Research Article
BibTex RIS Cite

Determination of the effects of seaweed and yeast applications as biostimulants and against salt stress in grapevine

Year 2024, Volume: 29 Issue: 2, 569 - 588, 12.08.2024
https://doi.org/10.37908/mkutbd.1472846

Abstract

The effects of foliar applications of seaweed (Ascophyllum nodosum) and yeast (Saccharomyces cerevisiae) extracts on Nero D'Avola (Vitis vinifera L.) cultivar were investigated with or without salt stress. The most effective treatment that prevented the decrease in leaf water potential was the use of seaweed against salt stress. Total phenolic compounds, EC50, ABTS, catalase, superoxide dismutase levels were measured as 8 048 mg GAE kg-1, 0.201 mg mL-1, 0.745 mg mL-1, 0.077 mmol g-1 min-1, 56.7 U g-1 in seaweed treated plants under the highest salt stress, respectively. The highest levels of caretonoid, chlorophyll-a, chlorophyll-b were detected with only seaweed treatment at 1.313 mg g-1, 3.373 mg g-1, 1.077 mg g-1, respectively. The results showed that antioxidant compounds, which play a protective role under salt stress, reached the highest level with seaweed supplementation. Principal component analysis showed that TFB, CAT and ABTS parameters as well as photosynthetic pigment parameters and relative water contents were closely related. Of the two different biostimulants studied in the research, Ascophyllum nodosum was found to provide higher potential protection against salt stress, while Saccharomyces cerevisiae was found to strengthen the defense mechanism by increasing photosynthetic pigment, phenolic content and antioxidant activity and enzymes.

References

  • Abbas, M., Anwar, J., Zafar-ul-Hye, M., Iqbal Khan, R., Saleem, M., Rahi, A.A., Danish, S., & Datta, R. (2020). Effect of seaweed extract on productivity and quality attributes of four onion cultivars. Horticulturae, 6 (2), 28. https://doi.org/10.3390/horticulturae6020028
  • Abbasi, H., Jamil, M., Haq, A., Ali, S., Ahmad, R., Malik, Z., & Parveen, Z. (2016). Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: A review. Zemdirbyste-Agriculture, 103 (2), 229-238. https://doi.org/10.13080/z-a.2016.103.030
  • Abdel Latef, A.A.H., Srivastava,A.K., Abdel-Sadek, M.S.A., Kordrostami, M., & Tran, L.S.P. (2018). Titanium dioxidenanoparticles improve growth and enhance tolerance of broad bean plants under saline conditions. Land Degradation & Development, 29 (4), 1065-1073. https://doi.org/10.1002/ldr.2780
  • Alonso, A.M., Guillen, D.A., Barroso, C.G., Puertas, B., & Garcia, A. (2002). Determination of antioxidant activity of wine by products and its correlationwith polyphenolic content. Journal of Agricultural and Food Chemistry, 50, (21), 5832-5836.
  • Amarowicz, R., & Weidner, S. (2009). Biological activity of grapevine phenolic compounds. In: Roubelakis-Angelakis KA. (Ed.) Grapevine molecular physiology and biotechnology, Springer, New York. pp. 389-405.
  • Basile, B., Rouphael, Y., Colla, G., Soppelsa, S., & Andreotti, C. (2020). Appraisal of emerging crop management opportunities in fruit trees, grapevines and berry crops facilitated by the application of biostimulants. Scientia Horticulturae, 267, 109330. https://doi.org/10.1016/j.scienta.2020.109330
  • Battacharyya, D., Babgohari, M.Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39-48. https://doi.org/10.1016/j.scienta.2015.09.012
  • Bodin, E., Bellée, A., Dufour, M.C., André, O., & Corio-Costet, M.F. (2020). Grapevine stimulation: A multidisciplinary approach to investigate the effects of biostimulants and a plant defense stimulator. Journal of Agricultural and Food Chemistry, 68 (51), 15085-15096. https://doi.org/10.1021/acs.jafc.0c05849J
  • Bulgari, R., Franzoni, G., & Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, 9, 306. https://doi.org/10.3390/agronomy9060306
  • Calvo, P., Nelson, L., & Kloeppe, J.W. (2014) Agricultural uses of plant biostimulants. Plant Soil, 383, 3-41. https://doi.org/10.1007/s11104-014-2131-8
  • Correia, S., Santos, M., Glińska, S., Gapińska, M., Matos, M., Carnide, V., Schouten, R., Silva, A.P., & Gonçalves, B. (2020). Effects of exogenous compound sprays on cherry cracking: Skin properties and gene expression. Journal of the Science of Food and Agriculture, 100 (7), 2911-2921. https://doi.org/10.1002/jsfa.10318
  • Cakmak, I., Strbac, D., & Marschner, H. (1993). Activities of hydrogen peroxidescavenging enzymes in germinated wheat seeds. Journal of Experimental Botany, 44 (1), 127-132. https://doi.org/10.1093/jxb/44.1.127
  • De Saeger, J., Van Praet, S., Vereecke, D., Park, J., Jacques, S., Han, T., & Depuydt, S. (2020). Toward the molecular understanding of the action mechanism of Ascophyllum nodosum extracts on plants. Journal of Applied Phycology, 32, 573-597. https://doi.org/10.1007/s10811-019-01903-9
  • Dinis, L.T., Bernardo, S., Conde, A., Pimentel, D., Ferreira, H., Félix, L., Gerós, H., Correia, C.M., & Moutinho-Pereira, J. (2016). Kaolin exogenous application boosts antioxidant capacity and phenolic content in berries and leaves of grapevine under summer stress. Journal of Plant Physiology, 191, 45-53. https://doi.org/10.1016/j.jplph.2015.12.005
  • Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14. https://doi.org/10.1016/j.scienta.2015.09.021
  • Duan, D., Fischer, S., Merz, P., Bogs, J., Riemann, M., & Nick, P. (2016). An ancestral allele of grapevine transcription factor MYB14 promotes plant defence. Journal of Experimental Botany, 67 (6), 1795-1804. https://doi.org/10.1093/jxb/erv569
  • Elansary, H.O., Yessoufou, K., Abdel-Hamid, A.M., El-Esawi, M.A., Ali, H.M., & Elshikh, M.S. (2017). Seaweed extracts enhance salam turfgrass performance during prolonged irrigation intervals and saline shock. Frontiers in Plant Science, 8, 830. https://doi.org/10.3389/fpls.2017.00830
  • Food and Agriculture Organization. (March, 2024). https://www.fao.org/faostat/en/#data/QCL
  • García-Sánchez, F., Simón-Grao, S., Navarro-Pérez, V., & Alfosea-Simón, M. (2022). Scientific advances in biostimulation reported in the 5th biostimulant world congress. Horticulturae, 8 (7), 665. https://doi.org/10.3390/horticulturae8070665
  • Gong, H., Zhu, X., Chen, K., Wang, S., & Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169 (2), 313-321. https://doi.org/10.1016/j.plantsci.2005.02.023
  • Gutiérrez-Gamboa, G., Portu, J., Santamaría, P., López, R., & Garde-Cerdán, T. (2017). Effects on grape amino acid concentration through foliar application of three different elicitors. Food Research International, 99, 688-692. https://doi.org/10.1016/j.foodres.2017.06.022
  • Gutiérrez‐Gamboa, G., Romanazzi, G., Garde‐Cerdán, T., & Pérez‐Álvarez, E.P. (2019). A review of the use of biostimulants in the vineyard for improved grape and wine quality: Effects on prevention of grapevine diseases. Journal of the Science of Food and Agriculture, 99 (3), 1001-1009. https://doi.org/10.1002/jsfa.9353
  • Gutiérrez-Gamboa, G., & Moreno-Simunovic, Y. (2021). Seaweeds in viticulture: A review focused on grape quality. Ciência e Técnica Vitivinícola, 36 (1),9-21. https://doi.org/10.1051/ctv/20213601009
  • Günes, A., Söylemezoğlu, G., İnal, A., Bağci, E.G., Çoban, S., & Şahin, O. (2006). Antioxidant and stomatal responses of grapevine (Vitis vinifera L.) to boron toxicity. Scientia Horticulturae, 110 (3), 279-284. https://doi.org/10.1016/j.scienta.2006.07.014
  • Haider, M.S., Jogaiah, S., Pervaiz, T., Yanxue, Z., Khan, N., & Fang, J. (2019). Physiological and transcriptional variations inducing complex adaptive mechanisms in grapevine by salt stress. Environmental and Experimental Botany, 162, 455-467. https://doi.org/10.1016/j.envexpbot.2019.03.022
  • Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68 (1), 14-25. https://doi.org/10.1016/j.envexpbot.2009.08.005
  • Hatano, T., Kagawa, H., Yasuhara, T., & Okuda, T. (1988). Two new flavonoids and other constituents in licorice root: Their relative astringency as scavenging effects. Chemical and Pharmaceutical Bulletin, 36, 2090-2097.
  • Irani, H., ValizadehKaji, B., & Naeini, M.R. (2021). Biostimulant-induced drought tolerance in grapevine is associated with physiological and biochemical changes. Chemical and Biological Technologies in Agriculture, 8, 1-13. https://doi.org/10.1186/s40538-020-00200-9
  • Isla, R., & Aragüés, R. (2010). Yield and plant ion concentrations in maize (Zea mays L.) subject to diurnal and nocturnal saline sprinkler irrigations. Field Crops Research, 116 (1-2), 175-183. https://doi.org/10.1016/j.fcr.2009.12.008
  • Jiang, M.Y., & Zhang, J.H. (2004). Abscisic acid and anti-oxidant defense in plant cells. Acta Botanica Sinica-English Edition, 46, 1-9.
  • Jaulneau, V., Lafitte, C., Corio-Costet, M.F., Stadnik, M.J., Salamagne, S., Briand, X., Esquerré-Tugayé, M.T., & Dumas, B. (2011). An Ulva armoricana extract protects plants against three powdery mildew pathogens. European Journal of Plant Pathology, 131, 393-401. https://doi.org/10.1007/s10658-011-9816-0
  • Karaçelil, A.A., Küçük, M., Iskefiyeli, Z., Aydemir, S., De Smet, S., Miserez, B., & Sandra, P. (2015). Antioxidant components of Viburnum opulus L. determined by on-line HPLC-UV-ABTS radical scavenging and LC–UV–ESI-MS methods. Food Chemistry, 175, 106-114. https://doi.org/10.1016/j.foodchem.2014.11.085
  • Karimi, H.R., & Nasrolahpour-Moghadam, S. (2016). Study of sex-related differences in growth indices and eco-physiological parameters of pistachio seedlings (Pistacia vera cv. Badami-Riz-e-Zarand) under salinity stress. Scientia Horticulturae, 202, 165-172. https://doi.org/10.1016/j.scienta.2016.03.003
  • Karimi, R., Ghabooli, M., Rahimi, J., & Amerian, M. (2020). Effects of foliar selenium application on some physiological and phytochemical parameters of Vitis vinifera L. cv. Sultana under salt stress. Journal of Plant Nutrition, 43 (14), 2226-2242.
  • Khan, W., Rayirath, U.P., Subramanian, S., Jithesh, M.N., Rayorath, P., Hodges, D.M., Critchley, A.T., Craigie, J.S., Norrie, J., & Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28, 386-399. https://doi.org/10.1007/s00344-009-9103-x
  • Kirnak, H., Kaya, C., Tas, I., & Higgs, D. (2001). The influence of water deficit on vegetative growth, physiology, fruit yield and quality in eggplants. Plant Physiology, 27, 34-46.
  • Król, A., Amarowicz, R., & Weidner, S. (2014). Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress. Acta Physiologiae Plantarum, 36, 1491-1499. https://doi.org/10.1007/s11738-014-1526-8
  • Król, A., Amarowicz, R., & Weidner, S. (2015). The effects of cold stress on the phenolic compounds and antioxidant capacity of grapevine (Vitis vinifera L.) leaves. Journal of Plant Physiology, 189, 97-104. https://doi.org/10.1016/j.jplph.2015.10.002
  • Martínez-Lorente, S.E., Martí-Guillén, J.M., Pedreño, M.Á., Almagro, L., & Sabater-Jara, A.B. (2024). Higher plant-derived biostimulants: Mechanisms of action and their role in mitigating plant abiotic stress. Antioxidants, 13 (3), 318. https://doi.org/10.3390/antiox13030318
  • Mohammadkhani, N., & Abbaspour, N. (2017). Effects of salinity on antioxidant system in ten grape genotypes. Iranian Journal of Plant Physiology, 8 (1), 2247-2255.
  • Mohammadkhani, N. (2018). Effects of salinity on phenolic compounds in tolerant and sensitive grapes. Poljoprivreda i Sumarstvo, 64 (2), 73-86. https://doi.org/10.17707/AgricultForest.64.2.05
  • Monteiro, E., Gonçalves, B., Cortez, I., & Castro, I. (2022). The role of biostimulants as alleviators of biotic and abiotic stresses in grapevine: A review. Plants, 11 (3), 396. https://doi.org/10.3390/plants11030396
  • Møller, I.M., Jensen, P.E., & Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annual Review of Plant Biology, 58, 459-481. https://doi.org/10.1146/annurev.arplant.58.032806.103946
  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22 (5), 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
  • Oh, M.M., Trick, H.N., & Rajashekar, C.B. (2009). Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. Journal of Plant Physiology, 166 (2), 180-191. https://doi.org/10.1016/j.jplph.2008.04.015
  • Olavarrieta, C.E., Sampedro, M.C., Vallejo, A., Štefelová, N., Barrio, R.J., & De Diego, N. (2022). Biostimulants as an alternative to improve the wine quality from Vitis vinifera (cv. tempranillo) in La Rioja. Plants, 11 (12), 1594. https://doi.org/10.3390/plants11121594
  • Parađiković, N., Teklić, T., Zeljković, S., Lisjak, M., & Špoljarević, M. (2019). Biostimulants research in some horticultural plant species-A review. Food and Energy Security, 8 (2), e00162. https://doi.org/10.1002/fes3.162
  • Portu, J., López, R., Baroja, E., Santamaría, P., & Garde-Cerdán, T. (2016). Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyl jasmonate, chitosan, and yeast extract. Food Chemistry, 201, 213-221. https://doi.org/10.1016/j.foodchem.2016.01.086
  • Rai, A.C., Singh, M., & Shah, K. (2012). Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants. Plant Physiology and Biochemistry, 61, 108-114. https://doi.org/10.1016/j.plaphy.2012.09.010
  • Salachna, P., Grzeszczuk, M., & Wilas, J. (2015). Total phenolic content, photosynthetic pigment concentration and antioxidant activity of leaves and bulbs of selected Eucomis L’Hér. taxa. Fresenius Environmental Bulletin, 24, 4220-4225.
  • Salvi, L., Brunetti, C., Cataldo, E., Storchi, P., & Mattii, G.B. (2020). Eco-physiological traits and phenylpropanoid profiling on potted Vitis vinifera L. cv Pinot noir subjected to Ascophyllum nodosum treatments under post-veraison low water availability. Applied Sciences, 10 (13), 4473. https://doi.org/10.3390/app10134473
  • Secco, S., Mattii, G. B., Salvi, L., & Cataldo, E. (2015). Use of natural biostimulants to improve the quality of grapevine production: first results. In II World Congress on the Use of Biostimulants in Agriculture, 1148 (pp. 77-84). https://doi.org/10.17660/ActaHortic.2016.1148.9
  • Shukla, P.S., Mantin, E.G., Adil, M., Bajpai, S., Critchley, A.T., & Prithiviraj, B. (2019). Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Frontiers in Plant Science, 10, 462648. https://doi.org/10.3389/fpls.2019.00655
  • Singleton, V.L., & Rossi, J.J.A. (1965). Colorimetric of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Smith, S.E., & Read, D.J. (2008). Mycorrhizal Symbiosis. 3rd ed. Academic Press, London, UK.
  • Solecka, D., & Kacperska, A. (2003). Phenylpropanoid deficiency affects the course of plant acclimation to cold. Physiologia Plantarum, 119 (2), 253-262. https://doi.org/10.1034/j.1399-3054.2003.00181.x
  • Taiz, L., & Zeiger, E. (2012). Plant Physiology. Sinauer Associates Inc., Publishers, Sun-derland, MA, pp. 759.
  • Tariq, M., Khan, A., Asif, M., Khan, F., Ansari, T., Shariq, M., & Siddiqui, M.A. (2020). Biological control: A sustainable and practical approach for plant disease management. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 70 (6), 507-524. https://doi.org/10.1080/09064710.2020.1784262
  • Taskos, D., Stamatiadis, S., Yvin, J.C., & Jamois, F. (2019). Effects of an Ascophyllum nodosum (L.) Le Jol. extract on grapevine yield and berry composition of a Merlot vineyard. Scientia Horticulturae, 250, 27-32. https://doi.org/10.1016/j.scienta.2019.02.030
  • Tavakkoli, E., Fatehi, F., Coventry, S., Rengasamy, P., & McDonald, G.K. (2011). Additive effects of Na+ and Cl–ions on barley growth under salinity stress. Journal of Experimental Botany, 62 (6), 2189-2203. https://doi.org/10.1093/jxb/erq422
  • Topuz, H., Keskin, N., Kiraz, M.E., Tarım, G., Topuz, F., Ozel, N., & Kaya, O. (2023). Effect of foliar spraying of Ascophyllum nodosum extracts on grape quality of ‘Tarsus Beyazı’. Erwerbs-Obstbau, 65 (6), 1873-1879. https://doi.org/10.1007/s10341-022-00755-x
  • Torres, N., Goicoechea, N., & Antolín, M. C. (2015). Antioxidant properties of leaves from different accessions of grapevine (Vitis vinifera L.) cv. Tempranillo after applying biotic and/or environmental modulator factors. Industrial Crops and Products, 76, 77-85. https://doi.org/10.1016/j.indcrop.2015.03.093
  • Traon, D., Amat, L., Zotz, F., & du Jardin, P. (2014). A legal framework for plant biostimulants and agronomic fertiliser additives in the EU-report to the European Commission, DG Enterprise & Industry.
  • Türkiye İstatistik Kurumu. (Mart, 2024). https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1
  • Ullah, A., Bano, A., & Khan, N. (2021). Climate change and salinity effects on crops and chemical communication between plants and plant growth-promoting microorganisms under stress. Frontiers in Sustainable Food Systems, 5, 618092. https://doi.org/10.3389/fsufs.2021.618092
  • Van Oosten, M.J., Pepe, O., De Pascale, S., Silletti, S., & Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4, 1-12. https://doi.org/10.1186/s40538-017-0089-5
  • Verkleij, F.N. (1992). Seaweed extracts in agriculture and horticulture: A review. Biological Agriculture & Horticulture, 8 (4), 309-324. https://doi.org/10.1080/01448765.1992.9754608
  • Webb, L.B., Watterson, I., Bhend, J., Whetton, P.H., & Barlow, E.W.R. (2013). Global climate analogues for winegrowing regions in future periods: Projections of temperature and precipitation. Australian Journal of Grape and Wine Research, 19 (3), 331-341. https://doi.org/10.1111/ajgw.12045
  • Yakhin, O.I., Lubyanov, A.A., Yakhin, I.A., & Brown, P.H. (2017). Biostimulants in plant science: A global perspective. Frontiers in Plant Science, 7, 2049. https://doi.org/10.3389/fpls.2016.02049
  • Zagzog, O., & Qaoud, E.S. (2023). Effect of foliar spray seaweed and amino acid on growth and yield of Arra 15 and Arra 20 grapevines cultivars. Journal of Productivity and Development, 28 (4), 213-228. https://doi.org/10.21608/JPD.2023.338223
  • Zarraonaindia, I., Cretazzo, E., Mena-Petite, A., Díez-Navajas, A.M., Pérez-López, U., Lacuesta, M., Pérez-Álvarez, E. P., Puertas, B., Fernandez-Diaz, C., Bertazzon, N., & Cantos-Villar, E. (2023). Holistic understanding of the response of grapevines to foliar application of seaweed extracts. Frontiers in Plant Science, 14, 1119854. https://doi.org/10.3389/fpls.2023.1119854
  • Zodape, S.T., Gupta, A., Bhandari, S.C., Rawat, U.S., Chaudhary, D.R., Eswaran, K., & Chikara, J. (2011). Foliar application of seaweed sap as biostimulant for enhancement of yieldand quality of tomato (Lycopersicon esculentum Mill.). Journal of Scientific and Industrial Research, 70, 215-219.

Asmada deniz yosunu ve maya uygulamalarının biyostimulant ve tuz stresine karşı etkilerinin belirlenmesi

Year 2024, Volume: 29 Issue: 2, 569 - 588, 12.08.2024
https://doi.org/10.37908/mkutbd.1472846

Abstract

Yapraktan deniz yosunu (Ascophyllum nodosum) ve maya (Saccharomyces cerevisiae) ekstraktı uygulamalarının Nero D’Avola (Vitis vinifera L.) çeşidinde yarattığı bazı değişimler, tuz stresi etkisinde ve tuz stresi olmaksızın incelenmiştir. Yaprak su potansiyelindeki düşüşü önleyen en etkili uygulama tuz stresine karşı deniz yosunu kullanımı olmuştur. Toplam fenolik bileşik, EC50, ABTS, katalaz, süperoksid dismütaz seviyeleri en yüksek tuz stresi altında deniz yosunu uygulanmış bitkilerde sırasıyla 8 048 mg GAE kg-1, 0.201 mg mL-1, 0.745 mg mL-1, 0.077 mmol g-1 dakika-1, 56.7 U g-1 olarak ölçülmüştür. Karetonoid, klorofil-a, klorofil-b düzeyleri sadece deniz yosunu uygulaması ile sırasıyla 1.313 mg g-1, 3.373 mg g-1, 1.077 mg g-1 değerlerinde en yüksek seviyede saptanmıştır. Sonuçlar tuz stresi altında koruyucu etki gösteren antioksidan bileşiklerin, deniz yosunu uygulaması ile en yüksek seviyeye ulaştığını göstermiştir. Temel bileşen analizi ile TFB, CAT ile ABTS parametreleri ve ayrıca fotosentetik pigment parametreleri ile bağıl su içerikleri yakın ilişkili olarak belirlenmiştir. Araştırmada çalışılan iki farklı biyostimülanttan Ascophyllum nodosum’un tuz stresine karşı daha yüksek potansiyel koruma sağlayabileceği sonucuna varılmış, Saccharomyces cerevisiae’ nın fotosentetik pigment, fenolik içerik ve antioksidan aktivite ve enzimler de artış yaratarak savunma mekanizmasını güçlendirdiği tespit edilmiştir.

References

  • Abbas, M., Anwar, J., Zafar-ul-Hye, M., Iqbal Khan, R., Saleem, M., Rahi, A.A., Danish, S., & Datta, R. (2020). Effect of seaweed extract on productivity and quality attributes of four onion cultivars. Horticulturae, 6 (2), 28. https://doi.org/10.3390/horticulturae6020028
  • Abbasi, H., Jamil, M., Haq, A., Ali, S., Ahmad, R., Malik, Z., & Parveen, Z. (2016). Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: A review. Zemdirbyste-Agriculture, 103 (2), 229-238. https://doi.org/10.13080/z-a.2016.103.030
  • Abdel Latef, A.A.H., Srivastava,A.K., Abdel-Sadek, M.S.A., Kordrostami, M., & Tran, L.S.P. (2018). Titanium dioxidenanoparticles improve growth and enhance tolerance of broad bean plants under saline conditions. Land Degradation & Development, 29 (4), 1065-1073. https://doi.org/10.1002/ldr.2780
  • Alonso, A.M., Guillen, D.A., Barroso, C.G., Puertas, B., & Garcia, A. (2002). Determination of antioxidant activity of wine by products and its correlationwith polyphenolic content. Journal of Agricultural and Food Chemistry, 50, (21), 5832-5836.
  • Amarowicz, R., & Weidner, S. (2009). Biological activity of grapevine phenolic compounds. In: Roubelakis-Angelakis KA. (Ed.) Grapevine molecular physiology and biotechnology, Springer, New York. pp. 389-405.
  • Basile, B., Rouphael, Y., Colla, G., Soppelsa, S., & Andreotti, C. (2020). Appraisal of emerging crop management opportunities in fruit trees, grapevines and berry crops facilitated by the application of biostimulants. Scientia Horticulturae, 267, 109330. https://doi.org/10.1016/j.scienta.2020.109330
  • Battacharyya, D., Babgohari, M.Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39-48. https://doi.org/10.1016/j.scienta.2015.09.012
  • Bodin, E., Bellée, A., Dufour, M.C., André, O., & Corio-Costet, M.F. (2020). Grapevine stimulation: A multidisciplinary approach to investigate the effects of biostimulants and a plant defense stimulator. Journal of Agricultural and Food Chemistry, 68 (51), 15085-15096. https://doi.org/10.1021/acs.jafc.0c05849J
  • Bulgari, R., Franzoni, G., & Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, 9, 306. https://doi.org/10.3390/agronomy9060306
  • Calvo, P., Nelson, L., & Kloeppe, J.W. (2014) Agricultural uses of plant biostimulants. Plant Soil, 383, 3-41. https://doi.org/10.1007/s11104-014-2131-8
  • Correia, S., Santos, M., Glińska, S., Gapińska, M., Matos, M., Carnide, V., Schouten, R., Silva, A.P., & Gonçalves, B. (2020). Effects of exogenous compound sprays on cherry cracking: Skin properties and gene expression. Journal of the Science of Food and Agriculture, 100 (7), 2911-2921. https://doi.org/10.1002/jsfa.10318
  • Cakmak, I., Strbac, D., & Marschner, H. (1993). Activities of hydrogen peroxidescavenging enzymes in germinated wheat seeds. Journal of Experimental Botany, 44 (1), 127-132. https://doi.org/10.1093/jxb/44.1.127
  • De Saeger, J., Van Praet, S., Vereecke, D., Park, J., Jacques, S., Han, T., & Depuydt, S. (2020). Toward the molecular understanding of the action mechanism of Ascophyllum nodosum extracts on plants. Journal of Applied Phycology, 32, 573-597. https://doi.org/10.1007/s10811-019-01903-9
  • Dinis, L.T., Bernardo, S., Conde, A., Pimentel, D., Ferreira, H., Félix, L., Gerós, H., Correia, C.M., & Moutinho-Pereira, J. (2016). Kaolin exogenous application boosts antioxidant capacity and phenolic content in berries and leaves of grapevine under summer stress. Journal of Plant Physiology, 191, 45-53. https://doi.org/10.1016/j.jplph.2015.12.005
  • Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14. https://doi.org/10.1016/j.scienta.2015.09.021
  • Duan, D., Fischer, S., Merz, P., Bogs, J., Riemann, M., & Nick, P. (2016). An ancestral allele of grapevine transcription factor MYB14 promotes plant defence. Journal of Experimental Botany, 67 (6), 1795-1804. https://doi.org/10.1093/jxb/erv569
  • Elansary, H.O., Yessoufou, K., Abdel-Hamid, A.M., El-Esawi, M.A., Ali, H.M., & Elshikh, M.S. (2017). Seaweed extracts enhance salam turfgrass performance during prolonged irrigation intervals and saline shock. Frontiers in Plant Science, 8, 830. https://doi.org/10.3389/fpls.2017.00830
  • Food and Agriculture Organization. (March, 2024). https://www.fao.org/faostat/en/#data/QCL
  • García-Sánchez, F., Simón-Grao, S., Navarro-Pérez, V., & Alfosea-Simón, M. (2022). Scientific advances in biostimulation reported in the 5th biostimulant world congress. Horticulturae, 8 (7), 665. https://doi.org/10.3390/horticulturae8070665
  • Gong, H., Zhu, X., Chen, K., Wang, S., & Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169 (2), 313-321. https://doi.org/10.1016/j.plantsci.2005.02.023
  • Gutiérrez-Gamboa, G., Portu, J., Santamaría, P., López, R., & Garde-Cerdán, T. (2017). Effects on grape amino acid concentration through foliar application of three different elicitors. Food Research International, 99, 688-692. https://doi.org/10.1016/j.foodres.2017.06.022
  • Gutiérrez‐Gamboa, G., Romanazzi, G., Garde‐Cerdán, T., & Pérez‐Álvarez, E.P. (2019). A review of the use of biostimulants in the vineyard for improved grape and wine quality: Effects on prevention of grapevine diseases. Journal of the Science of Food and Agriculture, 99 (3), 1001-1009. https://doi.org/10.1002/jsfa.9353
  • Gutiérrez-Gamboa, G., & Moreno-Simunovic, Y. (2021). Seaweeds in viticulture: A review focused on grape quality. Ciência e Técnica Vitivinícola, 36 (1),9-21. https://doi.org/10.1051/ctv/20213601009
  • Günes, A., Söylemezoğlu, G., İnal, A., Bağci, E.G., Çoban, S., & Şahin, O. (2006). Antioxidant and stomatal responses of grapevine (Vitis vinifera L.) to boron toxicity. Scientia Horticulturae, 110 (3), 279-284. https://doi.org/10.1016/j.scienta.2006.07.014
  • Haider, M.S., Jogaiah, S., Pervaiz, T., Yanxue, Z., Khan, N., & Fang, J. (2019). Physiological and transcriptional variations inducing complex adaptive mechanisms in grapevine by salt stress. Environmental and Experimental Botany, 162, 455-467. https://doi.org/10.1016/j.envexpbot.2019.03.022
  • Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68 (1), 14-25. https://doi.org/10.1016/j.envexpbot.2009.08.005
  • Hatano, T., Kagawa, H., Yasuhara, T., & Okuda, T. (1988). Two new flavonoids and other constituents in licorice root: Their relative astringency as scavenging effects. Chemical and Pharmaceutical Bulletin, 36, 2090-2097.
  • Irani, H., ValizadehKaji, B., & Naeini, M.R. (2021). Biostimulant-induced drought tolerance in grapevine is associated with physiological and biochemical changes. Chemical and Biological Technologies in Agriculture, 8, 1-13. https://doi.org/10.1186/s40538-020-00200-9
  • Isla, R., & Aragüés, R. (2010). Yield and plant ion concentrations in maize (Zea mays L.) subject to diurnal and nocturnal saline sprinkler irrigations. Field Crops Research, 116 (1-2), 175-183. https://doi.org/10.1016/j.fcr.2009.12.008
  • Jiang, M.Y., & Zhang, J.H. (2004). Abscisic acid and anti-oxidant defense in plant cells. Acta Botanica Sinica-English Edition, 46, 1-9.
  • Jaulneau, V., Lafitte, C., Corio-Costet, M.F., Stadnik, M.J., Salamagne, S., Briand, X., Esquerré-Tugayé, M.T., & Dumas, B. (2011). An Ulva armoricana extract protects plants against three powdery mildew pathogens. European Journal of Plant Pathology, 131, 393-401. https://doi.org/10.1007/s10658-011-9816-0
  • Karaçelil, A.A., Küçük, M., Iskefiyeli, Z., Aydemir, S., De Smet, S., Miserez, B., & Sandra, P. (2015). Antioxidant components of Viburnum opulus L. determined by on-line HPLC-UV-ABTS radical scavenging and LC–UV–ESI-MS methods. Food Chemistry, 175, 106-114. https://doi.org/10.1016/j.foodchem.2014.11.085
  • Karimi, H.R., & Nasrolahpour-Moghadam, S. (2016). Study of sex-related differences in growth indices and eco-physiological parameters of pistachio seedlings (Pistacia vera cv. Badami-Riz-e-Zarand) under salinity stress. Scientia Horticulturae, 202, 165-172. https://doi.org/10.1016/j.scienta.2016.03.003
  • Karimi, R., Ghabooli, M., Rahimi, J., & Amerian, M. (2020). Effects of foliar selenium application on some physiological and phytochemical parameters of Vitis vinifera L. cv. Sultana under salt stress. Journal of Plant Nutrition, 43 (14), 2226-2242.
  • Khan, W., Rayirath, U.P., Subramanian, S., Jithesh, M.N., Rayorath, P., Hodges, D.M., Critchley, A.T., Craigie, J.S., Norrie, J., & Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28, 386-399. https://doi.org/10.1007/s00344-009-9103-x
  • Kirnak, H., Kaya, C., Tas, I., & Higgs, D. (2001). The influence of water deficit on vegetative growth, physiology, fruit yield and quality in eggplants. Plant Physiology, 27, 34-46.
  • Król, A., Amarowicz, R., & Weidner, S. (2014). Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress. Acta Physiologiae Plantarum, 36, 1491-1499. https://doi.org/10.1007/s11738-014-1526-8
  • Król, A., Amarowicz, R., & Weidner, S. (2015). The effects of cold stress on the phenolic compounds and antioxidant capacity of grapevine (Vitis vinifera L.) leaves. Journal of Plant Physiology, 189, 97-104. https://doi.org/10.1016/j.jplph.2015.10.002
  • Martínez-Lorente, S.E., Martí-Guillén, J.M., Pedreño, M.Á., Almagro, L., & Sabater-Jara, A.B. (2024). Higher plant-derived biostimulants: Mechanisms of action and their role in mitigating plant abiotic stress. Antioxidants, 13 (3), 318. https://doi.org/10.3390/antiox13030318
  • Mohammadkhani, N., & Abbaspour, N. (2017). Effects of salinity on antioxidant system in ten grape genotypes. Iranian Journal of Plant Physiology, 8 (1), 2247-2255.
  • Mohammadkhani, N. (2018). Effects of salinity on phenolic compounds in tolerant and sensitive grapes. Poljoprivreda i Sumarstvo, 64 (2), 73-86. https://doi.org/10.17707/AgricultForest.64.2.05
  • Monteiro, E., Gonçalves, B., Cortez, I., & Castro, I. (2022). The role of biostimulants as alleviators of biotic and abiotic stresses in grapevine: A review. Plants, 11 (3), 396. https://doi.org/10.3390/plants11030396
  • Møller, I.M., Jensen, P.E., & Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annual Review of Plant Biology, 58, 459-481. https://doi.org/10.1146/annurev.arplant.58.032806.103946
  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22 (5), 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
  • Oh, M.M., Trick, H.N., & Rajashekar, C.B. (2009). Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. Journal of Plant Physiology, 166 (2), 180-191. https://doi.org/10.1016/j.jplph.2008.04.015
  • Olavarrieta, C.E., Sampedro, M.C., Vallejo, A., Štefelová, N., Barrio, R.J., & De Diego, N. (2022). Biostimulants as an alternative to improve the wine quality from Vitis vinifera (cv. tempranillo) in La Rioja. Plants, 11 (12), 1594. https://doi.org/10.3390/plants11121594
  • Parađiković, N., Teklić, T., Zeljković, S., Lisjak, M., & Špoljarević, M. (2019). Biostimulants research in some horticultural plant species-A review. Food and Energy Security, 8 (2), e00162. https://doi.org/10.1002/fes3.162
  • Portu, J., López, R., Baroja, E., Santamaría, P., & Garde-Cerdán, T. (2016). Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyl jasmonate, chitosan, and yeast extract. Food Chemistry, 201, 213-221. https://doi.org/10.1016/j.foodchem.2016.01.086
  • Rai, A.C., Singh, M., & Shah, K. (2012). Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants. Plant Physiology and Biochemistry, 61, 108-114. https://doi.org/10.1016/j.plaphy.2012.09.010
  • Salachna, P., Grzeszczuk, M., & Wilas, J. (2015). Total phenolic content, photosynthetic pigment concentration and antioxidant activity of leaves and bulbs of selected Eucomis L’Hér. taxa. Fresenius Environmental Bulletin, 24, 4220-4225.
  • Salvi, L., Brunetti, C., Cataldo, E., Storchi, P., & Mattii, G.B. (2020). Eco-physiological traits and phenylpropanoid profiling on potted Vitis vinifera L. cv Pinot noir subjected to Ascophyllum nodosum treatments under post-veraison low water availability. Applied Sciences, 10 (13), 4473. https://doi.org/10.3390/app10134473
  • Secco, S., Mattii, G. B., Salvi, L., & Cataldo, E. (2015). Use of natural biostimulants to improve the quality of grapevine production: first results. In II World Congress on the Use of Biostimulants in Agriculture, 1148 (pp. 77-84). https://doi.org/10.17660/ActaHortic.2016.1148.9
  • Shukla, P.S., Mantin, E.G., Adil, M., Bajpai, S., Critchley, A.T., & Prithiviraj, B. (2019). Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Frontiers in Plant Science, 10, 462648. https://doi.org/10.3389/fpls.2019.00655
  • Singleton, V.L., & Rossi, J.J.A. (1965). Colorimetric of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Smith, S.E., & Read, D.J. (2008). Mycorrhizal Symbiosis. 3rd ed. Academic Press, London, UK.
  • Solecka, D., & Kacperska, A. (2003). Phenylpropanoid deficiency affects the course of plant acclimation to cold. Physiologia Plantarum, 119 (2), 253-262. https://doi.org/10.1034/j.1399-3054.2003.00181.x
  • Taiz, L., & Zeiger, E. (2012). Plant Physiology. Sinauer Associates Inc., Publishers, Sun-derland, MA, pp. 759.
  • Tariq, M., Khan, A., Asif, M., Khan, F., Ansari, T., Shariq, M., & Siddiqui, M.A. (2020). Biological control: A sustainable and practical approach for plant disease management. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 70 (6), 507-524. https://doi.org/10.1080/09064710.2020.1784262
  • Taskos, D., Stamatiadis, S., Yvin, J.C., & Jamois, F. (2019). Effects of an Ascophyllum nodosum (L.) Le Jol. extract on grapevine yield and berry composition of a Merlot vineyard. Scientia Horticulturae, 250, 27-32. https://doi.org/10.1016/j.scienta.2019.02.030
  • Tavakkoli, E., Fatehi, F., Coventry, S., Rengasamy, P., & McDonald, G.K. (2011). Additive effects of Na+ and Cl–ions on barley growth under salinity stress. Journal of Experimental Botany, 62 (6), 2189-2203. https://doi.org/10.1093/jxb/erq422
  • Topuz, H., Keskin, N., Kiraz, M.E., Tarım, G., Topuz, F., Ozel, N., & Kaya, O. (2023). Effect of foliar spraying of Ascophyllum nodosum extracts on grape quality of ‘Tarsus Beyazı’. Erwerbs-Obstbau, 65 (6), 1873-1879. https://doi.org/10.1007/s10341-022-00755-x
  • Torres, N., Goicoechea, N., & Antolín, M. C. (2015). Antioxidant properties of leaves from different accessions of grapevine (Vitis vinifera L.) cv. Tempranillo after applying biotic and/or environmental modulator factors. Industrial Crops and Products, 76, 77-85. https://doi.org/10.1016/j.indcrop.2015.03.093
  • Traon, D., Amat, L., Zotz, F., & du Jardin, P. (2014). A legal framework for plant biostimulants and agronomic fertiliser additives in the EU-report to the European Commission, DG Enterprise & Industry.
  • Türkiye İstatistik Kurumu. (Mart, 2024). https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1
  • Ullah, A., Bano, A., & Khan, N. (2021). Climate change and salinity effects on crops and chemical communication between plants and plant growth-promoting microorganisms under stress. Frontiers in Sustainable Food Systems, 5, 618092. https://doi.org/10.3389/fsufs.2021.618092
  • Van Oosten, M.J., Pepe, O., De Pascale, S., Silletti, S., & Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4, 1-12. https://doi.org/10.1186/s40538-017-0089-5
  • Verkleij, F.N. (1992). Seaweed extracts in agriculture and horticulture: A review. Biological Agriculture & Horticulture, 8 (4), 309-324. https://doi.org/10.1080/01448765.1992.9754608
  • Webb, L.B., Watterson, I., Bhend, J., Whetton, P.H., & Barlow, E.W.R. (2013). Global climate analogues for winegrowing regions in future periods: Projections of temperature and precipitation. Australian Journal of Grape and Wine Research, 19 (3), 331-341. https://doi.org/10.1111/ajgw.12045
  • Yakhin, O.I., Lubyanov, A.A., Yakhin, I.A., & Brown, P.H. (2017). Biostimulants in plant science: A global perspective. Frontiers in Plant Science, 7, 2049. https://doi.org/10.3389/fpls.2016.02049
  • Zagzog, O., & Qaoud, E.S. (2023). Effect of foliar spray seaweed and amino acid on growth and yield of Arra 15 and Arra 20 grapevines cultivars. Journal of Productivity and Development, 28 (4), 213-228. https://doi.org/10.21608/JPD.2023.338223
  • Zarraonaindia, I., Cretazzo, E., Mena-Petite, A., Díez-Navajas, A.M., Pérez-López, U., Lacuesta, M., Pérez-Álvarez, E. P., Puertas, B., Fernandez-Diaz, C., Bertazzon, N., & Cantos-Villar, E. (2023). Holistic understanding of the response of grapevines to foliar application of seaweed extracts. Frontiers in Plant Science, 14, 1119854. https://doi.org/10.3389/fpls.2023.1119854
  • Zodape, S.T., Gupta, A., Bhandari, S.C., Rawat, U.S., Chaudhary, D.R., Eswaran, K., & Chikara, J. (2011). Foliar application of seaweed sap as biostimulant for enhancement of yieldand quality of tomato (Lycopersicon esculentum Mill.). Journal of Scientific and Industrial Research, 70, 215-219.
There are 72 citations in total.

Details

Primary Language Turkish
Subjects Horticultural Production (Other)
Journal Section Araştırma Makalesi
Authors

Hande Tahmaz Karaman 0000-0003-4842-6441

Damla Yüksel Küskü 0000-0001-5398-1146

Birhan Kunter 0000-0001-7112-1908

Early Pub Date August 3, 2024
Publication Date August 12, 2024
Submission Date April 24, 2024
Acceptance Date June 6, 2024
Published in Issue Year 2024 Volume: 29 Issue: 2

Cite

APA Tahmaz Karaman, H., Yüksel Küskü, D., & Kunter, B. (2024). Asmada deniz yosunu ve maya uygulamalarının biyostimulant ve tuz stresine karşı etkilerinin belirlenmesi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 29(2), 569-588. https://doi.org/10.37908/mkutbd.1472846

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download