rezonans Konusu. Fen Matematik Girişimcilik ve Teknoloji Eğitimi Dergisi, 3(3), 197-218. https://dergipark.org.tr/en/pub/fmgted/issue/60204/787053
  • Shaffer, M. (2012). Counterfactuals and scientific realism. Palgrave Macmillan. https://doi.org/10.1057/9781137271587
  • Summers, M. (1992). Improving primary school teachers’ understanding of science concepts theory into practice. International Journal of Science Education, 14, 25-40. 32.
  • Taber, K. S., and García-Franco, A. (2010). Learning processes in chemistry: Drawing upon cognitive resources to learn about the particulate structure of matter. Journal of the Learning Sciences, 19(1), 99–142. https://doi.org/10.1080/10508400903452868
  • Talanquer, V. (2013). In G. Tsaparlis and H. Sevian (Eds.), How do students reason about chemical substances and reactions? In Concepts of matter in science education (pp. 331–346). Springer.
  • Tsaparlis, G., Pappa, E. T., and Byers, B. (2018). Teaching and learning chemical bonding: Research-based evidence for misconceptions and conceptual difficulties experienced by students in upper secondary schools and the effect of an enriched text. Chemistry Education Research and Practice, 19(4), 1253–1269. https://doi.org/10.1039/C8RP00035B
  • Tümay, H. (2016a). Emergence, learning difficulties, and misconceptions in chemistry undergraduate students’ conceptualizations of acid strength. Science & Education, 25, 21–46. https://doi.org/10.1007/s11191-015-9799-x
  • Tümay, H. (2016b). Reconsidering learning difficulties and misconceptions in chemistry: Emergence in chemistry and its implications for chemical education. Chemistry Education Research and Practice, 17(2), 229–245. https://doi.org/10.1039/C6RP00008H
  • Vellopoulou, A., and Ravanis, K. (2010). A methodological tool for approaching the didactic transposition of the natural sciences in kindergarten school: The case of the “states and properties of matter” in two Greek curricula. Review of Science. Mathematics and ICT Education, 4(2), 29–42.
  • Weisberg, M. (2006). Water is not H2O. In D. Baird, E. Scerri, and L. Mclntyre (Eds.), Philosophy of chemistry (pp. 337–345). Springer. https://doi.org/10.1007/1-4020-3261-7_18
  • Weisberg, M. (2012). Chemical modeling, In D. M. Gabbay, P. Thagard and John Woods. (Gen.Eds.), R, F. Hendry, P. Needham and A.I. Woody (Vol.Eds.). Handbook of the philosophy of science, philosophy of chemistry (V.6), (pp.351-363). Amsterdam: North Holland- Elsevier.
  • Yıldırım, M. (2008). İlköğretim fen ve teknoloji dersinde genetik ünitesinin bilimsel bilgilerden öğretmen bilgilerine geçişinin “didaktiksel dönüşüm teorisi” yaklaşımıyla değerlendirilmesi (Yayımlanmamış Doktora Tezi). Marmara Üniversitesi Eğitim Bilimleri Enstitüsü, İstanbul.
There are 83 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Davut Sarıtaş 0000-0002-5108-4801

Hasan Özcan 0000-0002-4210-7733

Publication Date May 1, 2024
Published in Issue Year 2024 Volume: 53 Issue: 242

Cite

APA Sarıtaş, D., & Özcan, H. (2024). Bilimsel Bilginin Basitleşmesine Dayalı Didaktik Dönüşümün Kimya Öğretiminin Sorunları ile İlişkisi Hakkında Bir Argüman. Milli Eğitim Dergisi, 53(242), 907-936. https://doi.org/10.37669/milliegitim.1217681