Derleme
BibTex RIS Kaynak Göster

Geleneksel et üretimi ve tüketimine alternatif: Et analogları

Yıl 2023, Cilt: 12 Sayı: 1, 159 - 174, 15.01.2023
https://doi.org/10.28948/ngumuh.1159590

Öz

Son yıllarda popülaritesi artan ve yeni ürün grupları arasında yer alan et analogları, çoğunlukla bitkisel proteinlerin hammadde olarak kullanıldığı ve son ürüne eti andıran formun kazandırılmasına dayalı ürünlerdir. Et analogları üretiminde baklagillerden yağlı tohumlara, buğdaydan alglere kadar birçok bitkisel kaynak hammadde olarak kullanılabilmekte, hammadde özelliklerine göre aroma arttırıcı ve renk verici gibi katkı ilavesi yapılarak ürüne istenilen özellikler kazandırılabilmektedir. Nihai ürün formunda et benzeri özellikler elde etmek için tüm hammaddeler ve katkı maddeleri geleneksel ve/veya modern işleme teknikleri ile işlenir. Bu işleme teknikleri arasında ekstrüzyon, yaygın olarak kullanılan ve kabul edilen bir yöntem olarak bilinmektedir. Et analoglarının hayvansal ürünlere ikame olarak tüketici tarafındaki kabul edilebilirliği, hammadde ve katkılar ile kullanılan üretim tekniğinin ürüne kazandırdığı kalite özelliklerine göre şekillenmektedir. Yakın gelecekte et analoglarının tüketim alışkanlıklarında yaygın yer bulacağı öngörülmektedir. Bu nedenle, üretime katılan bileşenler üzerine araştırmaların artması, üretim teknolojilerinin kullanımının yaygınlaşması ve geliştirilmesi ile üretime yönelik yasal düzenlemelerin yapılması kaçınılmaz olacaktır. Bu çalışmada yeni bir gıda olarak et analoğu ve kavramı, üretimin başlangıcından tüketici kabulüne kadar geniş bir perspektiften ele alınmıştır.

Kaynakça

  • C. Sun, J. Ge, J. He, R. Gan and Y. Fang, Processing, quality, safety, and acceptance of meat analogue products. Engineering, 7 (5), 674-678, 2021. https://doi.org/10.1016/j.eng.2020.10.011.
  • A. Nardone, B. Ronchi, N. Lacetera, M. S. Ranieri, and U. Bernabucci, Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science, 130 (1-3), 57-69, 2010. https://doi.org/10.1016/j.livsci.2010.02.011.
  • P. R. Ehrlich and J. Harte, Opinion: to feed the world in 2050 will require a global revolution. Proceedings of the National Academy of Sciences, 112 (48), 14743-14744, 2015. https://doi.org/10.1073/pnas.1519841112.
  • FAO, Climate change, agriculture and food security. The State of Food and Agriculture, Rome, 2016.
  • T. King, M. Cole, J. M. Farber, G. Eisenbrand, D. Zabaras, E. M. Fox and J. P. Hill, Food safety for food security: Relationship between global megatrends and developments in food safety. Trends in Food Science & Technology, 68, 160-175, 2017. https://doi.org/10.1016/j.tifs.2017.08.014.
  • T. G. Benton, R. Bailey, A. Froggatt, R. King, B. Lee and L. Wellesley, Designing sustainable land use in a 1.5C world: The complexities of projecting multiple ecosystem services from land. Current Opinion in Environmental Sustainability, 31, 88-95, 2018. https://doi.org/10.1016/j.cosust.2018.01.011.
  • T. He and C. Li, Harness the power of genomic selection and the potential of germplasm in crop breeding for global food security in the era with rapid climate change. The Crop Journal, 8 (5), 688-700. 2020. https://doi.org/10.1016/j.cj.2020.04.005.
  • K. Kyriakopoulou, J. K. Keppler and A. J. van der Goot, Functionality of ingredients and additives in plant-based meat analogues. Foods, 10 (3), 600, 2021. https://doi.org/10.3390/foods10030600.
  • M. Singh, N. Trivedi, M. K. Enamala, C. Kuppam, P. Parikh, M. P. Nikolova and M. Chavali, Plant-based meat analogue (PBMA) as a sustainable food: A concise review. European Food Research and Technology, 247 (10), 2021. https://doi.org/10.1007/s00217-021-03810-1.
  • K. Kyriakopoulou, B. Dekkers and A. J. van der Goot, Plant-based meat analogues. In Sustainable meat production and processing. C. M. Galanakis, Eds. Academic Press, pp. 103-126, 2019.
  • M. Garcia-Vaquero and M. Hayes, Red and green macroalgae for fish and animal feed and human functional food development. Food Reviews International, 32 (1), 15-45, 2016. https://doi.org/10.1080/87559129.2015.1041184.
  • K. Hua, J. M. Cobcroft, A. Cole, K. Condon, D. R. Jerry, A. Mangott, C. Praeger, M. J. Vucko, C. Zeng, K. Zenger and J. M. Strugnell, The future of aquatic protein: Implications for protein sources in aquaculture diets. One Earth, 1 (3), 316-329, 2019. https://doi.org/10.1016/j.oneear.2019.10.018.
  • H. Nadeeshani, A. Hassouna and J. Lu, Proteins extracted from seaweed Undaria pinnatifida and their potential uses as foods and nutraceuticals. Critical Reviews in Food Science and Nutrition, 1-17, 2021. https://doi.org/10.1080/10408398.2021.1898334.
  • P. Singh, R. Kumar, S. N. Sabapathy and A. S. Bawa, Functional and edible uses of soy protein products. Comprehensive Reviews in Food Science and Food Safety, 7 (1), 14–28, 2008. https://doi.org/10.1111/j.1541-4337.2007.00025.x.
  • A. G. Tarone, L. H. Fasolin, F. D. A. Perrechil, M. D. Hubinger and R. L. Cunha, Influence of drying conditions on the gelling properties of the 7S and 11S soy protein fractions. Food and Bioproducts Processing, 91, 111–120, 2013. https://doi.org/10.1016/j.fbp.2012.11.010.
  • O. P. Malav, S. Talukder, P. Gokulakrishnan and S. Chand, Meat analog: A review. Critical Reviews in Food Science and Nutrition, 55 (9), 1241–1245, 2015. https://doi.org/10.1080/10408398.2012.689381.
  • C. Wu, Y. Hua, Y. Chen, X. Kong and C. Zhang, Effect of temperature, ionic strength and 11S ratio on the rheological properties of heat-induced soy protein gels in relation to network proteins content and aggregates size. Food Hydrocolloids, 66, 389–395, 2017. https://doi.org/10.1016/j.foodhyd.2016.12.007.
  • L. Zhu, P. Yin, T. Xie, X. Liu, L. Yang, S. Wang, J. Li and H. Liu, Interaction between soya saponin and soy β-conglycinin or glycinin: Air-water interfacial behavior and foaming property of their mixtures. Colloids and Surfaces B: Biointerfaces, 186, 110707, 2020. https://doi.org/10.1016/j.colsurfb.2019.110707.
  • J. H. Chiang, S. M. Loveday, A. K. Hardacre and M. E. Parker, Effects of soy protein to wheat gluten ratio on the physicochemical properties of extruded meat analogues. Food Structure, 19, 100102, 2019. https://doi.org/10.1016/j.foostr.2018.11.002.
  • F. A. A. Abdullah, D. Dordevic, E. Kabourkova, J. Zemancová and S. Dordevic, Antioxidant and Sensorial Properties: Meat Analogues versus Conventional Meat Products. Processes, 10(9), 1864, 2022. https://doi.org/10.3390/pr10091864.
  • C. N. Haidar, E. Coscueta, E. Cordisco, B.B. Nerli and L. P. Malpiedi, Aqueous micellar two-phase system as an alternative method to selectively remove soy antinutritional factors. LWT, 93, 665–672, 2018. https://doi.org/10.1016/j.lwt.2018.04.025.
  • L. Day, Wheat gluten: Production, properties and application. In Handbook of Food Proteins. G.O. Phillips and P.A. Williams Eds. Elsevier, Amsterdam, The Netherlands, pp. 267–288, 2011.
  • S. Barak, D. Mudgil and B. S. Khatkar, Influence of gliadin and glutenin fractions on rheological, pasting, and textural properties of dough. International Journal of Food Properties, 17, 1428–1438, 2014. https://doi.org/10.1080/10942912.2012.717154.
  • G. A. Krintiras, J. Göbel, A. J. Van der Goot and G. D. Stefanidis, Production of structured soy-based meat analogues using simple shear and heat in a couette cell. Journal of Food Engineering, 160, 34-41, 2015. https://doi.org/10.1016/j.jfoodeng.2015.02.015.
  • I. Zahari, F. Ferawati, A. Helstad, C. Ahlström, K. Östbring, M. Rayner and J. K. Purhagen, Development of high-moisture meat analogues with hemp and soy protein using extrusion cooking. Foods, 9, 772, 2020. https://doi.org/10.3390/foods9060772.
  • U. Fresán, M. A. Mejia and W. J. Craig, K. Jaceldo-Siegl and J. Sabaté, Meat analogs from different protein sources: a comparison of their sustainability and nutritional content. Sustainability, 11 (12), 3231, 2019. https://doi.org/10.3390/su11123231.
  • J. Yu, M. Ahmedna and I. Goktepe, Peanut protein concentrate: Production and functional properties as affected by processing. Food chemistry, 103 (1), 121-29,2007.https://doi.org/10.1016/j.foodchem.2006.08.012.
  • D. Rehrah, M. Ahmedna, I. Goktepe and J. Yu, Extrusion parameters and consumer acceptability of a peanut-based meat analogue. International journal of food science & technology, 44, 2075–2084, 2009. https://doi.org/10.1111/j.1365-2621.2009.02035.x.
  • J. Zhang, L. Liu, Y Jiang, F. Shah, Y. Xu and Q. Wang, High-moisture extrusion of peanut protein-/carrageenan/sodium alginate/wheat starch mixtures: Effect of different exogenous polysaccharides on the process forming a fibrous structure. Food Hydrocolloids, 99, 105311, 2020a. https://doi.org/10.1016/j.foodhyd.2019.105311.
  • J. Zhang, L. Liu, Y. Jiang, S. Faisal and Q. Wang, A new insight into the high-moisture extrusion process of peanut protein: From the aspect of the orders and amount of energy input. Journal of Food Engineering, 264, 109668, 2020b. https://doi.org/10.1016/j.jfoodeng.2019.07.015.
  • M. Fiorentini, A. J. Kinchla and A. A. Nolden, Role of sensory evaluation in consumer acceptance of plant-based meat analogs and meat extenders: A scoping review. Foods, 9 (9), 1334, 2020. https://doi.org/10.3390/foods9091334.
  • S. R. Nadathur, J. P. D. Wanasundara and L. Scanlin, Sustainable Protein Sources. Academic Press, USA, 2016.
  • S. Huang, L. M. Wang, T. Sivendiran and B. M. Bohrer, Amino acid concentration of high protein food products and an overview of the current methods used to determine protein quality. Critical reviews in food science and nutrition, 58 (15), 2673-2678, 2018. https://doi.org/10.1080/10408398.2017.1396202.
  • A. C. Y. Lam, A. Can Karaca, R. T. Tyler and M. T. Nickerson, Pea protein isolates: Structure, extraction, and functionality. Food Reviews International, 34, 126–147, 2018. https://doi.org/10.1080/87559129.2016.1242135.
  • R. Chilón-Llico, L. Siguas-Cruzado, C. R. Apaza-Humerez, W. C. Morales-García and R. J. Silva-Paz, Protein Quality and Sensory Perception of Hamburgers Based on Quinoa, Lupin and Corn. Foods, 11(21), 3405, 2022. https://doi.org/10.3390/foods11213405.
  • D. B. Konuskan, M. Arslan and A. Oksuz, Physicochemical properties of cold pressed sunflower, peanut, rapeseed, mustard and olive oils grown in the Eastern Mediterranean region. Saudi Journal of Biological Sciences, 26 (2), 340-344, 2019. https://doi.org/10.1016/j.sjbs.2018.04.005.
  • J. P. Wanasundara, Proteins of Brassicaceae oilseeds and their potential as a plant protein source. Critical reviews in food science and nutrition, 51 (7), 635-677. 2011. https://doi.org/10.1080/10408391003749942.
  • J. P. Wanasundara, T. C. McIntosh, S. P. Perera, T. S. Withana-Gamage and P. Mitra, Canola/rapeseed protein-functionality and nutrition. Oilseeds&fats Crops and Lipids, 23 (4), D407, 2016. https://doi.org/10.1051/ocl/2016028.
  • A. Chmielewska, M. Kozłowska, D. Rachwał, P. Wnukowski, R. Amarowicz, E. Nebesny and J. Rosicka-Kaczmarek, Canola/rapeseed protein–nutritional value, functionality and food application: A review. Critical Reviews in Food Science and Nutrition, 1-21, 2020. https://doi.org/10.1080/10408398.2020.1809342.
  • FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/172423/nutrients, Accessed 20 November 2021.
  • S. H. M. Gorissen, J. J. R. Crombag, J. M. G. Senden, W. A. H. Waterval, J. Bierau, L. B. Verdijk and L. J. C. van Loon, Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids, 50, 1685–1695, 2018. Amino Acids (2018) https://doi.org/10.1007/s00726-018-2640-5.
  • Y. Peng, N. Kersten, K. Kyriakopoulou and A. J. van der Goot, Functional properties of mildly fractionated soy protein as influenced by the processing pH. Journal of Food Engineering, 275, 109875, 2020. https://doi.org/10.1016/j.jfoodeng.2019.109875.
  • T. D. Alexandrino, R. A. Ferrari, L. M. de Oliveira, S. C. Rita de Cássia and M. T. B. Pacheco, Fractioning of the sunflower flour components: Physical, chemical and nutritional evaluation of the fractions. LWT, 84, 426-432, 2017. https://doi.org/10.1016/j.lwt.2017.05.062.
  • P. R. Salgado, S. E. Molina Ortiz, S. Petruccelli and A.N. Mauri, Functional food ingredients based on sunflower protein concentrates naturally enriched with antioxidant phenolic compounds. Journal of the American Oil Chemists' Society, 89, 825–836, 2012. https://doi.org/10.1007/s11746-011-1982-x.
  • M. A. Malik and C. S. Saini, Improvement of functional properties of sunflower protein isolates near isoelectric point: Application of heat treatment. LWT, 98, 411–417, 2018a. https://doi.org/10.1016/j.lwt.2018.09.009.
  • M. A. Malik and C. S. Saini, Rheological and structural properties of protein isolates extracted from dephenolized sunflower meal: Effect of high intensity ultrasound. Food Hydrocolloids, 81, 229–241, 2018b. https://doi.org/10.1016/j.foodhyd.2018.02.052.
  • S. S. Teh, A. E. D. Bekhit, A. Carne and J. Birch, Effect of the defatting process, acid and alkali extraction on the physicochemical and functional properties of hemp, flax and canola seed cake protein isolates. Journal of Food Measurement and Characterization, 8 (2), 92-104, 2014. https://doi.org/10.1007/s11694-013-9168-x.
  • J. H. Kim, N. V. Varankovich, A. K. Stone and M. T. Nickerson, Nature of protein-protein interactions during the gelation of canola protein isolate networks. Food Research International, 89, 408–414, 2016. https://doi.org/10.1016/j.foodres.2016.08.018.
  • F. O. Uruakpa and S. D. Arntfield, Rheological characteristics of commercial canola protein isolate- κ-carrageenan systems. Food Hydrocolloids, 18, 419-427, 2004. https://doi.org/10.1016/j.foodhyd.2003.07.001.
  • C. Larré, W. Mulder, R. Sánchez-Vioque, J. Lazko, S. Bérot, J. Guéguen and Y. Popineau, Characterisation and foaming properties of hydrolysates derived from rapeseed isolate. Colloids and Surfaces B: Biointerfaces, 49, 40-48, 2006. https://doi.org/10.1016/j.colsurfb.2006.02.009.
  • Y. Y. Stark, Y. Wada and A. Wäsche, Chemical composition, functional properties, and bioactivities of rapeseed protein isolates. Food Chemistry, 107, 32-39, 2008. https://doi.org/10.1016/j.foodchem.2007.07.061.
  • M. D. Santos, D. A. V. F. D. Rocha, O. D. Bernardinelli, F. D. Oliveira Júnior, D. G. de Sousa, E. Sabadini, R. L. da Cunha, M. A. Trindade and M. A. R. Pollonio, Understanding the Performance of Plant Protein Concentrates as Partial Meat Substitutes in Hybrid Meat Emulsions. Foods, 11(21), 3311, 2022. https://doi.org/10.3390/foods11213311.
  • J. Gu, Z. Xin, X. Meng, S. Sun, Q. Qiao and H. Deng, A “reduced-pressure distillation” method to prepare zein-based fat analogue for application in mayonnaise formulation. Journal of Food Engineering, 182, 1-8, 2016. https://doi.org/10.1016/j.jfoodeng.2016.01.026.
  • E. Blanco, S. K. Smoukov, O. D. Velev and K. P. Velikov, Organic-inorganic patchy particles as a versatile platform for fluid-in-fluid dispersion stabilisation. Faraday Discussions, 191, 73-88, 2016. https://doi.org/10.1039/c6fd00036c.
  • S. Jeong, H. W. Kim and S. Lee, Rheological and secondary structural characterization of rice flour-zein composites for noodles slit from gluten-free sheeted dough. Food Chemistry, 221, 1539-1545, 2017. https://doi.org/10.1016/j.foodchem.2016.10.139.
  • B. M.Smith, S. R. Bean, G. Selling, D. Sessa and F. M. Aramouni, Effect of salt and ethanol addition on zein-starch dough and bread quality. Journal of Food Science, 82, 613-621, 2017. https://doi.org/10.1111/1750-3841.13637.
  • J. Glusac, I. Davidesko-Vardi, S. Isaschar-Ovdat, B. Kukavica and A. Fishman, Gel-like emulsions stabilized by tyrosinasecrosslinked potato and zein proteins. Food Hydrocolloids, 82, 53-63, 2018. https://doi.org/10.1016/j.foodhyd.2018.03.046.
  • K. D. Mattice and A. G. Marangoni, Comparing methods to produce fibrous material from zein. Food Research International, 128, 108804, 2020. https://doi.org/10.1016/j.foodres.2019.108804.
  • P. Kumar, M. K. Chatli, N. Mehta, P. Singh, O. P. Malav and A. K. Verma, Meat analogues: Health promising sustainable meat substitutes. Critical reviews in food science and nutrition, 57 (5), 923-932, 2017. https://doi.org/10.1080/10408398.2014.939739.
  • P. Kumar, B. D. Sharma and R. R. Kumar, Optimization of the egg albumen content in analogue meat nuggets. Indian Journal of Poultry Science, 45 (2), 177-179, 2010.
  • X. Yuan, W. Jiang, D. Zhang, H. Liu and B. Sun, Textural, sensory and volatile compounds analyses in formulations of sausages analogue elaborated with edible mushrooms and soy protein isolate as meat substitute. Foods, 11 (1), 52, 2021. https://doi.org/10.3390/foods11010052.
  • A. P. J. Trinci, Evolution of the Quorn® myco-protein fungus, Fusarium graminearum A3/5. Microbiology (Reading), 140, 2181-2188, 1994. https://doi.org/10.1099/13500872-140-9-2181.
  • S. Y. Cho and G. H. Ryu, Effects of oyster mushroom addition on quality characteristics of full fat soy‐based analog burger patty by extrusion process. Journal of Food Process Engineering, e14128, 2022. https://doi.org/10.1111/jfpe.14128.
  • J. M. Lorenzo, R. Agregán, P. E. S. Munekata, D. Franco, J. Carballo, S. Sahin, R. Lacomba and F. J. Barba, Proximate composition and nutritional value of three macroalgae: Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcate. Marine Drugs, 15, 360, 2017. https://doi.org/10.3390/md15110360.
  • S. L. Holdt and S. Kraan, Bioactive compounds in seaweed: functional food applications and legislation. Journal of Applied Phycology, 23, 543-597, 2011. https://doi.org/10.1007/s10811-010-9632-5.
  • L. Pereira, A review of the nutrient composition of selected edible seaweeds. In Seaweeds: ecology, nutrient composition and medicinal uses. V. H. Ponin, Eds. Nova Science Publishers, Hauppauge, pp. 30, 2011.
  • M. C. Taboada, R. Millán and M. I. Miguez, Nutritional value of the marine algae wakame (Undaria pinnatifida) and nori (Porphyra purpurea) as food supplements. Journal of Applied Phycology, 25, 1271-1276, 2013. https://doi.org/10.1007/s10811-012-9951-9.
  • A. R. Angell, L. Mata, R. de Nys and N. A. Paul, The protein content of seaweeds: a universal nitrogen-to-protein conversion factor of five. Journal of Applied Phycology, 28, 511-524, 2016. https://doi.org/10.1007/s10811-015-0650-1.
  • M. L. Wells, P. Potin, J. S. Craigie, J. A. Rayen, S. S. Merchant, K. E. Helliwell, A. G. Smith, M. E. Camire and S. H. Brawley, Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29, 949-982, 2017. https://doi.org/10.1007/s10811-016-0974-5.
  • J. M. Ballesteros-Torres, L. Samaniego-Moreno, R. Gomez-Flores, R. S. Tamez-Guerra, C. Rodríguez-Padilla and P. Tamez-Guerra, Amino acids and acylcarnitine production by Chlorella vulgaris and Chlorella sorokiniana microalgae from wastewater culture. PeerJ, 7, e7977, 2019. https://doi.org/10.7717/peerj.7977.
  • T. Bito, E. Okumura, M. Fujishima and F. Watanabe, Potential of Chlorella as a dietary supplement to promote human health. Nutrients, 12 (9), 2524, 2020. https://doi.org/10.3390/nu12092524.
  • S. Grahl, M. Palanisamy, M. Strack, L. Meier-Dinkel, S. Toepfl and D. Mörlein, Towards more sustainable meat alternatives: How technical parameters affect the sensory properties of extrusion products derived from soy and algae. Journal of Cleaner Production, 198, 962-971, 2018. https://doi.org/10.1016/j.jclepro.2018.07.041.
  • M. P. Caporgno and A. Mathys, Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in Nutrition, 5, 1-10, 2018. https://doi.org/10.3389/fnut.2018.00058.
  • M. P. Caporgno, L. Böcker, C. Müssner, E. Stirnemann, I. Haberkorn, H. Adelman, S. Handschin, E. J. Windhab and A. Mathys, Extruded meat analogues based on yellow, heterotrophically cultivated Auxenochlorella protothecoides microalgae. Innovative Food Science and Emerging Technologies, 59, 102275, 2020. https://doi.org/10.1016/j.ifset.2019.102275.
  • M. Karaś, A. Jakubczyk, U. Szymanowska, U. Złotek and E. Zielińska, Digestion and bioavailability of bioactive phytochemicals. International Journal of Food Science & Technology, 52 (2), 291-305, 2017. https://doi.org/10.1111/ijfs.13323.
  • I. Joye, Protein digestibility of cereal products. Foods, 8 (6), 199, 2019. https://doi.org/10.3390/foods8060199.
  • A. G. A. Sá, Y. M. F. Moreno and B. A. M. Carciofi, Food processing for the improvement of plant proteins digestibility. Critical reviews in food science and nutrition, 60 (20), 3367-3386, 2020. https://doi.org/10.1080/10408398.2019.1688249.
  • M. Lonnie and A. M. Johnstone, The public health rationale for promoting plant protein as an important part of a sustainable and healthy diet. Nutrition Bulletin, 45 (3), 281-293, 2020. https://doi.org/10.1111/nbu.12453.
  • H. G. Zhu, H. Q. Tang, Y. Q. Cheng, Z. G. Li and L. T. Tong, Potential of preparing meat analogue by functional dry and wet pea (Pisum sativum) protein isolate. LWT, 148, 111702, 2021. https://doi.org/10.1016/j.lwt.2021.111702.
  • H. Singh and F. MacRitchie, Application of polymer science to properties of gluten. Journal of Cereal Science, 33 (3), 231-243, 2001. https://doi.org/10.1006/jcrs.2000.0360.
  • F. Wild, M. Czerny, A. M. Janssen, A. P. Kole, M. Zunabovic and K. J. Domig, The evolution of a plant-based alternative to meat. Agro FOOD Industry Hi Tech, 25 (1), 45-49, 2014.
  • S. Samard and G. H. Ryu, A comparison of physicochemical characteristics, texture, and structure of meat analogue and meats. Journal of the Science of Food and Agriculture, 99 (6), 2708-2715, 2019. https://doi.org/10.1002/jsfa.9438.
  • N. Sharima-Abdullah, C. Z. Hassan, N. Arifin and N. Huda-Faujan, Physicochemical properties and consumer preference of imitation chicken nuggets produced from chickpea flour and textured vegetable protein. International Food Research Journal, 25 (3), 1016-1025, 2018.
  • J. Dreher, C. Blach, N. Terjung, M. Gibis and J. Weiss, Formation and characterization of plant-based emulsified and crosslinked fat crystal networks to mimic animal fat tissue. Journal of Food Science, 85 (2), 421-431, 2020. https://doi.org/10.1111/1750-3841.14993.
  • L. Sha and Y. L. Xiong, Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends in Food Science & Technology, 102, 51-61, 2020. https://doi.org/10.1016/j.tifs.2020.05.022.
  • J. Dreher, M. König, K. Herrmann, N. Terjung, M. Gibis and J. Weiss, Varying the amount of solid fat in animal fat mimetics for plant-based salami analogues influences texture, appearance and sensory characteristics. LWT, 143, 111140, 2021. https://doi.org/10.1016/j.lwt.2021.111140.
  • B. M. Bohrer, An investigation of the formulation and nutritional composition of modern meat analogue products. Food Science and Human Wellness, 8 (4), 320-329, 2019 https://doi.org/10.1016/j.fshw.2019.11.006.
  • L. Godschalk-Broers, G. Sala and E. Scholten, Meat Analogues: Relating Structure to Texture and Sensory Perception. Foods, 11(15), 2227, 2022. https://doi.org/10.3390/foods11152227.
  • M. S. Arshad, M. Sohaib, R. S. Ahmad, M. Nadeem, T. Imran, A. M. U. Arshad, J. H. Kwon and Z. Amjad, Ruminant meat flavor influenced by different factors with special reference to fatty acids. Lipids in health and disease, 17 (1), 223, 2018. https://doi.org/10.1186/s12944-018-0860-z.
  • C. Spence, On the psychological impact of food colour. Flavour, 4 (1), 1-16, 2015. https://doi.org/10.1186/s13411-015-0031-3.
  • Y. Dai, J. Miao, S. Z. Yuan, Y. Liu, X. M. Li and R. T. Dai, Colour and sarcoplasmic protein evaluation of pork following water bath and ohmic cooking. Meat Science, 93(4), 898-905, 2013. https://doi.org/10.1016/j.meatsci.2012.11.044.
  • B. Marcos, J. P. Kerry and A. M. Mullen, High pressure induced changes on sarcoplasmic protein fraction and quality indicators. Meat Science, 85(1), 115-120, 2010. https://doi.org/10.1016/j.meatsci.2009.12.014.
  • J. He, N. M. Evans, H. Liu and S. Shao, A review of research on plant‐based meat alternatives: Driving forces, history, manufacturing, and consumer attitudes. Comprehensive Reviews in Food Science and Food Safety, 19 (5), 2639-2656, 2020. https://doi.org/10.1111/1541-4337.12610.
  • S. Xia, Y. Xue, C. Xue, J. Xiaoming and J. Li, Structural and rheological properties of meat analogues from Haematococcus pluvialis residue-pea protein by high moisture extrusion. LWT, 154, 112756, 2021. https://doi.org/10.1016/j.lwt.2021.112756.
  • R. Z. Fraser, M. Shitut, P. Agrawal, O. Mendes and S. Klapholz, Safety evaluation of soy leghemoglobin protein preparation derived from Pichia pastoris, intended for use as a flavor catalyst in plant-based meat. International journal of toxicology, 37 (3), 241-262, 2018. https://doi.org/10.1177/1091581818766318.
  • N. R. Rubio, N. Xiang and D. L. Kaplan, Plant-based and cell-based approaches to meat production. Nature Communications, 11 (1), 1-11, 2020. https://doi.org/10.1038/s41467-020-20061-y.
  • M. De Marchi, A. Costa, M. Pozza, A. Goi and C. L. Manuelian, Detailed characterization of plant-based burgers. Scientific reports, 11 (1), 1-9, 2021. https://doi.org/10.1038/s41598-021-81684-9.
  • M. W. Orcutt, A. Sandoval, T. J. Mertle, I. Mueller, P. A. Altemueller and J. Downey, U.S. Patent 12, 061,843, 2008.
  • K. Kołodziejczak, A. Onopiuk, A. Szpicer and A Poltorak, Meat Analogues in the perspective of recent scientific research: A review. Foods, 11 (1), 105, 2021. https://doi.org/10.3390/foods11010105.
  • K. Okubo, M. Iijima, Y. Kobayashi, M. Yoshikoshi, T. Uchida and S. Kudou, Components responsible for the undesirable taste of soybean seeds. Bioscience, biotechnology, and biochemistry, 56 (1), 99-103, 1992. https://doi.org/10.1271/bbb.56.99.
  • B. Wang, Q. Zhang, N. Zhang, K. H. Bak, O. P. Soladoye, Aluko, R. E., Z. Fu and Y. Zhang, Insights into formation, detection and removal of the beany flavor in soybean protein. Trends in Food Science & Technology, 112, 336-347, 2021. https://doi.org/10.1016/j.tifs.2021.04.018.
  • X. Li and J. Li, The Flavor of plant-based meat analogues, Cereal Foods World, 65 (4), 2020. https://doi.org/10.1094/CFW-65-4-0040.
  • L. Webb, A. Fleming, L. Ma and X. Lu, Uses of cellular agriculture in plant-based meat analogues for improved palatability. ACS Food Science & Technology, 1 (10), 1740-1747, 2021. https://doi.org/10.1021/acsfoodscitech.1c00248.
  • G. P. Hong and Y. L. Xiong, Microbial transglutaminase-induced structural and rheological changes of cationic and anionic myofibrillar proteins. Meat Science, 91 (1), 36-42, 2012. https://doi.org/10.1016/j.meatsci.2011.12.002.
  • USDA, https://www.fsis.usda.gov/food-safety/safe-food-handling-and-preparation/food-safety-basics/additives-meat-and-poultry Accessed 24 November 2021.
  • S. Soto-Jover, M. Boluda-Aguilar, A. Esnoz-Nicuesa, A. Iguaz-Gainza and A. López-Gómez, Texture, oil adsorption and safety of the European style croquettes manufactured at industrial scale. Food engineering reviews, 8 (2), 181-200, 2016. https://doi.org/10.1007/s12393-015-9130-2.
  • Z. Forghani, M. H. Eskandari, M. Aminlari and S. S. Shekarforoush, Effects of microbial transglutaminase on physicochemical properties, electrophoretic patterns and sensory attributes of veggie burger. Journal of food science and technology, 54 (8), 2203-2213, 2017. https://doi.org/10.1007/s13197-017-2614-8.
  • B. L. Dekkers, R. M. Boom and A. J. van der Goot, Structuring processes for meat analogues. Trends in Food Science & Technology, 81, 25-36, 2018. https://doi.org/10.1016/j.tifs.2018.08.011.
  • B. Arora, S. Kamal and V. P. Sharma, Effect of binding agents on quality characteristics of mushroom based sausage analogue. Journal of Food Processing and Preservation, 41(5), e13134, 2017. https://doi.org/10.1111/jfpp.13134.
  • M. J. Post, Cultured meat from stem cells: Challenges and prospects. Meat science, 92 (3), 297-301, 2012. https://doi.org/10.1016/j.meatsci.2012.04.008.
  • R. Zhang, S. A. Khan, J. Chi, Z. Wei, Y. Zhang, Y. Deng, L. Liu and M. Zhang, Different effects of extrusion on the phenolic profiles and antioxidant activity in milled fractions of brown rice. LWT - Food Science and Technology, 88, 64-70, 2018. https://doi.org/10.1016/j.lwt.2017.09.042.
  • V. L. Pietsch, R. Werner, H. P. Karbstein and M. A. Emin, High moisture extrusion of wheat gluten: Relationship between process parameters, protein polymerization, and final product characteristics. Journal of Food Engineering, 259, 3-11, 2019. https://doi.org/10.1016/j.jfoodeng.2019.04.006.
  • F. K. Schreuders, M. Schlangen, K. Kyriakopoulou, R. M. Boom and A. J. van der Goot, Texture methods for evaluating meat and meat analogue structures: A review. Food Control, 127, 108103, 2021. https://doi.org/10.1016/j.foodcont.2021.108103.
  • R. Osen, S. Toelstede, F. Wild, P. Eisner and U. Schweiggert-Weisz, High moisture extrusion cooking of pea protein isolates: Raw material characteristics, extruder responses, and texture properties. Journal of Food Engineering, 127, 67-74, 2014. https://doi.org/10.1016/j.jfoodeng.2013.11.023.
  • J. Zhang, L. Liu, H. Liu, A. Yoon, S. S. Rizvi and Q. Wang, Changes in conformation and quality of vegetable protein during texturization process by extrusion. Critical Reviews in Food Science and Nutrition, 59 (20), 3267-3280, 2019. https://doi.org/10.1080/10408398.2018.1487383.
  • F. Ferawati, I. Zahari, M. Barman, M. Hefni, C. Ahlström, C. Witthöft and K. Östbring, High-moisture meat analogues produced from yellow pea and faba bean protein isolates/concentrate: Effect of raw material composition and extrusion parameters on texture properties. Foods, 10 (4), 843, 2021. https://doi.org/10.3390/foods10040843.
  • S. Samard, B. Y. Gu and G. H. Ryu, Effects of extrusion types, screw speed and addition of wheat gluten on physicochemical characteristics and cooking stability of meat analogues. Journal of the Science of Food and Agriculture, 99 (11), 4922-4931, 2019. https://doi.org/10.1002/jsfa.9722.
  • G. Robin, Extrusion cooking: Technology and applications. NW: Wood Head Publishing Limited and CRC Press, Boca Raton, 2001.
  • G. L. Garrison, J. T. Biermacher and B. W. Brorsen, How much will large-scale production of cell-cultured meat cost?. Journal of Agriculture and Food Research, 10, 100358, 2022. https://doi.org/10.1016/j.jafr.2022.100358.
  • I. Datar and M. Betti, Possibilities for an in vitro meat production system. Innovative Food Science & Emerging Technologies, 11(1), 13-22, 2010. https://doi.org/10.1016/j.ifset.2009.10.007.
  • K. D. Fish, N. R. Rubio, A. J.Stout, J. S. Yuen and D. L. Kaplan, Prospects and challenges for cell-cultured fat as a novel food ingredient. Trends in food science & technology, 98, 53-67, 2020. https://doi.org/10.1016/j.tifs.2020.02.005.
  • V. Bodiou, M. Panagiota and M. J. Post, Microcarriers for upscaling cultured meat production. Frontiers in nutrition, 7(10), 2020. https://doi.org/10.3389/fnut.2020.00010.
  • M. Nieuwland, P. Geerdink, P. Brier, P. Van Den Eijnden, J. T. Henket, M. L. Langelaan, N. Stroeks, H.C. van Deventer and A. H. Martin, Reprint of" Food-grade electrospinning of proteins". Innovative food science & emerging technologies, 24, 138-144, 2014. https://doi.org/10.1016/j.ifset.2014.07.006.
  • J. D. Schiffman and C. L. Schauer, A review: electrospinning of biopolymer nanofibers and their applications. Polymer reviews, 48 (2), 317-352, 2008. https://doi.org/10.1080/15583720802022182.
  • I. Kutzli, M. Gibis, S. K. Baier and J. Weiss, Electrospinning of whey and soy protein mixed with maltodextrin–Influence of protein type and ratio on the production and morphology of fibers. Food hydrocolloids, 93, 206-214, 2019. https://doi.org/10.1016/j.foodhyd.2019.02.028.
  • J. M. Manski, A. J. van der Goot and R. M. Boom, Formation of fibrous materials from dense calcium caseinate dispersions. Biomacromolecules, 8 (4), 1271-1279, 2007. https://doi.org/10.1021/bm061008p.
  • S. H. Peighambardoust, A. J. Van Der Goot, R. J. Hamer and R. M. Boom, A new method to study simple shear processing of wheat gluten‐starch mixtures. Cereal chemistry, 81 (6), 714-721, 2004. https://doi.org/10.1094/CCHEM.2004.81.6.714.
  • J. M. Manski, E. E. van der Zalm, A. J., van der Goot and R. M. Boom, Influence of process parameters on formation of fibrous materials from dense calcium caseinate dispersions and fat. Food Hydrocolloids, 22 (4), 587-600, 2008. https://doi.org/10.1016/j.foodhyd.2007.02.006.
  • G. A. Krintiras, J. G. Diaz, A. J. Van Der Goot, A. I. Stankiewicz and G. D. Stefanidis, On the use of the Couette Cell technology for large scale production of textured soy-based meat replacers. Journal of Food Engineering, 169, 205-213, 2016. https://doi.org/10.1016/j.jfoodeng.2015.08.021.
  • F. I. Consolacion and P. Jelen, Freeze texturization of proteins: effect of the alkali, acid and freezing treatments on texture formation. Food microstructure (USA), 5 (1), 33-39, 1986.
  • O. Yuliarti, T. J. K. Kovis and N. J. Yi, Structuring the meat analogue by using plant-based derived composites. Journal of food engineering, 288, 110138, 2021. https://doi.org/10.1016/j.jfoodeng.2020.110138.
  • A. Baiano, 3D printed foods: A comprehensive review on technologies, nutritional value, safety, consumer attitude, regulatory framework, and economic and sustainability issues. Food Reviews International, 38 (5), 986-1016, 2022. https://doi.org/10.1080/87559129.2020.1762091.
  • S. V. Murphy and A. Atala, 3D bioprinting of tissues and organs. Nature biotechnology, 32 (8), 773-785, 2014. https://doi.org/10.1038/nbt.2958.
  • T. Wang, L. Kaur, Y. Furuhata, H. Aoyama and J. Singh, 3D Printing of Textured Soft Hybrid Meat Analogues. Foods, 11 (3), 478, 2022. https://doi.org/10.3390/foods11030478.
  • F. C. Godoi, S. Prakash and B. R. Bhandari, 3D printing technologies applied for food design: Status and prospects. Journal of Food Engineering, 179, 44-54, 2016. https://doi.org/10.1016/j.jfoodeng.2016.01.025.
  • S. Razavizadeh, G. Alencikiene, A. Salaseviciene, L. Vaiciulyte-Funk, P. Ertbjerg and A. Zabulione, Impact of fermentation of okara on physicochemical, techno-functional, and sensory properties of meat analogues. European Food Research and Technology, 247 (9), 2379-2389, 2021. https://doi.org/10.1007/s00217-021-03798-8.
  • P. Nanta, W. Skolpap and K. Kasemwong, Influence of hydrocolloids on the rheological and textural attributes of a gluten‐free meat analog based on soy protein isolate. Journal of Food Processing and Preservation, 45 (3), e15244, 2021. https://doi.org/10.1111/jfpp.15244.
  • J. E. Elzerman, A. C. Hoek, M. A. Van Boekel and P. A. Luning, Consumer acceptance and appropriateness of meat substitutes in a meal context. Food Quality and Preference, 22, 233-240, 2011. https://doi.org/10.1016/j.foodqual.2010.10.006.
  • C. I. Omohimi, P. O. Sobukola, K. O. Sarafadeen and L. O. Sanni, Effect of process parameters on the proximate composition, functional and sensory properties. International Journal of Nutrition and Food Engineering, 7 (4), 269-278. 2013.
  • N. Kitcharoenthawornchai and T. Harnsilawat, Characterization of meat analogue nugget: effect of textured vegetable protein. Food and Applied Bioscience Journal, 3 (2), 121-129, 2015. https://doi.org/10.14456/fabj.2015.12.
  • M. Asgar, A. Fazilah, N. Huda, R. Bhat and A. A. Karim, Nonmeat protein alternatives as meat extenders and meat analogs. Comprehensive reviews in food science and food safety, 9 (5), 513-529, 2010. https://doi.org/10.1111/j.1541-4337.2010.00124.x.
  • R. Guy, Extrusion Cooking: Technology and Applications, G. Robin, Eds. CRC Press, England, 2001.
  • C. J. Steel, M. G. V. Leoro, M. Schmiele, R. E. Ferreira and Y. K. Chang, Thermoplastic Extrusion in Food Processing. Thermoplastic Elastomers, 265-290, 2012.
  • A. J. Tóth, A. Dunay, M. Battay, C. B. Illés, A. Bittsánszky and M. Süth, Microbial Spoilage of Plant-Based Meat Analogues. Applied Sciences, 11 (18), 8309, 2021. https://doi.org/10.3390/app11188309.
  • P. Yadav, S. S. Ahlawat, G. Jairath, M. Rani and S. Bishnoi, Studies on physico‐chemical properties and shelf life of developed chicken meat analogue rolls. Haryana Veterinarian, 54 (1), 25-28, 2015.
  • M. J. Sadler, Meat alternatives: market developments and health benefits. Trends in Food Science & Technology, 15, 250-260, 2004. https://doi.org/10.1016/j.tifs.2003.09.003.
  • L. M. Keefe, FakeMeat: How big a deal will animal meat analogs ultimately be?. Animal Frontiers, 8 (3), 30-37, 2018. https://doi.org/10.1093/af/vfy011.
  • A. C. Hoek, P. A. Luning, P. Weijzen, W. Engels, F. J. Kok and C. De Graaf, Replacement of meat by meat substitutes. A survey on person-and product-related factors in consumer acceptance. Appetite, 56 (3), 662-673, 2011. https://doi.org/10.1016/j.appet.2011.02.001.
  • A. C. Hoek, J. E. Elzerman, R. Hageman, F. J. Kok, P. A. Lunıng and C. De Graaf, Are meat substitutes liked better over time? a repeated in-home use test with meat substitutes or meat in meals. Food Quality and Preference, 28 (1), 253-263, 2013. https://doi.org/10.1016/j.foodqual.2012.07.002.
  • C. Hartmann and M. Siegrist, Consumer perception and behaviour regarding sustainable protein consumption: A systematic review. Trends in Food Science & Technology, 61, 11-25, 2017. https://doi.org/10.1016/j.tifs.2016.12.006.
  • F. Jiang, P. Kongsaeree, R. Charron, C. Lajoıe, H. Xu, G. Scott and C. Kelly, Production and separation of manganese peroxidase from heme amended yeast cultures. Biotechnology and Bioengineering, 99 (3), 540-549, 2008. https://doi.org/10.1002/bit.21590.
  • K. Sutton, N. Larsen, G. J. Moggre, L. Huffman, B. Clothier, J. Eason and R. Bourne, Opportunities in Plant-Based Foods: Protein. Plant & Food Research Report Prepared For Ministry of Primary Industries and Plant & Food Research, 15748, 2018.
  • O. Parniakov, S. Toepfl, F. J. Barba, D. Granato, S. Zamuz, F. Galvez and J. M. Lorenzo, Impact of the soy protein replacement by legumes and algae based proteins on the quality of chicken rotti. Journal of Food Science and Technology, 55, 2552-2559, 2018. https://doi.org/10.1007/s13197-018-3175-1.
  • F. Boukid and M. Castellari, Food and beverages containing algae and derived ingredients launched in the market from 2015 to 2019: A front-of-pack labeling perspective with a special focus on Spain. Foods, 10 (1), 173, 2021. https://doi.org/10.3390/foods10010173.
  • R. Weinrich and O. Elshiewy, Preference and willingness to pay for meat substitutes based on micro-algae. Appetite, 142, 104353, 2019. https://doi.org/10.1016/j.appet.2019.104353.
  • C. Bryant, K. Szejda, N. Parekh, V. Deshpande and B. Tse, A survey of consumer perceptions of plant-based and clean meat in the USA, India, and China. Frontiers in Sustainable Food Systems, 3, 11, 2019. https://doi.org/10.3389/fsufs.2019.00011.
  • T. M. Ngapo, Meat analogues, the Canadian Meat Industry and the Canadian consumer. Meat Science, 108846, 2022. https://doi.org/10.1016/j.meatsci.2022.108846.

Alternative to traditional meat production and consumption: Meat analogues

Yıl 2023, Cilt: 12 Sayı: 1, 159 - 174, 15.01.2023
https://doi.org/10.28948/ngumuh.1159590

Öz

Meat analogues are among the new trending product groups in recent years that are produced mainly with vegetable proteins as raw material and are based on giving the final product a form resembling meat. In the production of meat analogues, many vegetable sources from legumes to oilseeds, wheat to algae can be used as raw materials, and the desired properties are brought into the last product by adding additives, such as flavor enhancers and colorants according to the raw material. To obtain meat-like properties in the final product form, all raw materials and additives are processed with traditional and/or modern processing techniques. Among these processing techniques, extrusion is known as a widely used and accepted method. The acceptability of meat analogues as a substitute for animal products on the consumer side is shaped by the quality characteristics of the raw materials and additives as well as the method used in the production phase. It is predicted that meat analogues will have a widespread place in the consumption habits of consumers in the near future. For this reason, it will be inevitable to increase research on the components involved in the production, as well as expand and develop the use of production technologies, and make legal regulations for production. In this study, meat analogue as a novel food and its concept, from the beginning of production to consumer acceptance and their approaches were discussed from a wide perspective.

Kaynakça

  • C. Sun, J. Ge, J. He, R. Gan and Y. Fang, Processing, quality, safety, and acceptance of meat analogue products. Engineering, 7 (5), 674-678, 2021. https://doi.org/10.1016/j.eng.2020.10.011.
  • A. Nardone, B. Ronchi, N. Lacetera, M. S. Ranieri, and U. Bernabucci, Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science, 130 (1-3), 57-69, 2010. https://doi.org/10.1016/j.livsci.2010.02.011.
  • P. R. Ehrlich and J. Harte, Opinion: to feed the world in 2050 will require a global revolution. Proceedings of the National Academy of Sciences, 112 (48), 14743-14744, 2015. https://doi.org/10.1073/pnas.1519841112.
  • FAO, Climate change, agriculture and food security. The State of Food and Agriculture, Rome, 2016.
  • T. King, M. Cole, J. M. Farber, G. Eisenbrand, D. Zabaras, E. M. Fox and J. P. Hill, Food safety for food security: Relationship between global megatrends and developments in food safety. Trends in Food Science & Technology, 68, 160-175, 2017. https://doi.org/10.1016/j.tifs.2017.08.014.
  • T. G. Benton, R. Bailey, A. Froggatt, R. King, B. Lee and L. Wellesley, Designing sustainable land use in a 1.5C world: The complexities of projecting multiple ecosystem services from land. Current Opinion in Environmental Sustainability, 31, 88-95, 2018. https://doi.org/10.1016/j.cosust.2018.01.011.
  • T. He and C. Li, Harness the power of genomic selection and the potential of germplasm in crop breeding for global food security in the era with rapid climate change. The Crop Journal, 8 (5), 688-700. 2020. https://doi.org/10.1016/j.cj.2020.04.005.
  • K. Kyriakopoulou, J. K. Keppler and A. J. van der Goot, Functionality of ingredients and additives in plant-based meat analogues. Foods, 10 (3), 600, 2021. https://doi.org/10.3390/foods10030600.
  • M. Singh, N. Trivedi, M. K. Enamala, C. Kuppam, P. Parikh, M. P. Nikolova and M. Chavali, Plant-based meat analogue (PBMA) as a sustainable food: A concise review. European Food Research and Technology, 247 (10), 2021. https://doi.org/10.1007/s00217-021-03810-1.
  • K. Kyriakopoulou, B. Dekkers and A. J. van der Goot, Plant-based meat analogues. In Sustainable meat production and processing. C. M. Galanakis, Eds. Academic Press, pp. 103-126, 2019.
  • M. Garcia-Vaquero and M. Hayes, Red and green macroalgae for fish and animal feed and human functional food development. Food Reviews International, 32 (1), 15-45, 2016. https://doi.org/10.1080/87559129.2015.1041184.
  • K. Hua, J. M. Cobcroft, A. Cole, K. Condon, D. R. Jerry, A. Mangott, C. Praeger, M. J. Vucko, C. Zeng, K. Zenger and J. M. Strugnell, The future of aquatic protein: Implications for protein sources in aquaculture diets. One Earth, 1 (3), 316-329, 2019. https://doi.org/10.1016/j.oneear.2019.10.018.
  • H. Nadeeshani, A. Hassouna and J. Lu, Proteins extracted from seaweed Undaria pinnatifida and their potential uses as foods and nutraceuticals. Critical Reviews in Food Science and Nutrition, 1-17, 2021. https://doi.org/10.1080/10408398.2021.1898334.
  • P. Singh, R. Kumar, S. N. Sabapathy and A. S. Bawa, Functional and edible uses of soy protein products. Comprehensive Reviews in Food Science and Food Safety, 7 (1), 14–28, 2008. https://doi.org/10.1111/j.1541-4337.2007.00025.x.
  • A. G. Tarone, L. H. Fasolin, F. D. A. Perrechil, M. D. Hubinger and R. L. Cunha, Influence of drying conditions on the gelling properties of the 7S and 11S soy protein fractions. Food and Bioproducts Processing, 91, 111–120, 2013. https://doi.org/10.1016/j.fbp.2012.11.010.
  • O. P. Malav, S. Talukder, P. Gokulakrishnan and S. Chand, Meat analog: A review. Critical Reviews in Food Science and Nutrition, 55 (9), 1241–1245, 2015. https://doi.org/10.1080/10408398.2012.689381.
  • C. Wu, Y. Hua, Y. Chen, X. Kong and C. Zhang, Effect of temperature, ionic strength and 11S ratio on the rheological properties of heat-induced soy protein gels in relation to network proteins content and aggregates size. Food Hydrocolloids, 66, 389–395, 2017. https://doi.org/10.1016/j.foodhyd.2016.12.007.
  • L. Zhu, P. Yin, T. Xie, X. Liu, L. Yang, S. Wang, J. Li and H. Liu, Interaction between soya saponin and soy β-conglycinin or glycinin: Air-water interfacial behavior and foaming property of their mixtures. Colloids and Surfaces B: Biointerfaces, 186, 110707, 2020. https://doi.org/10.1016/j.colsurfb.2019.110707.
  • J. H. Chiang, S. M. Loveday, A. K. Hardacre and M. E. Parker, Effects of soy protein to wheat gluten ratio on the physicochemical properties of extruded meat analogues. Food Structure, 19, 100102, 2019. https://doi.org/10.1016/j.foostr.2018.11.002.
  • F. A. A. Abdullah, D. Dordevic, E. Kabourkova, J. Zemancová and S. Dordevic, Antioxidant and Sensorial Properties: Meat Analogues versus Conventional Meat Products. Processes, 10(9), 1864, 2022. https://doi.org/10.3390/pr10091864.
  • C. N. Haidar, E. Coscueta, E. Cordisco, B.B. Nerli and L. P. Malpiedi, Aqueous micellar two-phase system as an alternative method to selectively remove soy antinutritional factors. LWT, 93, 665–672, 2018. https://doi.org/10.1016/j.lwt.2018.04.025.
  • L. Day, Wheat gluten: Production, properties and application. In Handbook of Food Proteins. G.O. Phillips and P.A. Williams Eds. Elsevier, Amsterdam, The Netherlands, pp. 267–288, 2011.
  • S. Barak, D. Mudgil and B. S. Khatkar, Influence of gliadin and glutenin fractions on rheological, pasting, and textural properties of dough. International Journal of Food Properties, 17, 1428–1438, 2014. https://doi.org/10.1080/10942912.2012.717154.
  • G. A. Krintiras, J. Göbel, A. J. Van der Goot and G. D. Stefanidis, Production of structured soy-based meat analogues using simple shear and heat in a couette cell. Journal of Food Engineering, 160, 34-41, 2015. https://doi.org/10.1016/j.jfoodeng.2015.02.015.
  • I. Zahari, F. Ferawati, A. Helstad, C. Ahlström, K. Östbring, M. Rayner and J. K. Purhagen, Development of high-moisture meat analogues with hemp and soy protein using extrusion cooking. Foods, 9, 772, 2020. https://doi.org/10.3390/foods9060772.
  • U. Fresán, M. A. Mejia and W. J. Craig, K. Jaceldo-Siegl and J. Sabaté, Meat analogs from different protein sources: a comparison of their sustainability and nutritional content. Sustainability, 11 (12), 3231, 2019. https://doi.org/10.3390/su11123231.
  • J. Yu, M. Ahmedna and I. Goktepe, Peanut protein concentrate: Production and functional properties as affected by processing. Food chemistry, 103 (1), 121-29,2007.https://doi.org/10.1016/j.foodchem.2006.08.012.
  • D. Rehrah, M. Ahmedna, I. Goktepe and J. Yu, Extrusion parameters and consumer acceptability of a peanut-based meat analogue. International journal of food science & technology, 44, 2075–2084, 2009. https://doi.org/10.1111/j.1365-2621.2009.02035.x.
  • J. Zhang, L. Liu, Y Jiang, F. Shah, Y. Xu and Q. Wang, High-moisture extrusion of peanut protein-/carrageenan/sodium alginate/wheat starch mixtures: Effect of different exogenous polysaccharides on the process forming a fibrous structure. Food Hydrocolloids, 99, 105311, 2020a. https://doi.org/10.1016/j.foodhyd.2019.105311.
  • J. Zhang, L. Liu, Y. Jiang, S. Faisal and Q. Wang, A new insight into the high-moisture extrusion process of peanut protein: From the aspect of the orders and amount of energy input. Journal of Food Engineering, 264, 109668, 2020b. https://doi.org/10.1016/j.jfoodeng.2019.07.015.
  • M. Fiorentini, A. J. Kinchla and A. A. Nolden, Role of sensory evaluation in consumer acceptance of plant-based meat analogs and meat extenders: A scoping review. Foods, 9 (9), 1334, 2020. https://doi.org/10.3390/foods9091334.
  • S. R. Nadathur, J. P. D. Wanasundara and L. Scanlin, Sustainable Protein Sources. Academic Press, USA, 2016.
  • S. Huang, L. M. Wang, T. Sivendiran and B. M. Bohrer, Amino acid concentration of high protein food products and an overview of the current methods used to determine protein quality. Critical reviews in food science and nutrition, 58 (15), 2673-2678, 2018. https://doi.org/10.1080/10408398.2017.1396202.
  • A. C. Y. Lam, A. Can Karaca, R. T. Tyler and M. T. Nickerson, Pea protein isolates: Structure, extraction, and functionality. Food Reviews International, 34, 126–147, 2018. https://doi.org/10.1080/87559129.2016.1242135.
  • R. Chilón-Llico, L. Siguas-Cruzado, C. R. Apaza-Humerez, W. C. Morales-García and R. J. Silva-Paz, Protein Quality and Sensory Perception of Hamburgers Based on Quinoa, Lupin and Corn. Foods, 11(21), 3405, 2022. https://doi.org/10.3390/foods11213405.
  • D. B. Konuskan, M. Arslan and A. Oksuz, Physicochemical properties of cold pressed sunflower, peanut, rapeseed, mustard and olive oils grown in the Eastern Mediterranean region. Saudi Journal of Biological Sciences, 26 (2), 340-344, 2019. https://doi.org/10.1016/j.sjbs.2018.04.005.
  • J. P. Wanasundara, Proteins of Brassicaceae oilseeds and their potential as a plant protein source. Critical reviews in food science and nutrition, 51 (7), 635-677. 2011. https://doi.org/10.1080/10408391003749942.
  • J. P. Wanasundara, T. C. McIntosh, S. P. Perera, T. S. Withana-Gamage and P. Mitra, Canola/rapeseed protein-functionality and nutrition. Oilseeds&fats Crops and Lipids, 23 (4), D407, 2016. https://doi.org/10.1051/ocl/2016028.
  • A. Chmielewska, M. Kozłowska, D. Rachwał, P. Wnukowski, R. Amarowicz, E. Nebesny and J. Rosicka-Kaczmarek, Canola/rapeseed protein–nutritional value, functionality and food application: A review. Critical Reviews in Food Science and Nutrition, 1-21, 2020. https://doi.org/10.1080/10408398.2020.1809342.
  • FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/172423/nutrients, Accessed 20 November 2021.
  • S. H. M. Gorissen, J. J. R. Crombag, J. M. G. Senden, W. A. H. Waterval, J. Bierau, L. B. Verdijk and L. J. C. van Loon, Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids, 50, 1685–1695, 2018. Amino Acids (2018) https://doi.org/10.1007/s00726-018-2640-5.
  • Y. Peng, N. Kersten, K. Kyriakopoulou and A. J. van der Goot, Functional properties of mildly fractionated soy protein as influenced by the processing pH. Journal of Food Engineering, 275, 109875, 2020. https://doi.org/10.1016/j.jfoodeng.2019.109875.
  • T. D. Alexandrino, R. A. Ferrari, L. M. de Oliveira, S. C. Rita de Cássia and M. T. B. Pacheco, Fractioning of the sunflower flour components: Physical, chemical and nutritional evaluation of the fractions. LWT, 84, 426-432, 2017. https://doi.org/10.1016/j.lwt.2017.05.062.
  • P. R. Salgado, S. E. Molina Ortiz, S. Petruccelli and A.N. Mauri, Functional food ingredients based on sunflower protein concentrates naturally enriched with antioxidant phenolic compounds. Journal of the American Oil Chemists' Society, 89, 825–836, 2012. https://doi.org/10.1007/s11746-011-1982-x.
  • M. A. Malik and C. S. Saini, Improvement of functional properties of sunflower protein isolates near isoelectric point: Application of heat treatment. LWT, 98, 411–417, 2018a. https://doi.org/10.1016/j.lwt.2018.09.009.
  • M. A. Malik and C. S. Saini, Rheological and structural properties of protein isolates extracted from dephenolized sunflower meal: Effect of high intensity ultrasound. Food Hydrocolloids, 81, 229–241, 2018b. https://doi.org/10.1016/j.foodhyd.2018.02.052.
  • S. S. Teh, A. E. D. Bekhit, A. Carne and J. Birch, Effect of the defatting process, acid and alkali extraction on the physicochemical and functional properties of hemp, flax and canola seed cake protein isolates. Journal of Food Measurement and Characterization, 8 (2), 92-104, 2014. https://doi.org/10.1007/s11694-013-9168-x.
  • J. H. Kim, N. V. Varankovich, A. K. Stone and M. T. Nickerson, Nature of protein-protein interactions during the gelation of canola protein isolate networks. Food Research International, 89, 408–414, 2016. https://doi.org/10.1016/j.foodres.2016.08.018.
  • F. O. Uruakpa and S. D. Arntfield, Rheological characteristics of commercial canola protein isolate- κ-carrageenan systems. Food Hydrocolloids, 18, 419-427, 2004. https://doi.org/10.1016/j.foodhyd.2003.07.001.
  • C. Larré, W. Mulder, R. Sánchez-Vioque, J. Lazko, S. Bérot, J. Guéguen and Y. Popineau, Characterisation and foaming properties of hydrolysates derived from rapeseed isolate. Colloids and Surfaces B: Biointerfaces, 49, 40-48, 2006. https://doi.org/10.1016/j.colsurfb.2006.02.009.
  • Y. Y. Stark, Y. Wada and A. Wäsche, Chemical composition, functional properties, and bioactivities of rapeseed protein isolates. Food Chemistry, 107, 32-39, 2008. https://doi.org/10.1016/j.foodchem.2007.07.061.
  • M. D. Santos, D. A. V. F. D. Rocha, O. D. Bernardinelli, F. D. Oliveira Júnior, D. G. de Sousa, E. Sabadini, R. L. da Cunha, M. A. Trindade and M. A. R. Pollonio, Understanding the Performance of Plant Protein Concentrates as Partial Meat Substitutes in Hybrid Meat Emulsions. Foods, 11(21), 3311, 2022. https://doi.org/10.3390/foods11213311.
  • J. Gu, Z. Xin, X. Meng, S. Sun, Q. Qiao and H. Deng, A “reduced-pressure distillation” method to prepare zein-based fat analogue for application in mayonnaise formulation. Journal of Food Engineering, 182, 1-8, 2016. https://doi.org/10.1016/j.jfoodeng.2016.01.026.
  • E. Blanco, S. K. Smoukov, O. D. Velev and K. P. Velikov, Organic-inorganic patchy particles as a versatile platform for fluid-in-fluid dispersion stabilisation. Faraday Discussions, 191, 73-88, 2016. https://doi.org/10.1039/c6fd00036c.
  • S. Jeong, H. W. Kim and S. Lee, Rheological and secondary structural characterization of rice flour-zein composites for noodles slit from gluten-free sheeted dough. Food Chemistry, 221, 1539-1545, 2017. https://doi.org/10.1016/j.foodchem.2016.10.139.
  • B. M.Smith, S. R. Bean, G. Selling, D. Sessa and F. M. Aramouni, Effect of salt and ethanol addition on zein-starch dough and bread quality. Journal of Food Science, 82, 613-621, 2017. https://doi.org/10.1111/1750-3841.13637.
  • J. Glusac, I. Davidesko-Vardi, S. Isaschar-Ovdat, B. Kukavica and A. Fishman, Gel-like emulsions stabilized by tyrosinasecrosslinked potato and zein proteins. Food Hydrocolloids, 82, 53-63, 2018. https://doi.org/10.1016/j.foodhyd.2018.03.046.
  • K. D. Mattice and A. G. Marangoni, Comparing methods to produce fibrous material from zein. Food Research International, 128, 108804, 2020. https://doi.org/10.1016/j.foodres.2019.108804.
  • P. Kumar, M. K. Chatli, N. Mehta, P. Singh, O. P. Malav and A. K. Verma, Meat analogues: Health promising sustainable meat substitutes. Critical reviews in food science and nutrition, 57 (5), 923-932, 2017. https://doi.org/10.1080/10408398.2014.939739.
  • P. Kumar, B. D. Sharma and R. R. Kumar, Optimization of the egg albumen content in analogue meat nuggets. Indian Journal of Poultry Science, 45 (2), 177-179, 2010.
  • X. Yuan, W. Jiang, D. Zhang, H. Liu and B. Sun, Textural, sensory and volatile compounds analyses in formulations of sausages analogue elaborated with edible mushrooms and soy protein isolate as meat substitute. Foods, 11 (1), 52, 2021. https://doi.org/10.3390/foods11010052.
  • A. P. J. Trinci, Evolution of the Quorn® myco-protein fungus, Fusarium graminearum A3/5. Microbiology (Reading), 140, 2181-2188, 1994. https://doi.org/10.1099/13500872-140-9-2181.
  • S. Y. Cho and G. H. Ryu, Effects of oyster mushroom addition on quality characteristics of full fat soy‐based analog burger patty by extrusion process. Journal of Food Process Engineering, e14128, 2022. https://doi.org/10.1111/jfpe.14128.
  • J. M. Lorenzo, R. Agregán, P. E. S. Munekata, D. Franco, J. Carballo, S. Sahin, R. Lacomba and F. J. Barba, Proximate composition and nutritional value of three macroalgae: Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcate. Marine Drugs, 15, 360, 2017. https://doi.org/10.3390/md15110360.
  • S. L. Holdt and S. Kraan, Bioactive compounds in seaweed: functional food applications and legislation. Journal of Applied Phycology, 23, 543-597, 2011. https://doi.org/10.1007/s10811-010-9632-5.
  • L. Pereira, A review of the nutrient composition of selected edible seaweeds. In Seaweeds: ecology, nutrient composition and medicinal uses. V. H. Ponin, Eds. Nova Science Publishers, Hauppauge, pp. 30, 2011.
  • M. C. Taboada, R. Millán and M. I. Miguez, Nutritional value of the marine algae wakame (Undaria pinnatifida) and nori (Porphyra purpurea) as food supplements. Journal of Applied Phycology, 25, 1271-1276, 2013. https://doi.org/10.1007/s10811-012-9951-9.
  • A. R. Angell, L. Mata, R. de Nys and N. A. Paul, The protein content of seaweeds: a universal nitrogen-to-protein conversion factor of five. Journal of Applied Phycology, 28, 511-524, 2016. https://doi.org/10.1007/s10811-015-0650-1.
  • M. L. Wells, P. Potin, J. S. Craigie, J. A. Rayen, S. S. Merchant, K. E. Helliwell, A. G. Smith, M. E. Camire and S. H. Brawley, Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29, 949-982, 2017. https://doi.org/10.1007/s10811-016-0974-5.
  • J. M. Ballesteros-Torres, L. Samaniego-Moreno, R. Gomez-Flores, R. S. Tamez-Guerra, C. Rodríguez-Padilla and P. Tamez-Guerra, Amino acids and acylcarnitine production by Chlorella vulgaris and Chlorella sorokiniana microalgae from wastewater culture. PeerJ, 7, e7977, 2019. https://doi.org/10.7717/peerj.7977.
  • T. Bito, E. Okumura, M. Fujishima and F. Watanabe, Potential of Chlorella as a dietary supplement to promote human health. Nutrients, 12 (9), 2524, 2020. https://doi.org/10.3390/nu12092524.
  • S. Grahl, M. Palanisamy, M. Strack, L. Meier-Dinkel, S. Toepfl and D. Mörlein, Towards more sustainable meat alternatives: How technical parameters affect the sensory properties of extrusion products derived from soy and algae. Journal of Cleaner Production, 198, 962-971, 2018. https://doi.org/10.1016/j.jclepro.2018.07.041.
  • M. P. Caporgno and A. Mathys, Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in Nutrition, 5, 1-10, 2018. https://doi.org/10.3389/fnut.2018.00058.
  • M. P. Caporgno, L. Böcker, C. Müssner, E. Stirnemann, I. Haberkorn, H. Adelman, S. Handschin, E. J. Windhab and A. Mathys, Extruded meat analogues based on yellow, heterotrophically cultivated Auxenochlorella protothecoides microalgae. Innovative Food Science and Emerging Technologies, 59, 102275, 2020. https://doi.org/10.1016/j.ifset.2019.102275.
  • M. Karaś, A. Jakubczyk, U. Szymanowska, U. Złotek and E. Zielińska, Digestion and bioavailability of bioactive phytochemicals. International Journal of Food Science & Technology, 52 (2), 291-305, 2017. https://doi.org/10.1111/ijfs.13323.
  • I. Joye, Protein digestibility of cereal products. Foods, 8 (6), 199, 2019. https://doi.org/10.3390/foods8060199.
  • A. G. A. Sá, Y. M. F. Moreno and B. A. M. Carciofi, Food processing for the improvement of plant proteins digestibility. Critical reviews in food science and nutrition, 60 (20), 3367-3386, 2020. https://doi.org/10.1080/10408398.2019.1688249.
  • M. Lonnie and A. M. Johnstone, The public health rationale for promoting plant protein as an important part of a sustainable and healthy diet. Nutrition Bulletin, 45 (3), 281-293, 2020. https://doi.org/10.1111/nbu.12453.
  • H. G. Zhu, H. Q. Tang, Y. Q. Cheng, Z. G. Li and L. T. Tong, Potential of preparing meat analogue by functional dry and wet pea (Pisum sativum) protein isolate. LWT, 148, 111702, 2021. https://doi.org/10.1016/j.lwt.2021.111702.
  • H. Singh and F. MacRitchie, Application of polymer science to properties of gluten. Journal of Cereal Science, 33 (3), 231-243, 2001. https://doi.org/10.1006/jcrs.2000.0360.
  • F. Wild, M. Czerny, A. M. Janssen, A. P. Kole, M. Zunabovic and K. J. Domig, The evolution of a plant-based alternative to meat. Agro FOOD Industry Hi Tech, 25 (1), 45-49, 2014.
  • S. Samard and G. H. Ryu, A comparison of physicochemical characteristics, texture, and structure of meat analogue and meats. Journal of the Science of Food and Agriculture, 99 (6), 2708-2715, 2019. https://doi.org/10.1002/jsfa.9438.
  • N. Sharima-Abdullah, C. Z. Hassan, N. Arifin and N. Huda-Faujan, Physicochemical properties and consumer preference of imitation chicken nuggets produced from chickpea flour and textured vegetable protein. International Food Research Journal, 25 (3), 1016-1025, 2018.
  • J. Dreher, C. Blach, N. Terjung, M. Gibis and J. Weiss, Formation and characterization of plant-based emulsified and crosslinked fat crystal networks to mimic animal fat tissue. Journal of Food Science, 85 (2), 421-431, 2020. https://doi.org/10.1111/1750-3841.14993.
  • L. Sha and Y. L. Xiong, Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends in Food Science & Technology, 102, 51-61, 2020. https://doi.org/10.1016/j.tifs.2020.05.022.
  • J. Dreher, M. König, K. Herrmann, N. Terjung, M. Gibis and J. Weiss, Varying the amount of solid fat in animal fat mimetics for plant-based salami analogues influences texture, appearance and sensory characteristics. LWT, 143, 111140, 2021. https://doi.org/10.1016/j.lwt.2021.111140.
  • B. M. Bohrer, An investigation of the formulation and nutritional composition of modern meat analogue products. Food Science and Human Wellness, 8 (4), 320-329, 2019 https://doi.org/10.1016/j.fshw.2019.11.006.
  • L. Godschalk-Broers, G. Sala and E. Scholten, Meat Analogues: Relating Structure to Texture and Sensory Perception. Foods, 11(15), 2227, 2022. https://doi.org/10.3390/foods11152227.
  • M. S. Arshad, M. Sohaib, R. S. Ahmad, M. Nadeem, T. Imran, A. M. U. Arshad, J. H. Kwon and Z. Amjad, Ruminant meat flavor influenced by different factors with special reference to fatty acids. Lipids in health and disease, 17 (1), 223, 2018. https://doi.org/10.1186/s12944-018-0860-z.
  • C. Spence, On the psychological impact of food colour. Flavour, 4 (1), 1-16, 2015. https://doi.org/10.1186/s13411-015-0031-3.
  • Y. Dai, J. Miao, S. Z. Yuan, Y. Liu, X. M. Li and R. T. Dai, Colour and sarcoplasmic protein evaluation of pork following water bath and ohmic cooking. Meat Science, 93(4), 898-905, 2013. https://doi.org/10.1016/j.meatsci.2012.11.044.
  • B. Marcos, J. P. Kerry and A. M. Mullen, High pressure induced changes on sarcoplasmic protein fraction and quality indicators. Meat Science, 85(1), 115-120, 2010. https://doi.org/10.1016/j.meatsci.2009.12.014.
  • J. He, N. M. Evans, H. Liu and S. Shao, A review of research on plant‐based meat alternatives: Driving forces, history, manufacturing, and consumer attitudes. Comprehensive Reviews in Food Science and Food Safety, 19 (5), 2639-2656, 2020. https://doi.org/10.1111/1541-4337.12610.
  • S. Xia, Y. Xue, C. Xue, J. Xiaoming and J. Li, Structural and rheological properties of meat analogues from Haematococcus pluvialis residue-pea protein by high moisture extrusion. LWT, 154, 112756, 2021. https://doi.org/10.1016/j.lwt.2021.112756.
  • R. Z. Fraser, M. Shitut, P. Agrawal, O. Mendes and S. Klapholz, Safety evaluation of soy leghemoglobin protein preparation derived from Pichia pastoris, intended for use as a flavor catalyst in plant-based meat. International journal of toxicology, 37 (3), 241-262, 2018. https://doi.org/10.1177/1091581818766318.
  • N. R. Rubio, N. Xiang and D. L. Kaplan, Plant-based and cell-based approaches to meat production. Nature Communications, 11 (1), 1-11, 2020. https://doi.org/10.1038/s41467-020-20061-y.
  • M. De Marchi, A. Costa, M. Pozza, A. Goi and C. L. Manuelian, Detailed characterization of plant-based burgers. Scientific reports, 11 (1), 1-9, 2021. https://doi.org/10.1038/s41598-021-81684-9.
  • M. W. Orcutt, A. Sandoval, T. J. Mertle, I. Mueller, P. A. Altemueller and J. Downey, U.S. Patent 12, 061,843, 2008.
  • K. Kołodziejczak, A. Onopiuk, A. Szpicer and A Poltorak, Meat Analogues in the perspective of recent scientific research: A review. Foods, 11 (1), 105, 2021. https://doi.org/10.3390/foods11010105.
  • K. Okubo, M. Iijima, Y. Kobayashi, M. Yoshikoshi, T. Uchida and S. Kudou, Components responsible for the undesirable taste of soybean seeds. Bioscience, biotechnology, and biochemistry, 56 (1), 99-103, 1992. https://doi.org/10.1271/bbb.56.99.
  • B. Wang, Q. Zhang, N. Zhang, K. H. Bak, O. P. Soladoye, Aluko, R. E., Z. Fu and Y. Zhang, Insights into formation, detection and removal of the beany flavor in soybean protein. Trends in Food Science & Technology, 112, 336-347, 2021. https://doi.org/10.1016/j.tifs.2021.04.018.
  • X. Li and J. Li, The Flavor of plant-based meat analogues, Cereal Foods World, 65 (4), 2020. https://doi.org/10.1094/CFW-65-4-0040.
  • L. Webb, A. Fleming, L. Ma and X. Lu, Uses of cellular agriculture in plant-based meat analogues for improved palatability. ACS Food Science & Technology, 1 (10), 1740-1747, 2021. https://doi.org/10.1021/acsfoodscitech.1c00248.
  • G. P. Hong and Y. L. Xiong, Microbial transglutaminase-induced structural and rheological changes of cationic and anionic myofibrillar proteins. Meat Science, 91 (1), 36-42, 2012. https://doi.org/10.1016/j.meatsci.2011.12.002.
  • USDA, https://www.fsis.usda.gov/food-safety/safe-food-handling-and-preparation/food-safety-basics/additives-meat-and-poultry Accessed 24 November 2021.
  • S. Soto-Jover, M. Boluda-Aguilar, A. Esnoz-Nicuesa, A. Iguaz-Gainza and A. López-Gómez, Texture, oil adsorption and safety of the European style croquettes manufactured at industrial scale. Food engineering reviews, 8 (2), 181-200, 2016. https://doi.org/10.1007/s12393-015-9130-2.
  • Z. Forghani, M. H. Eskandari, M. Aminlari and S. S. Shekarforoush, Effects of microbial transglutaminase on physicochemical properties, electrophoretic patterns and sensory attributes of veggie burger. Journal of food science and technology, 54 (8), 2203-2213, 2017. https://doi.org/10.1007/s13197-017-2614-8.
  • B. L. Dekkers, R. M. Boom and A. J. van der Goot, Structuring processes for meat analogues. Trends in Food Science & Technology, 81, 25-36, 2018. https://doi.org/10.1016/j.tifs.2018.08.011.
  • B. Arora, S. Kamal and V. P. Sharma, Effect of binding agents on quality characteristics of mushroom based sausage analogue. Journal of Food Processing and Preservation, 41(5), e13134, 2017. https://doi.org/10.1111/jfpp.13134.
  • M. J. Post, Cultured meat from stem cells: Challenges and prospects. Meat science, 92 (3), 297-301, 2012. https://doi.org/10.1016/j.meatsci.2012.04.008.
  • R. Zhang, S. A. Khan, J. Chi, Z. Wei, Y. Zhang, Y. Deng, L. Liu and M. Zhang, Different effects of extrusion on the phenolic profiles and antioxidant activity in milled fractions of brown rice. LWT - Food Science and Technology, 88, 64-70, 2018. https://doi.org/10.1016/j.lwt.2017.09.042.
  • V. L. Pietsch, R. Werner, H. P. Karbstein and M. A. Emin, High moisture extrusion of wheat gluten: Relationship between process parameters, protein polymerization, and final product characteristics. Journal of Food Engineering, 259, 3-11, 2019. https://doi.org/10.1016/j.jfoodeng.2019.04.006.
  • F. K. Schreuders, M. Schlangen, K. Kyriakopoulou, R. M. Boom and A. J. van der Goot, Texture methods for evaluating meat and meat analogue structures: A review. Food Control, 127, 108103, 2021. https://doi.org/10.1016/j.foodcont.2021.108103.
  • R. Osen, S. Toelstede, F. Wild, P. Eisner and U. Schweiggert-Weisz, High moisture extrusion cooking of pea protein isolates: Raw material characteristics, extruder responses, and texture properties. Journal of Food Engineering, 127, 67-74, 2014. https://doi.org/10.1016/j.jfoodeng.2013.11.023.
  • J. Zhang, L. Liu, H. Liu, A. Yoon, S. S. Rizvi and Q. Wang, Changes in conformation and quality of vegetable protein during texturization process by extrusion. Critical Reviews in Food Science and Nutrition, 59 (20), 3267-3280, 2019. https://doi.org/10.1080/10408398.2018.1487383.
  • F. Ferawati, I. Zahari, M. Barman, M. Hefni, C. Ahlström, C. Witthöft and K. Östbring, High-moisture meat analogues produced from yellow pea and faba bean protein isolates/concentrate: Effect of raw material composition and extrusion parameters on texture properties. Foods, 10 (4), 843, 2021. https://doi.org/10.3390/foods10040843.
  • S. Samard, B. Y. Gu and G. H. Ryu, Effects of extrusion types, screw speed and addition of wheat gluten on physicochemical characteristics and cooking stability of meat analogues. Journal of the Science of Food and Agriculture, 99 (11), 4922-4931, 2019. https://doi.org/10.1002/jsfa.9722.
  • G. Robin, Extrusion cooking: Technology and applications. NW: Wood Head Publishing Limited and CRC Press, Boca Raton, 2001.
  • G. L. Garrison, J. T. Biermacher and B. W. Brorsen, How much will large-scale production of cell-cultured meat cost?. Journal of Agriculture and Food Research, 10, 100358, 2022. https://doi.org/10.1016/j.jafr.2022.100358.
  • I. Datar and M. Betti, Possibilities for an in vitro meat production system. Innovative Food Science & Emerging Technologies, 11(1), 13-22, 2010. https://doi.org/10.1016/j.ifset.2009.10.007.
  • K. D. Fish, N. R. Rubio, A. J.Stout, J. S. Yuen and D. L. Kaplan, Prospects and challenges for cell-cultured fat as a novel food ingredient. Trends in food science & technology, 98, 53-67, 2020. https://doi.org/10.1016/j.tifs.2020.02.005.
  • V. Bodiou, M. Panagiota and M. J. Post, Microcarriers for upscaling cultured meat production. Frontiers in nutrition, 7(10), 2020. https://doi.org/10.3389/fnut.2020.00010.
  • M. Nieuwland, P. Geerdink, P. Brier, P. Van Den Eijnden, J. T. Henket, M. L. Langelaan, N. Stroeks, H.C. van Deventer and A. H. Martin, Reprint of" Food-grade electrospinning of proteins". Innovative food science & emerging technologies, 24, 138-144, 2014. https://doi.org/10.1016/j.ifset.2014.07.006.
  • J. D. Schiffman and C. L. Schauer, A review: electrospinning of biopolymer nanofibers and their applications. Polymer reviews, 48 (2), 317-352, 2008. https://doi.org/10.1080/15583720802022182.
  • I. Kutzli, M. Gibis, S. K. Baier and J. Weiss, Electrospinning of whey and soy protein mixed with maltodextrin–Influence of protein type and ratio on the production and morphology of fibers. Food hydrocolloids, 93, 206-214, 2019. https://doi.org/10.1016/j.foodhyd.2019.02.028.
  • J. M. Manski, A. J. van der Goot and R. M. Boom, Formation of fibrous materials from dense calcium caseinate dispersions. Biomacromolecules, 8 (4), 1271-1279, 2007. https://doi.org/10.1021/bm061008p.
  • S. H. Peighambardoust, A. J. Van Der Goot, R. J. Hamer and R. M. Boom, A new method to study simple shear processing of wheat gluten‐starch mixtures. Cereal chemistry, 81 (6), 714-721, 2004. https://doi.org/10.1094/CCHEM.2004.81.6.714.
  • J. M. Manski, E. E. van der Zalm, A. J., van der Goot and R. M. Boom, Influence of process parameters on formation of fibrous materials from dense calcium caseinate dispersions and fat. Food Hydrocolloids, 22 (4), 587-600, 2008. https://doi.org/10.1016/j.foodhyd.2007.02.006.
  • G. A. Krintiras, J. G. Diaz, A. J. Van Der Goot, A. I. Stankiewicz and G. D. Stefanidis, On the use of the Couette Cell technology for large scale production of textured soy-based meat replacers. Journal of Food Engineering, 169, 205-213, 2016. https://doi.org/10.1016/j.jfoodeng.2015.08.021.
  • F. I. Consolacion and P. Jelen, Freeze texturization of proteins: effect of the alkali, acid and freezing treatments on texture formation. Food microstructure (USA), 5 (1), 33-39, 1986.
  • O. Yuliarti, T. J. K. Kovis and N. J. Yi, Structuring the meat analogue by using plant-based derived composites. Journal of food engineering, 288, 110138, 2021. https://doi.org/10.1016/j.jfoodeng.2020.110138.
  • A. Baiano, 3D printed foods: A comprehensive review on technologies, nutritional value, safety, consumer attitude, regulatory framework, and economic and sustainability issues. Food Reviews International, 38 (5), 986-1016, 2022. https://doi.org/10.1080/87559129.2020.1762091.
  • S. V. Murphy and A. Atala, 3D bioprinting of tissues and organs. Nature biotechnology, 32 (8), 773-785, 2014. https://doi.org/10.1038/nbt.2958.
  • T. Wang, L. Kaur, Y. Furuhata, H. Aoyama and J. Singh, 3D Printing of Textured Soft Hybrid Meat Analogues. Foods, 11 (3), 478, 2022. https://doi.org/10.3390/foods11030478.
  • F. C. Godoi, S. Prakash and B. R. Bhandari, 3D printing technologies applied for food design: Status and prospects. Journal of Food Engineering, 179, 44-54, 2016. https://doi.org/10.1016/j.jfoodeng.2016.01.025.
  • S. Razavizadeh, G. Alencikiene, A. Salaseviciene, L. Vaiciulyte-Funk, P. Ertbjerg and A. Zabulione, Impact of fermentation of okara on physicochemical, techno-functional, and sensory properties of meat analogues. European Food Research and Technology, 247 (9), 2379-2389, 2021. https://doi.org/10.1007/s00217-021-03798-8.
  • P. Nanta, W. Skolpap and K. Kasemwong, Influence of hydrocolloids on the rheological and textural attributes of a gluten‐free meat analog based on soy protein isolate. Journal of Food Processing and Preservation, 45 (3), e15244, 2021. https://doi.org/10.1111/jfpp.15244.
  • J. E. Elzerman, A. C. Hoek, M. A. Van Boekel and P. A. Luning, Consumer acceptance and appropriateness of meat substitutes in a meal context. Food Quality and Preference, 22, 233-240, 2011. https://doi.org/10.1016/j.foodqual.2010.10.006.
  • C. I. Omohimi, P. O. Sobukola, K. O. Sarafadeen and L. O. Sanni, Effect of process parameters on the proximate composition, functional and sensory properties. International Journal of Nutrition and Food Engineering, 7 (4), 269-278. 2013.
  • N. Kitcharoenthawornchai and T. Harnsilawat, Characterization of meat analogue nugget: effect of textured vegetable protein. Food and Applied Bioscience Journal, 3 (2), 121-129, 2015. https://doi.org/10.14456/fabj.2015.12.
  • M. Asgar, A. Fazilah, N. Huda, R. Bhat and A. A. Karim, Nonmeat protein alternatives as meat extenders and meat analogs. Comprehensive reviews in food science and food safety, 9 (5), 513-529, 2010. https://doi.org/10.1111/j.1541-4337.2010.00124.x.
  • R. Guy, Extrusion Cooking: Technology and Applications, G. Robin, Eds. CRC Press, England, 2001.
  • C. J. Steel, M. G. V. Leoro, M. Schmiele, R. E. Ferreira and Y. K. Chang, Thermoplastic Extrusion in Food Processing. Thermoplastic Elastomers, 265-290, 2012.
  • A. J. Tóth, A. Dunay, M. Battay, C. B. Illés, A. Bittsánszky and M. Süth, Microbial Spoilage of Plant-Based Meat Analogues. Applied Sciences, 11 (18), 8309, 2021. https://doi.org/10.3390/app11188309.
  • P. Yadav, S. S. Ahlawat, G. Jairath, M. Rani and S. Bishnoi, Studies on physico‐chemical properties and shelf life of developed chicken meat analogue rolls. Haryana Veterinarian, 54 (1), 25-28, 2015.
  • M. J. Sadler, Meat alternatives: market developments and health benefits. Trends in Food Science & Technology, 15, 250-260, 2004. https://doi.org/10.1016/j.tifs.2003.09.003.
  • L. M. Keefe, FakeMeat: How big a deal will animal meat analogs ultimately be?. Animal Frontiers, 8 (3), 30-37, 2018. https://doi.org/10.1093/af/vfy011.
  • A. C. Hoek, P. A. Luning, P. Weijzen, W. Engels, F. J. Kok and C. De Graaf, Replacement of meat by meat substitutes. A survey on person-and product-related factors in consumer acceptance. Appetite, 56 (3), 662-673, 2011. https://doi.org/10.1016/j.appet.2011.02.001.
  • A. C. Hoek, J. E. Elzerman, R. Hageman, F. J. Kok, P. A. Lunıng and C. De Graaf, Are meat substitutes liked better over time? a repeated in-home use test with meat substitutes or meat in meals. Food Quality and Preference, 28 (1), 253-263, 2013. https://doi.org/10.1016/j.foodqual.2012.07.002.
  • C. Hartmann and M. Siegrist, Consumer perception and behaviour regarding sustainable protein consumption: A systematic review. Trends in Food Science & Technology, 61, 11-25, 2017. https://doi.org/10.1016/j.tifs.2016.12.006.
  • F. Jiang, P. Kongsaeree, R. Charron, C. Lajoıe, H. Xu, G. Scott and C. Kelly, Production and separation of manganese peroxidase from heme amended yeast cultures. Biotechnology and Bioengineering, 99 (3), 540-549, 2008. https://doi.org/10.1002/bit.21590.
  • K. Sutton, N. Larsen, G. J. Moggre, L. Huffman, B. Clothier, J. Eason and R. Bourne, Opportunities in Plant-Based Foods: Protein. Plant & Food Research Report Prepared For Ministry of Primary Industries and Plant & Food Research, 15748, 2018.
  • O. Parniakov, S. Toepfl, F. J. Barba, D. Granato, S. Zamuz, F. Galvez and J. M. Lorenzo, Impact of the soy protein replacement by legumes and algae based proteins on the quality of chicken rotti. Journal of Food Science and Technology, 55, 2552-2559, 2018. https://doi.org/10.1007/s13197-018-3175-1.
  • F. Boukid and M. Castellari, Food and beverages containing algae and derived ingredients launched in the market from 2015 to 2019: A front-of-pack labeling perspective with a special focus on Spain. Foods, 10 (1), 173, 2021. https://doi.org/10.3390/foods10010173.
  • R. Weinrich and O. Elshiewy, Preference and willingness to pay for meat substitutes based on micro-algae. Appetite, 142, 104353, 2019. https://doi.org/10.1016/j.appet.2019.104353.
  • C. Bryant, K. Szejda, N. Parekh, V. Deshpande and B. Tse, A survey of consumer perceptions of plant-based and clean meat in the USA, India, and China. Frontiers in Sustainable Food Systems, 3, 11, 2019. https://doi.org/10.3389/fsufs.2019.00011.
  • T. M. Ngapo, Meat analogues, the Canadian Meat Industry and the Canadian consumer. Meat Science, 108846, 2022. https://doi.org/10.1016/j.meatsci.2022.108846.
Toplam 157 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Gıda Mühendisliği
Yazarlar

İbrahim Ender Künili 0000-0003-2830-6979

Selin Dinç 0000-0003-1597-1929

Fatma Çolakoğlu 0000-0002-2211-8371

Yayımlanma Tarihi 15 Ocak 2023
Gönderilme Tarihi 9 Ağustos 2022
Kabul Tarihi 29 Kasım 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 1

Kaynak Göster

APA Künili, İ. E., Dinç, S., & Çolakoğlu, F. (2023). Geleneksel et üretimi ve tüketimine alternatif: Et analogları. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(1), 159-174. https://doi.org/10.28948/ngumuh.1159590
AMA Künili İE, Dinç S, Çolakoğlu F. Geleneksel et üretimi ve tüketimine alternatif: Et analogları. NÖHÜ Müh. Bilim. Derg. Ocak 2023;12(1):159-174. doi:10.28948/ngumuh.1159590
Chicago Künili, İbrahim Ender, Selin Dinç, ve Fatma Çolakoğlu. “Geleneksel Et üretimi Ve tüketimine Alternatif: Et Analogları”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, sy. 1 (Ocak 2023): 159-74. https://doi.org/10.28948/ngumuh.1159590.
EndNote Künili İE, Dinç S, Çolakoğlu F (01 Ocak 2023) Geleneksel et üretimi ve tüketimine alternatif: Et analogları. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 1 159–174.
IEEE İ. E. Künili, S. Dinç, ve F. Çolakoğlu, “Geleneksel et üretimi ve tüketimine alternatif: Et analogları”, NÖHÜ Müh. Bilim. Derg., c. 12, sy. 1, ss. 159–174, 2023, doi: 10.28948/ngumuh.1159590.
ISNAD Künili, İbrahim Ender vd. “Geleneksel Et üretimi Ve tüketimine Alternatif: Et Analogları”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/1 (Ocak 2023), 159-174. https://doi.org/10.28948/ngumuh.1159590.
JAMA Künili İE, Dinç S, Çolakoğlu F. Geleneksel et üretimi ve tüketimine alternatif: Et analogları. NÖHÜ Müh. Bilim. Derg. 2023;12:159–174.
MLA Künili, İbrahim Ender vd. “Geleneksel Et üretimi Ve tüketimine Alternatif: Et Analogları”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 12, sy. 1, 2023, ss. 159-74, doi:10.28948/ngumuh.1159590.
Vancouver Künili İE, Dinç S, Çolakoğlu F. Geleneksel et üretimi ve tüketimine alternatif: Et analogları. NÖHÜ Müh. Bilim. Derg. 2023;12(1):159-74.

download