Research Article
BibTex RIS Cite

Impact toughness of CPP- and PET-Based hybrid thermoplastic laminates under edgewise charpy testing

Year 2026, Volume: 32 Issue: 2
https://doi.org/10.5505/pajes.2025.55874

Abstract

This study examines the Charpy impact characteristics of laminated thermoplastic composites made from cast polypropylene (CPP) and polyethylene terephthalate (PET) matrices, reinforced with glass,
carbon, and hybrid fiber stacking sequences. Laminates for composite materials were produced using the process of stacking films and hotpressing them, followed by cutting, and then tested according to ISO 179-1 directives. The Charpy impact test was performed on five specimens for each configuration to measure both impact energy and toughness. The data show that both the matrix’s plasticity and the stacking sequence significantly influence the impact response. CPP composites displayed the best toughness against plain configurations of 7.2 J for carbon and 5.4 J for glass, while the hybrids reached up to 7.26 J for glass–carbon–glass and 6.65 J for carbon–glass–carbon. PET composites carried less toughness in standard configurations of 4.5 J for both carbon and glass, while the hybrid carbon–glass–carbon configuration improved toughness to 7.45 J. The CPP_GCG laminate absorbed about 86% more energy than the PET_G, while CPP composites absorbed 30–35% more than PET composites for all the studied stacking structures. The fractography of specimens confirmed the occurrence of ductile fracture for the CPP composites and brittle failure for the PET composites. The data demonstrate the effectiveness of combining a ductile matrix with hybrid stacking structures to elevate he toughness against impacts, as well as the tolerance to damages for laminated composites.

References

  • [1] Erkendirci Ö. F. “Charpy impact behavior of plain weave S2 glass/HDPE thermoplastic composites.” Journal of Composite Materials, 46(22), 2835–2841, 2012.
  • [2] Zhao F., Guo W., Li W., Mao H., Yan H., Deng J. “A study on hot stamping formability of continuous glass fiber reinforced thermoplastic composites.” Polymers, 14(22), 2022.
  • [3] Ragupathi B., Balle F. “Characterization of glass-fiber reinforced thermoplastic composite after ultrasonic reconsolidation.” European Journal of Materials, 4(1), 2024.
  • [4] Bakkal M., Kayihan M., Timur A., Parlar Z., Güleryüz Parasız C. G., Yücel A. H., Palabıyık İ. M., Gülmez T. “Fatigue behavior and self-heating mechanism of novel glass fiber reinforced thermoplastic composite.” Advanced Composite Materials, 32(6), 899–915, 2023.
  • [5] Schoßig M., Bierögel C., Grellmann W., Mecklenburg T. “Mechanical behavior of glass-fiber reinforced thermoplastic materials under high strain rates.” Polymer Testing, 27(7), 893–900, 2008.
  • [6] Jamshaid H., et al. “Hybrid thermoplastic composites from basalt- and Kevlar-woven fabrics: Comparative analysis of mechanical and thermomechanical performance.” Polymers, 15(7), 2023.
  • [7] Dönmez Çavdar A., Boran Torun S., Pesman E., Angin N., Ertaş M., Mengeloğlu F. “Hybrid thermoplastic composite reinforced with natural fiber and inorganic filler.” In Cellulose Composites, 21–75, De Gruyter, 2023.
  • [8] Kaya G. “Comparison of the impact damage resistance of non-hybrid and intra-ply hybrid carbon/E-glass/polypropylene non-crimp thermoplastic composites.” Journal of Reinforced Plastics and Composites, 37(21), 1314–1330, 2018.
  • [9] Özbay B., Bekem A., Ünal A. “Manufacturing of hybrid yarn thermoplastic composites by the method of filament winding.” Gazi University Journal of Science, 33(1), 214–227, 2020.
  • [10] Kaplan M. “Hybrid yarn production for thermoplastic composites.” Tekstil ve Mühendis, 23(101), 61–79, 2016.
  • [11] Tóth L., Rossmanith H.-P., Siewert T. A. “Historical background and development of the Charpy test.” Charpy Centenary Conference, 30, 3–19, 2002.
  • [12] Hazell P. J. Armour: Materials, Theory, and Design (2nd ed.). CRC Press, 2023.
  • [13] Alfitouri A. O., Savaş M. A., Evcil A. “Charpy impact and tension tests of two pipeline materials at room and cryogenic temperatures.” International Journal of Applied Engineering Research, 13(17), 13321–13334, 2018.
  • [14] Ma N., Park T., Kim D., Seok D.-Y., Kim C., Chung K. “Evaluation of Charpy impact test performance for advanced high-strength steel sheets based on a damage model.” International Journal of Material Forming, 3(Suppl 1), 183–186, 2010.
  • [15] Miron V., Schranz C., Gspan C. “Instrumented Charpy impact tests of additively manufactured thermoplastic specimens.” Proceedings of the 30th International Symposium on Testing and Failure Analysis (ISTFA), 345–350, 2019.
  • [16] Lee J., Kim M., Choi H. “Effects of fabric weave and fiber type on the Charpy impact performance of PEEK-based composites.” Journal of Thermoplastic Composite Materials, 31(5), 657–673, 2018.
  • [17] Yao L., Liu Y., Zhang H. “Charpy impact behavior of glass-fiber reinforced acrylic-based thermoplastic composites.” Composite Structures, 204, 34–41, 2018.
  • [18] Tarpani J. R., Garcia A., Donadon M. V. “Charpy toughness behavior of carbon/epoxy and fiber-metal laminates at varying temperatures.” Materials Research, 16(3), 622–628, 2013.
  • [19] Grellmann W., Seidler S., Hesse J. “Determination of fracture-mechanical parameters by instrumented Charpy impact tests on polymers.” In Deformation and Fracture Behaviour of Polymers, Springer, Berlin, Heidelberg, 77–98, 1987.
  • [20] Swolfs Y., Gorbatikh L., Verpoest I. “Fibre hybridisation in polymer composites: A review.” Composites Part A: Applied Science and Manufacturing, 67, 181–200, 2014.
  • [21] Gopinath A., Senthil Kumar M., Elayaperumal A. “Experimental investigations on mechanical behavior of jute fiber reinforced composites with hybrid sandwich structure.” Procedia Engineering, 97, 2042–2051, 2014.
  • [22] Kim J. K., Mai Y. W. Engineered Interfaces in Fiber Reinforced Composites. Elsevier, 1998.
  • [23] Oksman K., Mathew A. P., Bondeson D., Kvien I. “Manufacturing process of cellulose whiskers/polylactic acid nanocomposites.” Composites Science and Technology, 66(15), 2776–2784, 2006.

Edgewise charpy testi altinda CPP ve PET bazlı hibrit termoplastik laminatların darbe dayanıklılığı

Year 2026, Volume: 32 Issue: 2
https://doi.org/10.5505/pajes.2025.55874

Abstract

Bu çalışmada, cam, karbon ve hibrit elyaf istifleme dizileriyle güçlendirilmiş döküm polipropilen (CPP) ve polietilen tereftalat (PET) matrislerden yapılmış lamine termoplastik kompozitlerin Charpy darbe karakteristikleri incelenmektedir. Kompozit malzemeler için laminatlar, filmlerin istiflenmesi ve sıcak preslenmesi, ardından kesilmesi ve ardından ISO 179-1 direktiflerine göre test edilmesi işlemi kullanılarak üretilmiştir. Charpy darbesi, hem darbe enerjisi hem de tokluk ölçümleri için her konfigürasyondaki beş numune üzerinde gerçekleştirildi. Veriler, hem matris plastisitesinin hem de istifleme dizisinin darbe tepkisini büyük ölçüde etkilediğini göstermektedir. CPP kompozitleri, karbon için 7.2 J ve cam için 5.4 J'lik düz konfigürasyonlara karşı en iyi tokluğu gösterirken, hibritler camkarbon-cam için 7.26 J ve karbon-cam-karbon için 6.65 J'ye ulaşmıştır. PET kompozitler, hem karbon hem de cam için 4.5 J'lik standart konfigürasyonlarda daha az tokluk taşırken, hibrit karbon-cam-karbon konfigürasyonu tokluğu 7.45 J'ye çıkardı. CPP_GCG laminatı, PET_G'den yaklaşık %86 daha fazla enerji emerken, CPP kompozitleri incelenen tüm istifleme yapıları için PET kompozitlerinden %30-35 daha fazla enerji emdi. Numunelerin fraktografisi, CPP kompozitleri için sünek kırılmanın ve PET kompozitleri için gevrek kırılmanın meydana geldiğini doğruladı. Veriler, darbelere karşı tokluğu ve lamine kompozitler için hasar toleransını artırmak için sünek bir matrisi hibrit istifleme yapılarıyla birleştirmenin etkinliğini göstermektedir.

References

  • [1] Erkendirci Ö. F. “Charpy impact behavior of plain weave S2 glass/HDPE thermoplastic composites.” Journal of Composite Materials, 46(22), 2835–2841, 2012.
  • [2] Zhao F., Guo W., Li W., Mao H., Yan H., Deng J. “A study on hot stamping formability of continuous glass fiber reinforced thermoplastic composites.” Polymers, 14(22), 2022.
  • [3] Ragupathi B., Balle F. “Characterization of glass-fiber reinforced thermoplastic composite after ultrasonic reconsolidation.” European Journal of Materials, 4(1), 2024.
  • [4] Bakkal M., Kayihan M., Timur A., Parlar Z., Güleryüz Parasız C. G., Yücel A. H., Palabıyık İ. M., Gülmez T. “Fatigue behavior and self-heating mechanism of novel glass fiber reinforced thermoplastic composite.” Advanced Composite Materials, 32(6), 899–915, 2023.
  • [5] Schoßig M., Bierögel C., Grellmann W., Mecklenburg T. “Mechanical behavior of glass-fiber reinforced thermoplastic materials under high strain rates.” Polymer Testing, 27(7), 893–900, 2008.
  • [6] Jamshaid H., et al. “Hybrid thermoplastic composites from basalt- and Kevlar-woven fabrics: Comparative analysis of mechanical and thermomechanical performance.” Polymers, 15(7), 2023.
  • [7] Dönmez Çavdar A., Boran Torun S., Pesman E., Angin N., Ertaş M., Mengeloğlu F. “Hybrid thermoplastic composite reinforced with natural fiber and inorganic filler.” In Cellulose Composites, 21–75, De Gruyter, 2023.
  • [8] Kaya G. “Comparison of the impact damage resistance of non-hybrid and intra-ply hybrid carbon/E-glass/polypropylene non-crimp thermoplastic composites.” Journal of Reinforced Plastics and Composites, 37(21), 1314–1330, 2018.
  • [9] Özbay B., Bekem A., Ünal A. “Manufacturing of hybrid yarn thermoplastic composites by the method of filament winding.” Gazi University Journal of Science, 33(1), 214–227, 2020.
  • [10] Kaplan M. “Hybrid yarn production for thermoplastic composites.” Tekstil ve Mühendis, 23(101), 61–79, 2016.
  • [11] Tóth L., Rossmanith H.-P., Siewert T. A. “Historical background and development of the Charpy test.” Charpy Centenary Conference, 30, 3–19, 2002.
  • [12] Hazell P. J. Armour: Materials, Theory, and Design (2nd ed.). CRC Press, 2023.
  • [13] Alfitouri A. O., Savaş M. A., Evcil A. “Charpy impact and tension tests of two pipeline materials at room and cryogenic temperatures.” International Journal of Applied Engineering Research, 13(17), 13321–13334, 2018.
  • [14] Ma N., Park T., Kim D., Seok D.-Y., Kim C., Chung K. “Evaluation of Charpy impact test performance for advanced high-strength steel sheets based on a damage model.” International Journal of Material Forming, 3(Suppl 1), 183–186, 2010.
  • [15] Miron V., Schranz C., Gspan C. “Instrumented Charpy impact tests of additively manufactured thermoplastic specimens.” Proceedings of the 30th International Symposium on Testing and Failure Analysis (ISTFA), 345–350, 2019.
  • [16] Lee J., Kim M., Choi H. “Effects of fabric weave and fiber type on the Charpy impact performance of PEEK-based composites.” Journal of Thermoplastic Composite Materials, 31(5), 657–673, 2018.
  • [17] Yao L., Liu Y., Zhang H. “Charpy impact behavior of glass-fiber reinforced acrylic-based thermoplastic composites.” Composite Structures, 204, 34–41, 2018.
  • [18] Tarpani J. R., Garcia A., Donadon M. V. “Charpy toughness behavior of carbon/epoxy and fiber-metal laminates at varying temperatures.” Materials Research, 16(3), 622–628, 2013.
  • [19] Grellmann W., Seidler S., Hesse J. “Determination of fracture-mechanical parameters by instrumented Charpy impact tests on polymers.” In Deformation and Fracture Behaviour of Polymers, Springer, Berlin, Heidelberg, 77–98, 1987.
  • [20] Swolfs Y., Gorbatikh L., Verpoest I. “Fibre hybridisation in polymer composites: A review.” Composites Part A: Applied Science and Manufacturing, 67, 181–200, 2014.
  • [21] Gopinath A., Senthil Kumar M., Elayaperumal A. “Experimental investigations on mechanical behavior of jute fiber reinforced composites with hybrid sandwich structure.” Procedia Engineering, 97, 2042–2051, 2014.
  • [22] Kim J. K., Mai Y. W. Engineered Interfaces in Fiber Reinforced Composites. Elsevier, 1998.
  • [23] Oksman K., Mathew A. P., Bondeson D., Kvien I. “Manufacturing process of cellulose whiskers/polylactic acid nanocomposites.” Composites Science and Technology, 66(15), 2776–2784, 2006.
There are 23 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Article
Authors

Nida Pulgu This is me

Ahmet Erkliğ

Early Pub Date November 2, 2025
Publication Date November 17, 2025
Submission Date May 24, 2025
Acceptance Date July 17, 2025
Published in Issue Year 2026 Volume: 32 Issue: 2

Cite

APA Pulgu, N., & Erkliğ, A. (2025). Impact toughness of CPP- and PET-Based hybrid thermoplastic laminates under edgewise charpy testing. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 32(2). https://doi.org/10.5505/pajes.2025.55874
AMA Pulgu N, Erkliğ A. Impact toughness of CPP- and PET-Based hybrid thermoplastic laminates under edgewise charpy testing. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. November 2025;32(2). doi:10.5505/pajes.2025.55874
Chicago Pulgu, Nida, and Ahmet Erkliğ. “Impact Toughness of CPP- and PET-Based Hybrid Thermoplastic Laminates under Edgewise Charpy Testing”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32, no. 2 (November 2025). https://doi.org/10.5505/pajes.2025.55874.
EndNote Pulgu N, Erkliğ A (November 1, 2025) Impact toughness of CPP- and PET-Based hybrid thermoplastic laminates under edgewise charpy testing. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32 2
IEEE N. Pulgu and A. Erkliğ, “Impact toughness of CPP- and PET-Based hybrid thermoplastic laminates under edgewise charpy testing”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 2, 2025, doi: 10.5505/pajes.2025.55874.
ISNAD Pulgu, Nida - Erkliğ, Ahmet. “Impact Toughness of CPP- and PET-Based Hybrid Thermoplastic Laminates under Edgewise Charpy Testing”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32/2 (November2025). https://doi.org/10.5505/pajes.2025.55874.
JAMA Pulgu N, Erkliğ A. Impact toughness of CPP- and PET-Based hybrid thermoplastic laminates under edgewise charpy testing. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32. doi:10.5505/pajes.2025.55874.
MLA Pulgu, Nida and Ahmet Erkliğ. “Impact Toughness of CPP- and PET-Based Hybrid Thermoplastic Laminates under Edgewise Charpy Testing”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 2, 2025, doi:10.5505/pajes.2025.55874.
Vancouver Pulgu N, Erkliğ A. Impact toughness of CPP- and PET-Based hybrid thermoplastic laminates under edgewise charpy testing. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32(2).

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif