Research Article
BibTex RIS Cite

Optimization of the design parameters of pressurized compound cylinders for equivalent stress and total cost

Year 2025, Volume: 31 Issue: 7

Abstract

The optimal design of compound cylinders is crucial due to their high-pressure load-bearing requirements and significant manufacturing costs. This study focuses on optimizing the design parameters of compound cylinders to achieve minimal equivalent stress and production costs. To this end, a weighted multi-objective Grey Wolf Optimization (GWO) algorithm was employed. Furthermore, the influence of design parameters on shrinkage pressure and the equivalent stresses of the inner and outer cylinders was analyzed using detailed statistical methods. As a result of the multi-objective optimization, two reference designs were considered for comparison: one prioritizing minimum stress and the other minimizing manufacturing cost. Both the design parameter levels and weight ratios were systematically optimized. Using the optimal weight ratios and the GWO method, the maximum equivalent stress in the inner cylinder increased by 20%, while the total cost was reduced by a factor of 2.75. Consequently, a design with sufficient structural reliability was achieved, significantly lowering the manufacturing costs of compound cylinders.

References

  • [1] Phalguna BN. “Stress and failure analysis of thick walled cylinder with oblique hole”. Internatioanl Journal of Engineering Research and Technology, 6(8): 36-45, 2017.
  • [2] Yuanhan W. “Torsion of a thick-walled cylinder with an external crack: boundary collocation method”. Theoretical and applied fracture mechanics, 14(3): 267-273,1990.
  • [3] Aydın M, Türköz M, Yapan YF. “Ultra Yüksek Basınçta Çalışan Kalın Cidarlı Silindirlerin Tasarımına Etki Eden Parametrelerin Sayısal ve Analitik Olarak Araştırılması”. Konya Journal of Engineering Sciences, 10(2):412-424, 2022.
  • [4] Booker JD, Truman CE, Wittig S, Mohammed Z. “A comparison of shrink-fit holding torque using probabilistic, micromechanical and experimental approaches”. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 218(2):175-187, 2004.
  • [5] Ozturk F. “Finite-element modelling of two-disc shrink fit assembly and an evaluation of material pairs of discs”. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(2):263-273, 2011.
  • [6] Aydin M, Yapan, YF, Turkoz, M. “Investigation on Effect of Shrinkage Allowance to the Fatigue Life of Compound Cylinders Operating at High Pressure”. International Conference on Engineering Technologies, 370-374, 2020.
  • [7] Ugural AC, Saul KF. Advanced mechanics of materials and applied elasticity. Pearson Education, 2011.
  • [8] Zhang Y, McClain B, Fang XD. “Design of interference fits via finite element method”. International Journal of Mechanical Sciences, 42(9):1835-1850, 2000.
  • [9] Aydın M, Türköz M. “A study on the effect of the roller burnishing process on the axial fatigue performance and surface integrity of AISI 4340 steel”. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(6): 224, 2022.
  • [10] Paredes M, Naoufel N, Marc S. “Study of an interference fit fastener assembly by finite element modelling, analysis and experiment”. International Journal on Interactive Design and Manufacturing, 6:171-177, 2012.
  • [11] Benuzzi D, Donzella G. “Prediction of the press-fit curve in the assembly of a railway axle and wheel”. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 218: 51-65, 2004.
  • [12] Özel A, Temiz Ş, Aydin MD, Şen S. “Stress analysis of shrink-fitted joints for various fit forms via finite element method”. Materials & design, 26(4): 281-289, 2005
  • [13] Aydin M, Turkoz M. “Effect of Shrink Fit Process on Total Equivalent Stress and Total Amounf of Material”, International Conference on Engineering Technologies, 405-408, 2021.
  • [14] Akay ME, Ridvanogullari A. “Optimisation of machining parameters of train wheel for shrink-fit application by considering surface roughness and chip morphology parameters”. Engineering Science and Technology, an International Journal, 23(5): 1194-1207, 2020.
  • [15] Campos UA, David EH. “Simplified Lamé’s equations to determine contact pressure and hoop stress in thin-walled press-fits”. Thin-Walled Structures, 138:199-207, 2019.
  • [16] Wang X, Lou Z, Wang X, Hao X, Wang Y. “Prediction of stress distribution in press-fit process of interference fit with a new theoretical model”. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(8): 2834-2846, 2019.
  • [17] Wang X, Lou Z, Wang X, Xu C. “A new analytical method for press-fit curve prediction of interference fitting parts”. Journal of Materials Processing Technology, 250:16-24, 2017.
  • [18] Wang S, Zhu Q, Zhao JH, Yue XP, Jiang YJ. “Elastoplastic assessment of limiting internal pressure in thick-walled cylinders with different tension-compressive response”. Strength of Materials, 51: 508-519, 2019.
  • [19] Zhu Q, Wang S, Zhang DF, Jiang YJ, Yue X. “Elastoplastic analysis of ultimate bearing capacity for multilayered thick-walled cylinders under internal pressure”. Strength of Materials, 52:521-531,2020.
  • [20] Harvey JF. Theory and design of pressure vessels, New York, VNR Company, 1991.
  • [21] Groover MP. “Fundamentals of modern manufacturing: materials, processes, and systems”. John Wiley & Sons,2010.
  • [22] Stephenson DA, Agapiou JS. “Metal cutting theory and practice”. CRC press,2018.
  • [23] Chung C, Wang PC, Chinomona B. “Optimization of turning parameters based on tool wear and machining cost for various parts”. The International Journal of Advanced Manufacturing Technology, 120(7):5163-5174,2022.
  • [24] Mirjalili S, Mirjalili SM, Lewis A. “Grey wolf optimizer”. Advances in engineering software, 69: 46-61, (2014).
  • [25] Şen MA, Kalyoncu M. “Grey Wolf Optimizer Based Tuning of a Hybrid LQR-PID Controller for Foot Trajectory Control of a Quadruped Robot”. Gazi University Journal of Science, 32(2):674-684, (2019).
  • [26] Baş E, İhsan E. “Gri Kurt optimizasyonu ve Krill sürü optimizasyon algoritmasının performans analizi ve karşılaştırması”. Pamukkale Univ Muh Bilim Derg., 29(7):711-736, 2023.
  • [27] Gürkan E, Güner A. “FV sistemlerde kısmi gölgeleme koşullarında maksimum güç noktası takibi için metasezgisel algoritmaların karşılaştırmalı performans analizi”. Pamukkale Univ Muh Bilim Derg., 30(7):891-905, 2024.
  • [28] Beştaş MŞ, Dinler ÖB. “Kötü amaçlı android tabanlı yazılım tespitinin trend meta-sezgisel algoritmalar ile karşılaştırılmalı analizi”. Pamukkale Univ Muh Bilim Derg., 31(1):98-115, 2025.
  • [29] Teng ZJ, Lv J, Guo L. “An improved hybrid grey wolf optimization algorithm”. Soft computing, 23:6617-6631,2019.

Basınçlı Bileşik Silindirlerde Tasarım Parametrelerinin Eşdeğer Gerilme ve Toplam Maliyet Açısından Optimizasyonu

Year 2025, Volume: 31 Issue: 7

Abstract

Bileşik silindirlerin tasarımı, yüksek basınç taşıma gereksinimleri ve önemli üretim maliyetleri nedeniyle büyük önem taşımaktadır. Bu çalışma, bileşik silindirlerin tasarım parametrelerini, minimum eşdeğer gerilme ve üretim maliyeti elde edecek şekilde optimize etmeyi amaçlamaktadır. Bu doğrultuda, ağırlıklı çok amaçlı Bozkurt Optimizasyonu (BO) algoritması kullanılmıştır. Ayrıca, tasarım parametrelerinin arayüzey basıncı ve iç-dış silindirlerin eşdeğer gerilmeleri üzerindeki etkisi ayrıntılı istatistiksel yöntemlerle analiz edilmiştir. Çok amaçlı optimizasyon sonucunda, karşılaştırma amacıyla iki referans tasarım ele alınmıştır: biri minimum gerilmeye öncelik veren, diğeri ise üretim maliyetini en aza indiren tasarımdır. Hem tasarım parametre seviyeleri hem de ağırlık oranları sistematik olarak optimize edilmiştir. Optimum ağırlık oranları ve BO yöntemi kullanılarak, iç silindirdeki maksimum eşdeğer gerilme %20 artarken, toplam maliyet 2,75 kat azaltılmıştır. Böylece, yeterli yapısal güvenilirliğe sahip bir tasarım elde edilerek, bileşik silindirlerin üretim maliyeti önemli ölçüde düşürülmüştür.

References

  • [1] Phalguna BN. “Stress and failure analysis of thick walled cylinder with oblique hole”. Internatioanl Journal of Engineering Research and Technology, 6(8): 36-45, 2017.
  • [2] Yuanhan W. “Torsion of a thick-walled cylinder with an external crack: boundary collocation method”. Theoretical and applied fracture mechanics, 14(3): 267-273,1990.
  • [3] Aydın M, Türköz M, Yapan YF. “Ultra Yüksek Basınçta Çalışan Kalın Cidarlı Silindirlerin Tasarımına Etki Eden Parametrelerin Sayısal ve Analitik Olarak Araştırılması”. Konya Journal of Engineering Sciences, 10(2):412-424, 2022.
  • [4] Booker JD, Truman CE, Wittig S, Mohammed Z. “A comparison of shrink-fit holding torque using probabilistic, micromechanical and experimental approaches”. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 218(2):175-187, 2004.
  • [5] Ozturk F. “Finite-element modelling of two-disc shrink fit assembly and an evaluation of material pairs of discs”. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(2):263-273, 2011.
  • [6] Aydin M, Yapan, YF, Turkoz, M. “Investigation on Effect of Shrinkage Allowance to the Fatigue Life of Compound Cylinders Operating at High Pressure”. International Conference on Engineering Technologies, 370-374, 2020.
  • [7] Ugural AC, Saul KF. Advanced mechanics of materials and applied elasticity. Pearson Education, 2011.
  • [8] Zhang Y, McClain B, Fang XD. “Design of interference fits via finite element method”. International Journal of Mechanical Sciences, 42(9):1835-1850, 2000.
  • [9] Aydın M, Türköz M. “A study on the effect of the roller burnishing process on the axial fatigue performance and surface integrity of AISI 4340 steel”. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(6): 224, 2022.
  • [10] Paredes M, Naoufel N, Marc S. “Study of an interference fit fastener assembly by finite element modelling, analysis and experiment”. International Journal on Interactive Design and Manufacturing, 6:171-177, 2012.
  • [11] Benuzzi D, Donzella G. “Prediction of the press-fit curve in the assembly of a railway axle and wheel”. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 218: 51-65, 2004.
  • [12] Özel A, Temiz Ş, Aydin MD, Şen S. “Stress analysis of shrink-fitted joints for various fit forms via finite element method”. Materials & design, 26(4): 281-289, 2005
  • [13] Aydin M, Turkoz M. “Effect of Shrink Fit Process on Total Equivalent Stress and Total Amounf of Material”, International Conference on Engineering Technologies, 405-408, 2021.
  • [14] Akay ME, Ridvanogullari A. “Optimisation of machining parameters of train wheel for shrink-fit application by considering surface roughness and chip morphology parameters”. Engineering Science and Technology, an International Journal, 23(5): 1194-1207, 2020.
  • [15] Campos UA, David EH. “Simplified Lamé’s equations to determine contact pressure and hoop stress in thin-walled press-fits”. Thin-Walled Structures, 138:199-207, 2019.
  • [16] Wang X, Lou Z, Wang X, Hao X, Wang Y. “Prediction of stress distribution in press-fit process of interference fit with a new theoretical model”. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(8): 2834-2846, 2019.
  • [17] Wang X, Lou Z, Wang X, Xu C. “A new analytical method for press-fit curve prediction of interference fitting parts”. Journal of Materials Processing Technology, 250:16-24, 2017.
  • [18] Wang S, Zhu Q, Zhao JH, Yue XP, Jiang YJ. “Elastoplastic assessment of limiting internal pressure in thick-walled cylinders with different tension-compressive response”. Strength of Materials, 51: 508-519, 2019.
  • [19] Zhu Q, Wang S, Zhang DF, Jiang YJ, Yue X. “Elastoplastic analysis of ultimate bearing capacity for multilayered thick-walled cylinders under internal pressure”. Strength of Materials, 52:521-531,2020.
  • [20] Harvey JF. Theory and design of pressure vessels, New York, VNR Company, 1991.
  • [21] Groover MP. “Fundamentals of modern manufacturing: materials, processes, and systems”. John Wiley & Sons,2010.
  • [22] Stephenson DA, Agapiou JS. “Metal cutting theory and practice”. CRC press,2018.
  • [23] Chung C, Wang PC, Chinomona B. “Optimization of turning parameters based on tool wear and machining cost for various parts”. The International Journal of Advanced Manufacturing Technology, 120(7):5163-5174,2022.
  • [24] Mirjalili S, Mirjalili SM, Lewis A. “Grey wolf optimizer”. Advances in engineering software, 69: 46-61, (2014).
  • [25] Şen MA, Kalyoncu M. “Grey Wolf Optimizer Based Tuning of a Hybrid LQR-PID Controller for Foot Trajectory Control of a Quadruped Robot”. Gazi University Journal of Science, 32(2):674-684, (2019).
  • [26] Baş E, İhsan E. “Gri Kurt optimizasyonu ve Krill sürü optimizasyon algoritmasının performans analizi ve karşılaştırması”. Pamukkale Univ Muh Bilim Derg., 29(7):711-736, 2023.
  • [27] Gürkan E, Güner A. “FV sistemlerde kısmi gölgeleme koşullarında maksimum güç noktası takibi için metasezgisel algoritmaların karşılaştırmalı performans analizi”. Pamukkale Univ Muh Bilim Derg., 30(7):891-905, 2024.
  • [28] Beştaş MŞ, Dinler ÖB. “Kötü amaçlı android tabanlı yazılım tespitinin trend meta-sezgisel algoritmalar ile karşılaştırılmalı analizi”. Pamukkale Univ Muh Bilim Derg., 31(1):98-115, 2025.
  • [29] Teng ZJ, Lv J, Guo L. “An improved hybrid grey wolf optimization algorithm”. Soft computing, 23:6617-6631,2019.
There are 29 citations in total.

Details

Primary Language English
Subjects Numerical Methods in Mechanical Engineering
Journal Section Research Article
Authors

Mevlüt Aydın 0000-0001-5457-8340

Abdullah Çakan 0000-0003-3923-4069

Mevlüt Türköz 0000-0001-9692-5777

Early Pub Date November 2, 2025
Publication Date November 19, 2025
Submission Date February 18, 2025
Acceptance Date May 22, 2025
Published in Issue Year 2025 Volume: 31 Issue: 7

Cite

APA Aydın, M., Çakan, A., & Türköz, M. (2025). Optimization of the design parameters of pressurized compound cylinders for equivalent stress and total cost. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(7). https://doi.org/10.5505/pajes.2025.88107
AMA Aydın M, Çakan A, Türköz M. Optimization of the design parameters of pressurized compound cylinders for equivalent stress and total cost. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. November 2025;31(7). doi:10.5505/pajes.2025.88107
Chicago Aydın, Mevlüt, Abdullah Çakan, and Mevlüt Türköz. “Optimization of the Design Parameters of Pressurized Compound Cylinders for Equivalent Stress and Total Cost”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, no. 7 (November 2025). https://doi.org/10.5505/pajes.2025.88107.
EndNote Aydın M, Çakan A, Türköz M (November 1, 2025) Optimization of the design parameters of pressurized compound cylinders for equivalent stress and total cost. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 7
IEEE M. Aydın, A. Çakan, and M. Türköz, “Optimization of the design parameters of pressurized compound cylinders for equivalent stress and total cost”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 31, no. 7, 2025, doi: 10.5505/pajes.2025.88107.
ISNAD Aydın, Mevlüt et al. “Optimization of the Design Parameters of Pressurized Compound Cylinders for Equivalent Stress and Total Cost”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/7 (November2025). https://doi.org/10.5505/pajes.2025.88107.
JAMA Aydın M, Çakan A, Türköz M. Optimization of the design parameters of pressurized compound cylinders for equivalent stress and total cost. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31. doi:10.5505/pajes.2025.88107.
MLA Aydın, Mevlüt et al. “Optimization of the Design Parameters of Pressurized Compound Cylinders for Equivalent Stress and Total Cost”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 31, no. 7, 2025, doi:10.5505/pajes.2025.88107.
Vancouver Aydın M, Çakan A, Türköz M. Optimization of the design parameters of pressurized compound cylinders for equivalent stress and total cost. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(7).

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif