Research Article
BibTex RIS Cite

Comparative analysis of carbon emissions of some countries in the framework of climate justice

Year 2024, Volume: 29 Issue: 3, 835 - 845
https://doi.org/10.37908/mkutbd.1491458

Abstract

In this study, it is aimed to comparatively analyze the greenhouse gas emission values (1990-2022) accepted in the Kyoto Protocol at different scales for global and some selected countries, and to examine them within the framework of climate justice and historical responsibility. USA, China, India, Türkiye, Australia, Bahrain, UAE and the EU were compared. China is not only the country with the fastest increase in annual greenhouse gas emissions, but also the country with the highest emission value with a total of 307,178 Gt CO2 eq. (CO2 equivalent) in the period 1990-2022. In contrast, Bahrain's total emission is 1.6003 Gt CO2 eq. However, in terms of per capita emission value, this value is reported as 10.9541 t CO2 eq/year for China and 39.2904 t CO2 eq/year for Bahrain in 2022. There is also a significant difference between the two countries in terms of gross domestic product (GDP). For China (2022) it is 0.6107 t CO2 eq/1000 USD/year, while for Bahrain it is 0.9166 t CO2 eq/1000 USD/year. When Türkiye and Australia are compared, the results are quite interesting, since Australia’s historical responsibility is 37% higher than Türkiye's, although the total annual emission values are close to each other in recent years. These significant differences show that in global climate policies, not only the total emission values of countries, but also the per capita emission value of countries, emission values of GDP and historical responsibilities should be evaluated.

References

  • Anonim (2022). T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı, İklim Değişikliği Başkanlığı. Birleşmiş Milletler İklim Değişikliği Çerçeve Sözleşmesi. https://iklim.gov.tr/bm-iklim-degisikligi-cerceve-sozlesmesi-i-33
  • Boyce, J.K., Narain, S., & Stanton, E.A. (Eds.). (2007). Reclaiming nature: Environmental justice and ecological restoration. Anthem Press.
  • Crippa, M., Guizzardi, D., Pagani, F., Banja, M., Muntean, M., Schaaf, E., Becker, W., Monforti-Ferrario, F., Quadrelli, R., Risquez Martin, A., Taghavi-Moharamli, P., Köykkä, J., Grassi, G., Rossi, S., Brandao De Melo, J., Oom, D., Branco, A., San-Miguel, J., & Vignati, E. (2023). GHG emissions of all world countries. Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/953332
  • Dong, K., Hochman, G., & Timilsina, G.R. (2020). Do drivers of CO2 emission growth alter overtime and by the stage of economic development?. Energy Policy, 140, 111420, 1-12.
  • Fanning, A.L., & Hickel, J. (2023). Compensation for atmospheric appropriation. Nature Sustainability, 6 (9), 1077-1086.
  • García-Portela, L. (2020). Moral responsibility for climate change loss and damage. Teorema: Revista Internacional de Filosofía, 39 (1), 7-24.
  • Hickel, J. (2020). Quantifying national responsibility for climate breakdown: an equality-based attribution approach for carbon dioxide emissions in excess of the planetary boundary. The Lancet Planetary Health, 4 (9), e399-e404.
  • Hormio, S. (2023). Collective responsibility for climate change. Wiley Interdisciplinary Reviews: Climate Change, 14 (4), e830, 1-14.
  • IPCC. (2001). Climate Change 2001: Impacts, Adaptation and Vulnerability – Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
  • IPCC. (2013). AR5 Climate Change: Physical Science Basis. https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL.pdf
  • Jalles, J.T. (2019). Crises and emissions: New empirical evidence from a large sample. Energy Policy, 129, 880-895.
  • Jones, M.W., Peters, G.P., Gasser, T., Andrew, R.M., Schwingshackl, C., Gütschow, J., Houghton, R.A., Friedlingstein, P., Pongratz, J., & Le Quéré, C. (2023). National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Scientific Data, 10 (1), 155, 1-23.
  • Kour, M. (2023). Modelling and forecasting of carbon-dioxide emissions in South Africa by using ARIMA model. International Journal of Environmental Science and Technology, 20 (10), 11267-11274.
  • Lotfalipour, M.R., Falahi, M.A., & Bastam, M. (2013). Prediction of CO2 emissions in Iran using grey and ARIMA models. International Journal of Energy Economics and Policy, 3 (3), 229-237.
  • Matthews, H.D. (2016). Quantifying historical carbon and climate debts among nations. Nature Climate Change, 6 (1), 60-64.
  • Milly, P.C., & Dunne, K.A. (2016). Potential evapotranspiration and continental drying. Nature Climate Change, 6 (10), 946-949.
  • Moellendorf, D. (2012). Climate change and global justice. Wiley Interdisciplinary Reviews: Climate Change, 3 (2), 131-143.
  • Moss, J., & Kath, R. (2019). Historical emissions and the carbon budget. Journal of Applied Philosophy, 36 (2), 268-289.
  • Notz, D. (2020). A short history of climate change. In EPJ Web of Conferences (Vol. 246, p. 00002). EDP Sciences.
  • Nyoni, T., & Bonga, W.G. (2019). Prediction of CO2 emissions in India using arima models. DRJ-Journal of Economics & Finance, 4 (2), 1-10.
  • Özfidaner, M., Şapolyo, U.D., & Topaloğlu, F. (2019). Determination of the average temperature data: Antalya and Alanya case. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 20, 106-111.
  • Page, E.A. (2011). Climatic justice and the fair distribution of atmospheric burdens: A conjunctive account. The Monist, 94 (3), 412-432.
  • Pickering, J., & Barry, C. (2017). On the concept of climate debt: Its moral and political value. In Global Political Justice (pp. 147-165). Routledge.
  • Shields, L. (2020). Sufficientarianism. Philosophy Compass, 15 (11), 1-10.
  • Topal, E., Özsoy, N., & Şahinler, N. (2016). Küresel ısınma ve arıcılığın geleceği. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 21 (1), 112-120.
  • Ullah, I., Ma, X., Ren, G., Yin, J., Iyakaremye, V., Syed, S., Lu, K., Xing, Y., & Singh, V.P. (2022). Recent changes in drought events over South Asia and their possible linkages with climatic and dynamic factors. Remote Sensing, 14 (13), 3219, 1-20.
  • UNFCCC. (1997). United Nations Framework Convention on Climate Change. Kyoto Climate Change Conference - December 1997.
  • Van der Schrier, G., Jones, P.D., & Briffa, K.R. (2011). The sensitivity of the PDSI to the Thornthwaite and Penman‐Monteith parameterizations for potential evapotranspiration. Journal of Geophysical Research: Atmospheres, 116 (D3), 1-16.
  • World Meteorological Organization. (WMO). International Meteorological Vocabulary; No. 182; WMO: Geneva, Switzerland, 1992.
  • World Meteorological Organization WMO. (2021). State of Climate in Asia 2021. https://library.wmo.int/records/item/58229-state-of-the-climate-in-asia-2021
  • Zhang, Y.H., & Feng, T.T. (2022). How does the design of personal carbon trading system affect willingness to participate under carbon neutrality goal?—Evidence from a choice experiment. Environmental Science and Pollution Research, 29 (54), 81970-81992.
  • Zhao, Y., Weng, Z., Chen, H., & Yang, J. (2020). Analysis of the evolution of drought, flood, and drought-flood abrupt alternation events under climate change using the daily SWAP index. Water, 12 (7), 1969, 1-23.

İklim adaleti çerçevesinde bazı ülkelerin karbon emisyonlarının karşılaştırmalı analizi

Year 2024, Volume: 29 Issue: 3, 835 - 845
https://doi.org/10.37908/mkutbd.1491458

Abstract

Bu çalışmada, Kyoto Protokolünde kabul edilen sera gazı emisyon değerlerini (1990-2022) küresel ve seçilen bazı ülkeler için farklı ölçeklerde karşılaştırmalı analizi, iklim adaleti ve tarihsel sorumluluk çerçevesinde irdelenmesi amaçlanmaktadır. Çalışmada ABD, Çin, Hindistan, Türkiye, Avustralya, Bahreyn, BAE ve AB karşılaştırılmıştır. Çin, yıllık sera gazı emisyonlarında en hızlı artışı gösteren ülke olmasının yanı sıra 1990-2022 döneminde toplamda 307.178 Gt CO2 eq ile en yüksek emisyon değerine sahip ülke konumundadır. Buna karşılık Bahreyn'in toplam emisyonu 1.6003 Gt CO2 eq’dir. Ancak kişi başına emisyon değeri açısından değerlendirildiğinde, 2022 yılında Çin için bu değer 10.9541 t CO2 eq/yıl iken Bahreyn için 39.2904 t CO2 eq/yıl olarak rapor edilmiştir. Gayrisafi yurt içi hasıla (GSYİH) açısından da iki ülke arasında önemli düzeyde farklılık bulunmaktadır. Çin için (2022 yılı) 0.6107 t CO2 eq/1000 USD/yıl iken aynı yıl Bahreyn için 0.9166 t CO2 eq/1000 USD/yıl olarak belirlenmiştir. Konu alınan ülkelerden Türkiye ve Avustralya karşılaştırıldığında sonuçlar oldukça ilginçtir, çünkü son yılarda yıllık toplam emisyon değerleri birbirine yakın olmasına rağmen Avustralya’nın tarihsel sorumluluğu Türkiye’ye oranla %37 daha fazladır. Bu önemli farklılıklar göstermektedir ki küresel iklim politikalarında yalnızca ülkelerin toplam emisyon değerleri değil aynı zamanda ülkelerin kişi başına düşen emisyon değeri, GSYİH’nın emisyon değerleri ve tarihsel sorumluluklar açısından değerlendirilmesi gerekmektedir.

References

  • Anonim (2022). T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı, İklim Değişikliği Başkanlığı. Birleşmiş Milletler İklim Değişikliği Çerçeve Sözleşmesi. https://iklim.gov.tr/bm-iklim-degisikligi-cerceve-sozlesmesi-i-33
  • Boyce, J.K., Narain, S., & Stanton, E.A. (Eds.). (2007). Reclaiming nature: Environmental justice and ecological restoration. Anthem Press.
  • Crippa, M., Guizzardi, D., Pagani, F., Banja, M., Muntean, M., Schaaf, E., Becker, W., Monforti-Ferrario, F., Quadrelli, R., Risquez Martin, A., Taghavi-Moharamli, P., Köykkä, J., Grassi, G., Rossi, S., Brandao De Melo, J., Oom, D., Branco, A., San-Miguel, J., & Vignati, E. (2023). GHG emissions of all world countries. Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/953332
  • Dong, K., Hochman, G., & Timilsina, G.R. (2020). Do drivers of CO2 emission growth alter overtime and by the stage of economic development?. Energy Policy, 140, 111420, 1-12.
  • Fanning, A.L., & Hickel, J. (2023). Compensation for atmospheric appropriation. Nature Sustainability, 6 (9), 1077-1086.
  • García-Portela, L. (2020). Moral responsibility for climate change loss and damage. Teorema: Revista Internacional de Filosofía, 39 (1), 7-24.
  • Hickel, J. (2020). Quantifying national responsibility for climate breakdown: an equality-based attribution approach for carbon dioxide emissions in excess of the planetary boundary. The Lancet Planetary Health, 4 (9), e399-e404.
  • Hormio, S. (2023). Collective responsibility for climate change. Wiley Interdisciplinary Reviews: Climate Change, 14 (4), e830, 1-14.
  • IPCC. (2001). Climate Change 2001: Impacts, Adaptation and Vulnerability – Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
  • IPCC. (2013). AR5 Climate Change: Physical Science Basis. https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL.pdf
  • Jalles, J.T. (2019). Crises and emissions: New empirical evidence from a large sample. Energy Policy, 129, 880-895.
  • Jones, M.W., Peters, G.P., Gasser, T., Andrew, R.M., Schwingshackl, C., Gütschow, J., Houghton, R.A., Friedlingstein, P., Pongratz, J., & Le Quéré, C. (2023). National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Scientific Data, 10 (1), 155, 1-23.
  • Kour, M. (2023). Modelling and forecasting of carbon-dioxide emissions in South Africa by using ARIMA model. International Journal of Environmental Science and Technology, 20 (10), 11267-11274.
  • Lotfalipour, M.R., Falahi, M.A., & Bastam, M. (2013). Prediction of CO2 emissions in Iran using grey and ARIMA models. International Journal of Energy Economics and Policy, 3 (3), 229-237.
  • Matthews, H.D. (2016). Quantifying historical carbon and climate debts among nations. Nature Climate Change, 6 (1), 60-64.
  • Milly, P.C., & Dunne, K.A. (2016). Potential evapotranspiration and continental drying. Nature Climate Change, 6 (10), 946-949.
  • Moellendorf, D. (2012). Climate change and global justice. Wiley Interdisciplinary Reviews: Climate Change, 3 (2), 131-143.
  • Moss, J., & Kath, R. (2019). Historical emissions and the carbon budget. Journal of Applied Philosophy, 36 (2), 268-289.
  • Notz, D. (2020). A short history of climate change. In EPJ Web of Conferences (Vol. 246, p. 00002). EDP Sciences.
  • Nyoni, T., & Bonga, W.G. (2019). Prediction of CO2 emissions in India using arima models. DRJ-Journal of Economics & Finance, 4 (2), 1-10.
  • Özfidaner, M., Şapolyo, U.D., & Topaloğlu, F. (2019). Determination of the average temperature data: Antalya and Alanya case. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 20, 106-111.
  • Page, E.A. (2011). Climatic justice and the fair distribution of atmospheric burdens: A conjunctive account. The Monist, 94 (3), 412-432.
  • Pickering, J., & Barry, C. (2017). On the concept of climate debt: Its moral and political value. In Global Political Justice (pp. 147-165). Routledge.
  • Shields, L. (2020). Sufficientarianism. Philosophy Compass, 15 (11), 1-10.
  • Topal, E., Özsoy, N., & Şahinler, N. (2016). Küresel ısınma ve arıcılığın geleceği. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 21 (1), 112-120.
  • Ullah, I., Ma, X., Ren, G., Yin, J., Iyakaremye, V., Syed, S., Lu, K., Xing, Y., & Singh, V.P. (2022). Recent changes in drought events over South Asia and their possible linkages with climatic and dynamic factors. Remote Sensing, 14 (13), 3219, 1-20.
  • UNFCCC. (1997). United Nations Framework Convention on Climate Change. Kyoto Climate Change Conference - December 1997.
  • Van der Schrier, G., Jones, P.D., & Briffa, K.R. (2011). The sensitivity of the PDSI to the Thornthwaite and Penman‐Monteith parameterizations for potential evapotranspiration. Journal of Geophysical Research: Atmospheres, 116 (D3), 1-16.
  • World Meteorological Organization. (WMO). International Meteorological Vocabulary; No. 182; WMO: Geneva, Switzerland, 1992.
  • World Meteorological Organization WMO. (2021). State of Climate in Asia 2021. https://library.wmo.int/records/item/58229-state-of-the-climate-in-asia-2021
  • Zhang, Y.H., & Feng, T.T. (2022). How does the design of personal carbon trading system affect willingness to participate under carbon neutrality goal?—Evidence from a choice experiment. Environmental Science and Pollution Research, 29 (54), 81970-81992.
  • Zhao, Y., Weng, Z., Chen, H., & Yang, J. (2020). Analysis of the evolution of drought, flood, and drought-flood abrupt alternation events under climate change using the daily SWAP index. Water, 12 (7), 1969, 1-23.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering (Other)
Journal Section Araştırma Makalesi
Authors

Gülüzar Duygu Semiz 0000-0003-2070-0496

Elifnaz Torun 0000-0003-1712-3819

Afshın Shahbazı 0000-0002-7632-0495

Engin Yurtseven 0000-0001-6789-8810

Early Pub Date December 3, 2024
Publication Date
Submission Date May 28, 2024
Acceptance Date August 29, 2024
Published in Issue Year 2024 Volume: 29 Issue: 3

Cite

APA Semiz, G. D., Torun, E., Shahbazı, A., Yurtseven, E. (2024). İklim adaleti çerçevesinde bazı ülkelerin karbon emisyonlarının karşılaştırmalı analizi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 29(3), 835-845. https://doi.org/10.37908/mkutbd.1491458

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download