Research Article
BibTex RIS Cite

Tasarım Davranış Spektrumunun Saha Etkisi Dikkate Alınarak Değerlendirilmesi: Kocaeli Bölgesi Uygulaması, Türkiye

Year 2024, Volume: 6 Issue: 1, 40 - 57, 30.04.2024
https://doi.org/10.47112/neufmbd.2024.31

Abstract

Yeni yapılacak olan veya mevcut binaların güçlendirilmesinde deprem ivme hareketleri önemli bir rol oynamaktadır. Bu nedenle, modern deprem tasarım kodları, uygulama mühendislerine, farklı zemin sınıfları için standart tasarım davranış spektrumu sağlamaktadır. Bu çalışmada, yüksek depremselliğe sahip Kocaeli bölgesindeki EC8 ve TBDY tasarım davranış spektrumu uygulamaları değerlendirilmektedir. Bu amaçla, öncelikle Kocaeli bölgesinin depremselliği, 17 Ağustos 1999 (Kocaeli) depremini de dikkate alarak, sunulmuştur. İkinci olarak, bu iki kodun tasarım davranış spektrumları birbirleriyle ve dört farklı zemin sınıfında kaydedilen gerçek ivme hareketlerinin spektral davranış eğrileri ile karşılaştırılmıştır. Daha sonra iki betonarme bina modelleri davranış spektrum analizleri ile incelenmiştir. Geçmiş sismik hareketler göz önüne alındığında, bölgenin her zaman büyüklüğü 5.0'den büyük olan deprem olaylarına eğilimli olduğu görülmektedir. Ayrıca Kocaeli deprem ivme hareketlerinin zemin özelliklerine bağlı olarak değiştikleri gözlemlenmiştir. Bunun yanında, her iki deprem tasarım kodları da Kocaeli bölgesindeki her zemin sınıfında gerçek spektral değerlerini kapsayan tasarım davranış spektrumu sağlamaktadır. Bina analizlerinin sonuçları, EC8 tasarım tepki spektrumları ile elde edilen kesme kuvvetlerinin TBEC ve gerçek deprem spektral ivme değerlerinin kullanıldığı durumda elde edilen kesme kuvvetlerinden daha muhafazakar sonuçlar verdiği görülmektedir.

References

  • I. Iervolino, G. Manfredi, A Review of Ground Motion Record Selection Strategies for Dynamic Structural Analysis, In: Bursi, OS, Wagg D (eds.) Modern Testing Techniques for Structural Systems, Springer Science & Business Media, 2008, 131-163
  • C. Galasso, I. Iervolino, Relevant and minor criteria in real record selection procedures based on spectral compatibility, XIV Convegno Associazione Nazionale Italiana di Ingegneria Sismica ANIDIS, Bari, Italy, 2011.
  • S.L. Kramer, Geotechnical Earthquake Engineering, Prentice-Hall International Limited, London, UK, 1996.
  • D. Gautam, G. Forte, H. Rodrigues, Site effects and associated structural damage analysis in Kathmandu Valley, Nepal, Earthquake and Structures. 10(5) (2016), 1013-1032. doi:10.12989/eas.2016.10.5.1013
  • A. Sextos, R. De Risi, A. Pagliaroli, et al., Local site effects and incremental damage of buildings during the 2016 Central Italy Earthquake sequence, Earthquake Spectra. 34(4) (2018), 1639-1669. doi:10.1193/100317EQS194M
  • A. Akinci, D. Chelon, A.A. Dindar, The 30 October 2020, M7.0 Samos Island (Eastern Aegean Sea) Earthquake: effects of source rupture, path and local-site conditions on the observed and simulated ground motions, Bulletin of Earthquake Engineering. 19(12) (2021), 4745-4771. doi:10.1007/s10518-021-01146-5
  • G. Forte, E. Chioccarelli, M. De Falco, P. Cito, A. Santo, I. Iervolino, Seismic soil classification of Italy based on surface geology and shear-wave velocity measurements, Soil Dynamics and Earthquake Engineering. 122 (2019), 79-93. doi:10.1016/j.soildyn.2019.04.002
  • L.F. Sá, A.Morales-Esteban, P.D. Neyra, A deterministic seismic risk macrozonation of Seville, Arabian Journal of Geosciences. 14(22) (2021), 1-21. doi:10.1007/s12517-021-08626-7
  • N.A. Abrahamson,W.J. Silva, Empirical response spectral attenuation relations for shallow crustal earthquakes, Seismological Research Letters. 68(1) (1997), 94–127.
  • D.M. Boore, W.B. Joyner, T.E. Fumal, Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: A summary of recent work, Seismological Research Letters. 68(1) (1997), 128–153. doi:10.1785/gssrl.76.3.368
  • K.W. Campbell, Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relations in eastern North America, Bulletin of Seismological Society of America. 93(3) (2003), 1012–1033. doi:10.1785/0120020002
  • N.N. Ambraseys, J. Douglas, S.K. Sarma, P.M. Smit, Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: Horizontal peak ground acceleration and spectral acceleration, Bulletin of Earthquake Engineering. 3(1) (2005), 1–53. doi:10.1007/s10518-005-0183-0
  • I.M. Idriss, An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes, Earthquake Spectra. 24(1) (2008), 217–242. doi:10.1193/1.2924362
  • R.D. Borcherd, Estimates of site-dependent response spectra for design (methodology and justification, Earthquake spectra. 10(4) (1994), 617-653. doi:10.1193/1.1585791
  • R.D. Borcherdt, G. Glassmoyer, On the characteristics of local geology and their influence on ground motions generated by the Loma Prieta earthquake in the San Franciso Bay region, California, Bulletin of the Seismological Society of America. 82(2) (1992), 603-641. doi:10.1785/BSSA0820020603
  • C. Comina, S. Foti, D. Boiero, L.V. Socco, Reliability of VS,30 evaluation from surface-wave tests, Journal of Geotechnical and Geoenvironmental Engineering. 137(6) (2011), 579-586. doi:10.1061/(ASCE)GT.1943-5606.0000452
  • K. Pitilakis, D. Raptakis, K. Lontzetidis, T. Tika-Vassilikou, D. Jongmans, Geotechnical and geophysical description of euro-seistest, using field, laboratory tests and moderate strong motion recordings, Journal of Earthquake Engineering. 3(3) (1999), 381-409. doi:10.1080/13632469909350352
  • S. Fabbrocino, G. Lanzano, G. Forte, F.S. de Magistris, G. Fabbrocino, SPT blow count vs. shear wave velocity relationship in the structurally complex formations of the Molise Region (Italy), Engineering Geology. 187 (2015), 84-97. doi:10.1016/j.enggeo.2014.12.016
  • J.A. Blume, R. Sharpe, J.S. Dalal, J.A. Blume, Recommendations for shape of earthquake response spectra, Rep. No. WASH-1254, John A. Blume and Associates, Washington DC, 1973.
  • N.M. Newmark, J.A. Blume, K.K. Kapur Seismic design spectra for nuclear power plants. Journal of the Power Division Proceeding of the American Society of Civil Engineers, 99(PO2) (1973)
  • M.D. Trifunac, Early history of the response spectrum method, Soil Dynamics and Earthquake Engineering. 28(9) (2007), 676-685. doi:10.1016/j.soildyn.2007.10.014
  • American Society of Civil Engineers, Minimum design loads and associated criteria for buildings and other structures, American Society of Civil Engineers, 2017.
  • CEN (2005), Eurocode 8: Design of structures for earthquake resistance–Part 1: General rules, seismic actions and rules for buildings, Brussels, 2005.
  • Turkish Building Earthquake Code, Turkiye Bina Deprem Yonetmeligi, Deprem Etkisi Altında Binaların Tasarımı icin Esaslar, Ankara, Turkey, 2018.
  • W. Wen W, D. Ji, C. Zhai, X. Li, P. Sun, Damage spectra of the mainshock-aftershock ground motions at soft soil sites, Soil Dynamics and Earthquake Engineering. 115 (2018), 815-825. doi:10.1016/j.soildyn.2018.08.016
  • Y. Guzel, Influence of input motion selection and soil variability on nonlinear ground response analyses, (PhD), Newcastle University, UK, 2019.
  • E. Yao, W. Li, Y. Miao, L. Ye Z. Yang, Study on the Influence of a Soft Soil Interlayer on Spatially Varying Ground Motion, Journal of Applied Sciences. 12(3) (2022), 1322. doi:10.3390/app12031322
  • J. Rey, E. Faccioli, J.J. Bommer, Derivation of design soil coefficients (S) and response spectral shapes for Eurocode 8 using the European Strong-Motion Database, Journal of Seismology. 6(4) (2002), 547-555.
  • G. Pousse, C. Berge-Thierry, L.F. Bonilla, P.Y. Bard, Eurocode 8 design response spectra evaluation using the K-net Japanese database, Journal of Earthquake Engineering. 9(4) (2005), 547-574. http://doi.org/10.1080/13632460509350555.
  • K. Pitilakis, E. Riga, A. Anastasiadis, Design spectra and amplification factors for Eurocode 8, Bulletin of Earthquake Engineering. 10(5) (2012), 1377-1400. http://doi.org/10.1007/s10518-012-9367-6.
  • K. Pitilakis, E. Riga, A. Anastasiadis, Towards the revision of EC8: Proposal for an alternative site classification scheme and associated intensity-dependent amplification factors. In 17th World Conference on Earthquake Engineering, Sendai, Japan, September, 2020.
  • H.P. Gülkan, V.H. Akansel, E. Kalkan, Response spectrum shapes implied by earthquakes in Turkey: comparisons with design spectra, Journal of Seismology. 27(4) (2023), 681-692.
  • V.H. Akansel, F. Soysal, K. Kadaş, P. Gülkan, Spektrum şiddeti perspektifinden 2018 Türkiye deprem tehlike haritası değerlendirmesi, Türk Deprem Araştırma Dergisi. 2(2) (2020), 115-137.
  • A. Bozer, Tasarım spektral ivme katsayılarının DBYBHY 2007 ve TBDY 2018 yönetmeliklerine göre karşılaştırması, Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi. 11(1) (2020), 393-404.
  • C. Scawthorn, G.S. Johnson, Preliminary report: Kocaeli (Izmit) earthquake of 17 August 1999, Engineering Structures. 22(7) (2000), 727-745. doi:10.1016/S0141-0296(99)00106-6
  • Turkish Building Earthquake Code, Deprem Bölgelerinde Yapılacak Binalar Hakkında Esaslar, Ankara, Turkey, 2007.
  • C. Rangin, A.G. Bader, G. Pascal, B. Ecevitoǧlu, N. Görür, Deep structure of the Mid Black Sea High (offshore Turkey) imaged by multi-channel seismic survey (BLACKSIS cruise). Marine Geology, 182(3-4) (2002), 265-278. doi:10.1016/S0025-3227(01)00236-5
  • F. Bulut, M. Bohnhoff, T. Eken, C. Janssen, T. Kılıç, G. Dresen, The East Anatolian Fault Zone: Seismotectonic setting and spatiotemporal characteristics of seismicity based on precise earthquake locations, Journal of Geophysical Research: Solid Earth. 117(B7) (2017). doi:10.1029/2011JB008966
  • H. Yavaşoğlu, E. Tarı, O. Tüysüz, Z. Çakır, S. Ergintav, Determining and modeling tectonic movements along the central part of the North Anatolian Fault (Turkey) using geodetic measurements, Journal of Geodynamics. 51(5) (2011), 339-343. doi:10.1016/j.jog.2010.07.003
  • USGS, Implications for Earthquake Risk Reduction in the United States from the Kocaeli, Turkey, Earthquake of August 17, 1999, US Geological Survey Circular 1193.
  • M.N. Toksoz, R.E. Reilinger, C.G. Doll, A.A. Barka, N. Yalcin, Izmit (Turkey) earthquake of 17 August 1999: first report, Seismological Research Letters. 70(6) (1999), 669-679. doi:10.1785/gssrl.70.6.669
  • S. Dalgıç, Factors affecting the greater damage in the Avcılar area of Istanbul during the 17 August 1999 Izmit earthquake, Bulletin of the Engineering Geology and Environment. 63(3) (2004), 221-232. doi:.1007/s10064-004-0234-9
  • K.W. Campbell, Near-source attenuation of peak horizontal acceleration, Bulletin Seismological Society of America. 71(6) (1981), 2039-2070. doi:10.1785/BSSA0710062039
  • I.M. Idriss, Procedures for selecting earthquake ground motions at rock sites, US Department of Commerce: National Institute of Standards and Technology, 1991.45] R. Ulusay, E. Tuncay, H. Sonmez, C. Gokceoglu, An attenuation relationship based on Turkish strong motion data and iso-acceleration map of Turkey, Engineering Geology. 74(3-4) (2004), 265-291. doi:10.1016/J.ENGGEO.2004.04.002
  • Disaster and Emergency Management Precidency (AFAD) (2023). Web page for earthquake data in and around Turkey. https://deprem.afad.gov.tr/ddakatalogu/ last accessed 15.01.2023.
  • K. Pitilakis, E. Riga, A. Anastasiadis, New code site classification, amplification factors and normalized response spectra based on a worldwide ground-motion database, Bulletin of Earthquake Engineering. 11(4) (2013), 925-966. doi:10.1007/s10518-013-9429-4
  • Computers and structures, ETABS: Extended three-dimensional analysis of building systems, Version 9.0, Berkeley, 2018.

Considerations of Design Response Spectrum Involving Site Effect: Application to the Kocaeli Region, Türkiye

Year 2024, Volume: 6 Issue: 1, 40 - 57, 30.04.2024
https://doi.org/10.47112/neufmbd.2024.31

Abstract

Earthquake input motions perform critical role in the design of new or retrofitting of existing buildings. Therefore, modern seismic design codes guide engineering practitioners in delivering standard design response spectra for different soil classes. In this study, the applications of EC8 and TBEC design response spectra in the high-seismicity region of Kocaeli are evaluated. For that purpose, firstly, the seismicity of Kocaeli region involving the 17 August 1999 (Kocaeli) earthquake event is presented. Secondly, design response spectra of these two codes are compared with each other and with the spectral response curves of the actual input motions recorded at four different soil classes. Later, two reinforced concrete building models are analyzed by means of response spectrum analyses. Based on past seismic activities, the area is always prone to earthquake events, possibly occurring with magnitudes greater than 5.0. Also, the characteristics of the Kocaeli earthquake input motions were shown to be altered by the changes in the soil deposits. Besides, both seismic design codes are able to provide design response spectra covering the actual spectral values well at each soil class in the Kocaeli region. The results of building analyses suggest that the EC8 design response spectra offer more conservative building shear forces, followed by the TBEC and the actual ones.

References

  • I. Iervolino, G. Manfredi, A Review of Ground Motion Record Selection Strategies for Dynamic Structural Analysis, In: Bursi, OS, Wagg D (eds.) Modern Testing Techniques for Structural Systems, Springer Science & Business Media, 2008, 131-163
  • C. Galasso, I. Iervolino, Relevant and minor criteria in real record selection procedures based on spectral compatibility, XIV Convegno Associazione Nazionale Italiana di Ingegneria Sismica ANIDIS, Bari, Italy, 2011.
  • S.L. Kramer, Geotechnical Earthquake Engineering, Prentice-Hall International Limited, London, UK, 1996.
  • D. Gautam, G. Forte, H. Rodrigues, Site effects and associated structural damage analysis in Kathmandu Valley, Nepal, Earthquake and Structures. 10(5) (2016), 1013-1032. doi:10.12989/eas.2016.10.5.1013
  • A. Sextos, R. De Risi, A. Pagliaroli, et al., Local site effects and incremental damage of buildings during the 2016 Central Italy Earthquake sequence, Earthquake Spectra. 34(4) (2018), 1639-1669. doi:10.1193/100317EQS194M
  • A. Akinci, D. Chelon, A.A. Dindar, The 30 October 2020, M7.0 Samos Island (Eastern Aegean Sea) Earthquake: effects of source rupture, path and local-site conditions on the observed and simulated ground motions, Bulletin of Earthquake Engineering. 19(12) (2021), 4745-4771. doi:10.1007/s10518-021-01146-5
  • G. Forte, E. Chioccarelli, M. De Falco, P. Cito, A. Santo, I. Iervolino, Seismic soil classification of Italy based on surface geology and shear-wave velocity measurements, Soil Dynamics and Earthquake Engineering. 122 (2019), 79-93. doi:10.1016/j.soildyn.2019.04.002
  • L.F. Sá, A.Morales-Esteban, P.D. Neyra, A deterministic seismic risk macrozonation of Seville, Arabian Journal of Geosciences. 14(22) (2021), 1-21. doi:10.1007/s12517-021-08626-7
  • N.A. Abrahamson,W.J. Silva, Empirical response spectral attenuation relations for shallow crustal earthquakes, Seismological Research Letters. 68(1) (1997), 94–127.
  • D.M. Boore, W.B. Joyner, T.E. Fumal, Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: A summary of recent work, Seismological Research Letters. 68(1) (1997), 128–153. doi:10.1785/gssrl.76.3.368
  • K.W. Campbell, Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relations in eastern North America, Bulletin of Seismological Society of America. 93(3) (2003), 1012–1033. doi:10.1785/0120020002
  • N.N. Ambraseys, J. Douglas, S.K. Sarma, P.M. Smit, Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: Horizontal peak ground acceleration and spectral acceleration, Bulletin of Earthquake Engineering. 3(1) (2005), 1–53. doi:10.1007/s10518-005-0183-0
  • I.M. Idriss, An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes, Earthquake Spectra. 24(1) (2008), 217–242. doi:10.1193/1.2924362
  • R.D. Borcherd, Estimates of site-dependent response spectra for design (methodology and justification, Earthquake spectra. 10(4) (1994), 617-653. doi:10.1193/1.1585791
  • R.D. Borcherdt, G. Glassmoyer, On the characteristics of local geology and their influence on ground motions generated by the Loma Prieta earthquake in the San Franciso Bay region, California, Bulletin of the Seismological Society of America. 82(2) (1992), 603-641. doi:10.1785/BSSA0820020603
  • C. Comina, S. Foti, D. Boiero, L.V. Socco, Reliability of VS,30 evaluation from surface-wave tests, Journal of Geotechnical and Geoenvironmental Engineering. 137(6) (2011), 579-586. doi:10.1061/(ASCE)GT.1943-5606.0000452
  • K. Pitilakis, D. Raptakis, K. Lontzetidis, T. Tika-Vassilikou, D. Jongmans, Geotechnical and geophysical description of euro-seistest, using field, laboratory tests and moderate strong motion recordings, Journal of Earthquake Engineering. 3(3) (1999), 381-409. doi:10.1080/13632469909350352
  • S. Fabbrocino, G. Lanzano, G. Forte, F.S. de Magistris, G. Fabbrocino, SPT blow count vs. shear wave velocity relationship in the structurally complex formations of the Molise Region (Italy), Engineering Geology. 187 (2015), 84-97. doi:10.1016/j.enggeo.2014.12.016
  • J.A. Blume, R. Sharpe, J.S. Dalal, J.A. Blume, Recommendations for shape of earthquake response spectra, Rep. No. WASH-1254, John A. Blume and Associates, Washington DC, 1973.
  • N.M. Newmark, J.A. Blume, K.K. Kapur Seismic design spectra for nuclear power plants. Journal of the Power Division Proceeding of the American Society of Civil Engineers, 99(PO2) (1973)
  • M.D. Trifunac, Early history of the response spectrum method, Soil Dynamics and Earthquake Engineering. 28(9) (2007), 676-685. doi:10.1016/j.soildyn.2007.10.014
  • American Society of Civil Engineers, Minimum design loads and associated criteria for buildings and other structures, American Society of Civil Engineers, 2017.
  • CEN (2005), Eurocode 8: Design of structures for earthquake resistance–Part 1: General rules, seismic actions and rules for buildings, Brussels, 2005.
  • Turkish Building Earthquake Code, Turkiye Bina Deprem Yonetmeligi, Deprem Etkisi Altında Binaların Tasarımı icin Esaslar, Ankara, Turkey, 2018.
  • W. Wen W, D. Ji, C. Zhai, X. Li, P. Sun, Damage spectra of the mainshock-aftershock ground motions at soft soil sites, Soil Dynamics and Earthquake Engineering. 115 (2018), 815-825. doi:10.1016/j.soildyn.2018.08.016
  • Y. Guzel, Influence of input motion selection and soil variability on nonlinear ground response analyses, (PhD), Newcastle University, UK, 2019.
  • E. Yao, W. Li, Y. Miao, L. Ye Z. Yang, Study on the Influence of a Soft Soil Interlayer on Spatially Varying Ground Motion, Journal of Applied Sciences. 12(3) (2022), 1322. doi:10.3390/app12031322
  • J. Rey, E. Faccioli, J.J. Bommer, Derivation of design soil coefficients (S) and response spectral shapes for Eurocode 8 using the European Strong-Motion Database, Journal of Seismology. 6(4) (2002), 547-555.
  • G. Pousse, C. Berge-Thierry, L.F. Bonilla, P.Y. Bard, Eurocode 8 design response spectra evaluation using the K-net Japanese database, Journal of Earthquake Engineering. 9(4) (2005), 547-574. http://doi.org/10.1080/13632460509350555.
  • K. Pitilakis, E. Riga, A. Anastasiadis, Design spectra and amplification factors for Eurocode 8, Bulletin of Earthquake Engineering. 10(5) (2012), 1377-1400. http://doi.org/10.1007/s10518-012-9367-6.
  • K. Pitilakis, E. Riga, A. Anastasiadis, Towards the revision of EC8: Proposal for an alternative site classification scheme and associated intensity-dependent amplification factors. In 17th World Conference on Earthquake Engineering, Sendai, Japan, September, 2020.
  • H.P. Gülkan, V.H. Akansel, E. Kalkan, Response spectrum shapes implied by earthquakes in Turkey: comparisons with design spectra, Journal of Seismology. 27(4) (2023), 681-692.
  • V.H. Akansel, F. Soysal, K. Kadaş, P. Gülkan, Spektrum şiddeti perspektifinden 2018 Türkiye deprem tehlike haritası değerlendirmesi, Türk Deprem Araştırma Dergisi. 2(2) (2020), 115-137.
  • A. Bozer, Tasarım spektral ivme katsayılarının DBYBHY 2007 ve TBDY 2018 yönetmeliklerine göre karşılaştırması, Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi. 11(1) (2020), 393-404.
  • C. Scawthorn, G.S. Johnson, Preliminary report: Kocaeli (Izmit) earthquake of 17 August 1999, Engineering Structures. 22(7) (2000), 727-745. doi:10.1016/S0141-0296(99)00106-6
  • Turkish Building Earthquake Code, Deprem Bölgelerinde Yapılacak Binalar Hakkında Esaslar, Ankara, Turkey, 2007.
  • C. Rangin, A.G. Bader, G. Pascal, B. Ecevitoǧlu, N. Görür, Deep structure of the Mid Black Sea High (offshore Turkey) imaged by multi-channel seismic survey (BLACKSIS cruise). Marine Geology, 182(3-4) (2002), 265-278. doi:10.1016/S0025-3227(01)00236-5
  • F. Bulut, M. Bohnhoff, T. Eken, C. Janssen, T. Kılıç, G. Dresen, The East Anatolian Fault Zone: Seismotectonic setting and spatiotemporal characteristics of seismicity based on precise earthquake locations, Journal of Geophysical Research: Solid Earth. 117(B7) (2017). doi:10.1029/2011JB008966
  • H. Yavaşoğlu, E. Tarı, O. Tüysüz, Z. Çakır, S. Ergintav, Determining and modeling tectonic movements along the central part of the North Anatolian Fault (Turkey) using geodetic measurements, Journal of Geodynamics. 51(5) (2011), 339-343. doi:10.1016/j.jog.2010.07.003
  • USGS, Implications for Earthquake Risk Reduction in the United States from the Kocaeli, Turkey, Earthquake of August 17, 1999, US Geological Survey Circular 1193.
  • M.N. Toksoz, R.E. Reilinger, C.G. Doll, A.A. Barka, N. Yalcin, Izmit (Turkey) earthquake of 17 August 1999: first report, Seismological Research Letters. 70(6) (1999), 669-679. doi:10.1785/gssrl.70.6.669
  • S. Dalgıç, Factors affecting the greater damage in the Avcılar area of Istanbul during the 17 August 1999 Izmit earthquake, Bulletin of the Engineering Geology and Environment. 63(3) (2004), 221-232. doi:.1007/s10064-004-0234-9
  • K.W. Campbell, Near-source attenuation of peak horizontal acceleration, Bulletin Seismological Society of America. 71(6) (1981), 2039-2070. doi:10.1785/BSSA0710062039
  • I.M. Idriss, Procedures for selecting earthquake ground motions at rock sites, US Department of Commerce: National Institute of Standards and Technology, 1991.45] R. Ulusay, E. Tuncay, H. Sonmez, C. Gokceoglu, An attenuation relationship based on Turkish strong motion data and iso-acceleration map of Turkey, Engineering Geology. 74(3-4) (2004), 265-291. doi:10.1016/J.ENGGEO.2004.04.002
  • Disaster and Emergency Management Precidency (AFAD) (2023). Web page for earthquake data in and around Turkey. https://deprem.afad.gov.tr/ddakatalogu/ last accessed 15.01.2023.
  • K. Pitilakis, E. Riga, A. Anastasiadis, New code site classification, amplification factors and normalized response spectra based on a worldwide ground-motion database, Bulletin of Earthquake Engineering. 11(4) (2013), 925-966. doi:10.1007/s10518-013-9429-4
  • Computers and structures, ETABS: Extended three-dimensional analysis of building systems, Version 9.0, Berkeley, 2018.
There are 47 citations in total.

Details

Primary Language English
Subjects Earthquake Engineering
Journal Section Articles
Authors

Yusuf Guzel 0000-0003-2957-8060

Fidan Güzel 0000-0002-3204-5305

Publication Date April 30, 2024
Acceptance Date January 2, 2024
Published in Issue Year 2024 Volume: 6 Issue: 1

Cite

APA Guzel, Y., & Güzel, F. (2024). Considerations of Design Response Spectrum Involving Site Effect: Application to the Kocaeli Region, Türkiye. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 6(1), 40-57. https://doi.org/10.47112/neufmbd.2024.31
AMA Guzel Y, Güzel F. Considerations of Design Response Spectrum Involving Site Effect: Application to the Kocaeli Region, Türkiye. NEJSE. April 2024;6(1):40-57. doi:10.47112/neufmbd.2024.31
Chicago Guzel, Yusuf, and Fidan Güzel. “Considerations of Design Response Spectrum Involving Site Effect: Application to the Kocaeli Region, Türkiye”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 6, no. 1 (April 2024): 40-57. https://doi.org/10.47112/neufmbd.2024.31.
EndNote Guzel Y, Güzel F (April 1, 2024) Considerations of Design Response Spectrum Involving Site Effect: Application to the Kocaeli Region, Türkiye. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 6 1 40–57.
IEEE Y. Guzel and F. Güzel, “Considerations of Design Response Spectrum Involving Site Effect: Application to the Kocaeli Region, Türkiye”, NEJSE, vol. 6, no. 1, pp. 40–57, 2024, doi: 10.47112/neufmbd.2024.31.
ISNAD Guzel, Yusuf - Güzel, Fidan. “Considerations of Design Response Spectrum Involving Site Effect: Application to the Kocaeli Region, Türkiye”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 6/1 (April 2024), 40-57. https://doi.org/10.47112/neufmbd.2024.31.
JAMA Guzel Y, Güzel F. Considerations of Design Response Spectrum Involving Site Effect: Application to the Kocaeli Region, Türkiye. NEJSE. 2024;6:40–57.
MLA Guzel, Yusuf and Fidan Güzel. “Considerations of Design Response Spectrum Involving Site Effect: Application to the Kocaeli Region, Türkiye”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 6, no. 1, 2024, pp. 40-57, doi:10.47112/neufmbd.2024.31.
Vancouver Guzel Y, Güzel F. Considerations of Design Response Spectrum Involving Site Effect: Application to the Kocaeli Region, Türkiye. NEJSE. 2024;6(1):40-57.


32206                   17157           17158