Research Article
BibTex RIS Cite

Teachers Rational Questioning in Technology-Supported Mathematical Modeling: Design and Development

Year 2025, Issue: 65, 160 - 187, 19.09.2025
https://doi.org/10.9779/pauefd.1513155

Abstract

This study presents the preparation for experiment of a design research project, which aims to design and develop rational questioning and technology-supported model eliciting activities (MEAs) including steps in which mathematical depth and technological actions are coordinated. The challenges teachers face in designing and developing MEAs were considered and an example of how to design and develop high quality MEAs using technology and rational questioning was provided. For this aim, first the literature on technology-supported mathematical modeling, rational questioning, and framework for assessing the quality of dynamic geometry tasks were reviewed and the principles of these theories were determined. Considering these principles, a high-quality MEA based on rational questioning was created using GeoGebra in the context of trigonometric functions. This activity was redesigned based on expert feedback and the opinions of a mathematics teacher and the design principles for such an activity has been determined. The next step in further studies will be the testing and revising of this activity in mathematics classrooms. Thus, the design principles for rational questioning and technology-supported MEAs including steps in which mathematical depth and technological actions are coordinated will be revised considering the reflections from learning environment.

Ethical Statement

This research was conducted with the permission obtained by Hacettepe University Graduate School of Educational Sciences Research Ethics Committee's decision dated 19/03/2024 and numbered E-82474949-600-00003448231.

References

  • Bedewy, S. E., Choi, K., Lavicza, Z., Fenyvesi, K., & Houghton, T. (2021). STEAM practices to explore ancient architectures using augmented reality and 3D printing with GeoGebra. Open Education Studies, 3(1), 176-187. https://doi.org/10.1515/edu-2020-0150
  • Biembengut, M. S., & Hein, N. (2013). Mathematical modeling: Implications for teaching. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students' mathematical modeling competencies (pp. 481–490). Springer.
  • Blum, W., & Ferri, R. B. (2009). Mathematical modeling: Can it be taught and learnt? Journal of Mathematical Modeling and Application, 1(1), 45-58.
  • Boero, P. (2006). Habermas’ theory of rationality as a comprehensive frame for conjecturing and proving in school. In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.), Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 185–192). PME.
  • Boero, P., Douek, N., Morselli, F., & Pedemonte, B. (2010). Argumentation and proof: A contribution to theoretical perspectives and their classroom implementation. In M. F. F. Pinto, & T. F. Kawasaki (Eds.), Proceedings of the 34th conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 179–205). PME.
  • Boero P., & Morselli, F. (2009). The use of algebraic language in mathematical modelling and proving in the perspective of Habermas’ theory of rationality. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (pp. 964–973). CERME.
  • Bozkurt, G., & Yiğit Koyunkaya, M. Y. (2023). Using the instrumental orchestration model for planning and teaching technology-based mathematical tasks as part of a restructured practicum course. In A. Clark-Wilson, O. Robutti, & N. Sinclair (Eds.), The mathematics teacher in the digital era: International research on professional learning and practice (pp. 31 64). Springer. https://doi.org/10.1007/978-3-031-05254-5_2
  • Carreira, S., & Baioa, A.M. (2011). Students’ modeling routes in the context of object manipulation and experimentation in mathematics. In G. Kaiser, W. Blum, Rita Borromeo Gerri, & G. Stillman (Eds.), Trends in Teaching and Learning of Mathematical Modeling. International Perspectives on the Teaching and Learning of Mathematical Modeling (pp. 211 220). Springer. https://doi.org/10.1007/978-94-007-0910-2_22
  • Cevikbas, M. (2022). Fostering mathematical modeling competencies: A systematic literature review. In N. Buchholtz, B. Schwarz, K. Vorhölter (Eds.), Initiationen Mathematikdidaktischer Forschung (pp. 51–73). Springer Spektrum. https://doi.org/10.1007/978-3-658-36766-4_3
  • Cevikbas, M., Greefrath, G., & Siller, H. S. (2023). Advantages and challenges of using digital technologies in mathematical modeling education: A descriptive systematic literature review. Frontiers in Education, 8. Article 1142556. https://doi.org/10.3389/feduc.2023.1142556
  • Ciltas, A., Bilgili, S., & Nur Ondes, R. N. (2021). Lise düzeyinde matematiksel modelleme ve öğretime entegrasyonu. In E. Bukova Guzel, M. F. Dogan, & A. Ozaltun Celik (Eds.) Matematiksel modelleme: Teoriden uygulamaya bütünsel bakış (pp. 247-265). Pegem Academy.
  • Conner, A., Singletary, L. M., Smith, R. C., Wagner, P. A., & Francisco, R. T. (2014). Identifying kinds of reasoning in collective argumentation. Mathematical Thinking and Learning, 16(3), 181-200. https://doi.org/10.1080/10986065.2014.921131
  • Connor, J., Moss, L., & Grover, B. (2007). Student evaluation of mathematical statements using dynamic geometry software. International Journal of Mathematics Education in Science and Technology, 38(1), 55–63.
  • de Villiers, M. (2004). Using dynamic geometry to expand mathematics teachers’ understanding of proof. International Journal of Mathematical Education in Science and Technology, 35(5), 703-724. https://doi.org/10.1080/0020739042000232556
  • Douek, N. (2014). Pragmatic potential and critical issues. In P. Liljedahl, C. Nicol, S. Oesterle, & D. Allan (Eds.), Proceedings of the 38th Conference of the International Group for the Psychology of Mathematics Education and the 36th Conference of the North American Chapter of the Psychology of Mathematics Education (Vol. 1, pp. 209–213). PME.
  • English, L. D. (2004). Mathematical modeling in the primary school. In I. J. Putt, R. Faragher, & M. McLean (Eds.), Proceedings of the 27th Annual conference of the Mathematics Education Research Group of Australasia. Mathematics Education for the Third Millennium: Towards 2010 (Voll. 1, pp. 207-214). MERGA.
  • Erbaş, A. K, Çetinkaya, B., Alacacı., C., Çakıroğlu, E., Aydoğan Yenmez, A., Şen Zeytun, A., Korkmaz, H., Kertil, M., Didiş Kabar, M. G., Baş Ader, S., & Şahin, Z. (2024). Günlük hayattan modelleme problemleri lise matematik konuları için (s. 59-60). Türkiye Bilimler Akademisi.
  • Foster, J. K., Zhuang, Y., Conner, A., Park, H., & Singletary, L. M. (2020). One teacher’s analysis of her questioning in support of collective argumentation. In A. I. Sacristán, J. C. Cortés-Zavala, & P. M. Ruiz-Arias (Eds.), Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 2067–2071). PME.
  • Geiger, V. (2011). Factors affecting teachers’ adoption of innovative practices with technology and mathematical modeling. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in Teaching and Learning of Mathematical Modeling (pp. 305 314). Springer. https://doi.org/10.1007/978-94-007-0910-2_31
  • Gomez Marchant, C. N., Park, H., Zhuang, Y., Foster, J. K., & Conner, A. (2021). Theory to practice: Prospective mathematics teachers’ recontextualizing discourses surrounding collective argumentation. Journal of Mathematics Teacher Education, 24(6), 671 699. https://doi.org/10.1007/s10857-021-09500-9
  • Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective. In J. Van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational Design Research, (pp. 17–51). Routledge.
  • Greefrath, G. (2011). Using technologies: New possibilities of teaching and learning modeling – Overview. In G. Kaiser, W. Blum, F. R. Borromeo, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modeling (Vol.1, pp. 301–304). Springer. https://doi.org/10.1007/978-94-007-0910-2_30
  • Greefrath, G., & Siller, H. S. (2018). GeoGebra as a tool in modeling processes. In L. Ball, P. Drijvers, S. Ladel, H. S. Siller, M. Tabach, & C. Vale (Eds.), Uses of technology in primary and secondary mathematics education (pp. 363–374). Springer
  • Greefrath, G., & Siller, H. S. (2024). Mathematical modeling through and with digital resources. Frontiers in Education, 9, 1382594. https://doi.org/10.3389/feduc.2024.1382594
  • Habermas, J. (1998). On the pragmatics of communication. The MIT Press.
  • Hidiroglu, C. N. (2015). Analysing problem solving processes of mathematical modeling in the technology aided environment: An explanation on cognitive and meta cognitive structures. (Publication No. 395250) [Doctoral dissertation, Dokuz Eylül University]. National Thesis Center.
  • Hidiroglu, C. N. (2021). Matematiksel modellemede teknoloji kullanımı. In E. Bukova Guzel, M. F. Dogan, & A. Ozaltun Celik (Eds.), Matematiksel modelleme: Teoriden uygulamaya bütünsel bakış (pp. 265-294). Pegem Academy.
  • Hidiroglu, C. N., & Aktas, S. E. (2021). Structuring GeoGebra-aided mathematical modeling process within the framework of ladder problem solution. Başkent University Journal of Education, 8(2), 292-314.
  • Hidiroglu, C. N., & Bukova Guzel, E. (2014). Using GeoGebra in mathematical modeling: The height-foot length problem. Pamukkale University Journal of Education, 36(36), 29-44.
  • Hidiroglu, C. N., & Bukova Guzel, E. (2017). The conceptualization of the mathematical modeling process in technology-aided environment. International Journal for Technology in Mathematics Education, 24(1), 17-36. https://doi.org/10.1564/tme_v24.1.02
  • Hitt, F., Soto-Munguía, J. L., & Lupiáñez-Gómez, J. L. (2023). Tools and technologies in a sociocultural approach of learning mathematical modeling. In S. R. Sanchez, A. S. Bayés, P. Appelbaum, & G. Aldon (Eds.), The Role of the History of Mathematics in the Teaching/Learning Process (pp. 309-331). Springer. https://doi.org/10.1007/978-3-031-29900-1_13
  • Hohenwarter, M., Hohenwarter, J., Kreis, Y., & Lavicza, Z. (2008, July 6–13). Teaching and learning calculus with free dynamic mathematics software GeoGebra [Conference presentation]. 11th International Congress on Mathematical Education, Monterrey, Mexico.
  • Hollebrands, K. F. (2007). The role of a dynamic software program for geometry in the strategies high school mathematics students employ. Journal for Research in Mathematics Education, 38(2), 164-192. https://doi.org/10.2307/30034955
  • Kaiser, G. (2020). Mathematical modeling and applications in education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 553-561). Springer. https://doi.org/10.1007/978-3-030-15789-0_101
  • Kazemi, E., & Stipek, D. (2001). Promoting conceptual thinking in four upper-elementary mathematics classrooms. The Elementary School Journal, 102(1), 59-80.
  • Kertil, M., Erbaş, A. K., & Çetinkaya, B. (2017). İlköğretim matematik öğretmen adaylarının değişim oranı ile ilgili düşünme biçimlerinin bir modelleme etkinliği bağlamında incelenmesi. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 8(1), 188-217. https://doi.org/10.16949/turkbilmat.304212
  • Kol, M. (2014). İlköğretim matematik öğretmen adaylarının matematikselleştirme sürecinin bir matematiksel modelleme etkinliği süresince incelenmesi (Yayın No. 385004) [Yüksek lisans tezi, Orta Doğu Teknik Üniversitesi] Ulusal Tez Merkezi.
  • Kosko, K. W., Rougee, A., & Herbst, P. (2014). What actions do teachers envision when asked to facilitate mathematical argumentation in the classroom? Mathematics Education Research Journal, 26, 459-476. https://doi.org/10.1007/s13394-013-0116-1
  • Laborde, C. (2000). Dynamic geometry environments as a source of rich learning contexts for the complex activity of proving. Educational Studies in Mathematics, 44, 151 161. https://doi.org/10.1023/A:1012793121648
  • Lesh, R., & Doerr, H. (2003). Foundations of a models and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh, & H. Doerr (Eds.), Beyond constructivism, models and modeling perspectives on mathematics problem solving, learning and teaching (pp. 3–34). Routledge.
  • Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In A. E. Kelly, & R. A. Lesh (Ed.), Handbook of research design in mathematics and science education (pp. 591-646). Routledge.
  • Lingefjärd, T. (2007). Mathematical modeling in teacher education—Necessity or unnecessarily. In W. Blum, P. L. Galbraith, H.W. Henn, & M. Niss (Eds.), Modelling and Applications in Mathematics Education (Vol.10, pp. 333-340). Springer.
  • Lingefjärd, T. (2012). Learning mathematics through mathematical modeling. Journal of Mathematical Modeling and Application, 1(5), 41-49.
  • Marrades, R., & Gutiérrez, Á. (2000). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational Studies in Mathematics, 44, 87-125. https://doi.org/10.1023/A:1012785106627
  • Ministry of National Education. (2018). Matematik dersi öğretim programı (ilkokul ve ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8. sınıflar). http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=329
  • Ozcakir, B., & Cakiroglu, E. (2021). An augmented reality learning toolkit for fostering spatial ability in mathematics lesson: Design and development. European Journal of Science and Mathematics Education, 9(4), 145-167. https://doi.org/10.30935/scimath/11204
  • Ozcan, S., & Zengin, Y. (2024). Teachers’ use of rational questioning to support students’ collective argumentation through 5E-based Flipped Classroom Approach using GeoGebra. Science & Education. Advance online publication. https://doi.org/10.1007/s11191-024-00573-5
  • Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connecting theoretical approaches - First steps towards a conceptual framework. ZDM: The International Journal on Mathematics Education, 40(2), 165-178.
  • Radford, L. (2008). Connecting theories in mathematics education: Challenges and possibilities. ZDM: The International Journal on Mathematics Education, 40, 83-96.
  • Rodríguez, S.G., & Rigo, M. (2015). The culture of rationality in secondary school: An ethnographic approach. In K. Beswick, T. Muir, & J. Fielding-Wells (Eds.), Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education (Vol.4, pp. 89-96). PME.
  • Sen Zeytun, A., Cetinkaya, B., & Erbas, A. K. (2024). Why do prospective teachers have difficulties in mathematical modeling? Insights from their perspectives. International Journal of Mathematical Education in Science and Technology, 55(1), 1-24. https://doi.org/10.1080/0020739X.2023.2171922
  • Sezen Yuksel, N., Saglam Kaya, Y., Urhan, S., & Sefik, O. (2019). Matematik eğitiminde modelleme. In S. Dost (Ed.), Matematik eğitiminde modelleme etkinlikleri (pp. 59-71). Pegem Academy.
  • Sinclair, M. (2003). Some implications of the results of a case study for the design of pre-constructed, dynamic geometry sketches and accompanying materials. Educational Studies in Mathematics, 52(3), 289–317.
  • Stein, M. K., & Smith, M. S. (1998). Mathematical tasks as a framework for reflection: From research to practice. Mathematics Teaching in the Middle School, 3(4), 268 275. https://doi.org/10.5951/MTMS.3.4.0268
  • Tengler, K., Kastner-Hauler, O., Sabitzer, B., & Lavicza, Z. (2021). The effect of robotics-based storytelling activities on primary school students’ computational thinking. Education Sciences, 12(1), 10. http://doi.org/10.3390/educsci12010010
  • Thompson, K.A. (2007). Students’ understanding of trigonometry enhanced through the use of a real-world problem. (Publication No. 3280913) [Doctoral dissertation, Illinois State University] ProQuest Dissertations Publishing.
  • Trocki, A., & Hollebrands, K. (2018). The development of a framework for assessing dynamic geometry task quality. Digital Experiences in Mathematics Education, 4(2 3), 110 138. https://doi.org/10.1007/s40751-018-0041-8
  • Urhan, S. (2022). Using Habermas’ construct of rationality to analyze students’ computational thinking: The case of series and vector. Education and Information Technologies, 27(8), 10869–10948. https://doi.org/10.1007/s10639-022-11002-x
  • Urhan, S., & Dost, S. (2016). The use of mathematical modeling activities in courses: Teacher perspectives. Electronic Journal of Social Sciences, 15(59), 1279 1295. https://doi.org/10.17755/esosder.263231
  • Urhan, S., & Zengin, Y. (2023). Investigating university students’ argumentations and proofs using dynamic mathematics software in collaborative learning, debate, and self-reflection stages. International Journal of Research in Undergraduate Mathematics Education. 1(12), 1-28. https://doi.org/10.1007/s40753-022-00207-7
  • Watson, G. S., & Enderson, M. C. (2018). Preparing teachers to use Excelets: Developing creative modeling experiences for secondary mathematics students. In V. Freiman, & J. L. Tassell (Eds.), Creativity and Technology in Mathematics Education (Vol. 10, pp. 203 231). Springer. https://doi.org/10.1007/978-3-319-72381-5_8
  • Yigit Koyunkaya, M., & Bozkurt, G. (2019). An examination of GeoGebra tasks designed by pre-service mathematics teachers in terms of mathematical depth and technological action. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 13(2), 515 544. https://doi.org/10.17522/balikesirnef.573521
  • Zawojewski, J. S., Lesh, R., & English, L. (2003). A models and modeling perspective on the role of small group learning activities. In R. Lesh & H. Doerr (Eds.), Beyond constructivism: Models and modeling perspective on mathematics problem solving, learning, and teaching (pp. 337–358). Routledge.
  • Zengin, Y. (2019). Development of mathematical connection skills in a dynamic learning environment. Education & Information Technologies 24(3), 2175–2194. https://doi.org/10.1007/s10639-019-09870-x
  • Zengin, Y (2023). Effectiveness of a professional development course based on information and communication technologies on mathematics teachers' skills in designing technology-enhanced task. Education & Information Technologies 28(12), 16201–16231. https://doi.org/10.1007/s10639-023-11728-2
  • Zhuang, Y., & Conner, A. (2018). Analysis of teachers’ questioning in supporting mathematical argumentation by integrating Habermas’ rationality and Toulmin’s model. In T. Hodges, G. Roy, & A. Tyminski (Eds.), Proceedings of the 40th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1323–1330). PME.
  • Zhuang, Y., & Conner, A. (2022). Teachers’ use of rational questioning strategies to promote student participation in collective argumentation. Educational Studies in Mathematics, 111(3), 345–365. https://doi.org/10.1007/s10649-022-10160-6

Teknoloji Destekli Matematiksel Modellemede Öğretmenin Akılcı Sorgulaması: Tasarım ve Geliştirme Çalışması

Year 2025, Issue: 65, 160 - 187, 19.09.2025
https://doi.org/10.9779/pauefd.1513155

Abstract

Bu çalışma, matematiksel derinlik ve teknolojik eylemlerin koordine edildiği adımları içeren akılcı sorgulama ve teknoloji destekli model oluşturma etkinliklerini (MOE’ler) tasarlamayı ve geliştirmeyi amaçlayan bir tasarı araştırmasının uygulama için hazırlık aşamasını sunmaktadır. Öğretmenlerin MOE’ler tasarlarken ve geliştirirken karşılaştıkları zorluklar dikkate alınarak akılcı sorgulama ve teknoloji destekli yüksek nitelikli MOE’lerin nasıl tasarlanıp geliştirilebileceğine dair bir örnek sunulmuştur. Bu amaçla, ilk olarak teknoloji destekli matematiksel modelleme, akılcı sorgulama ve dinamik geometri görevlerinin niteliğini değerlendirme çerçevesine ilişkin literatür gözden geçirilmiş ve bu teorilerin prensipleri belirlenmiştir. Bu prensiplere dayanarak, trigonometrik fonksiyonlar bağlamında GeoGebra kullanarak akılcı sorgulama temelli yüksek nitelikli bir MOE oluşturulmuştur. Bu etkinlik uzman geri bildirimleri ve bir matematik öğretmeninin görüşleri temel alınarak yeniden tasarlanmış ve bu türden etkinlikler için tasarım prensipleri belirlenmiştir. Bir sonraki adım, ilerleyen çalışmalarda bu etkinliğin matematik sınıflarında test edilmesi ve revize edilmesidir. Böylece, matematiksel derinlik ve teknolojik eylemlerin koordine edildiği adımları içeren akılcı sorgulama ve teknoloji destekli MOE’ler için tasarım prensipleri, öğrenme ortamından gelen yansımalar dikkate alınarak revize edilecektir

Ethical Statement

Bu araştırma, Hacettepe Üniversitesi Eğitim Bilimleri Enstitüsü Araştırma Etik Kurulu'nun 19/03/2024 tarihli E-82474949-600-00003448231 sayılı kararı ile alınan izinle yürütülmüştür.

References

  • Bedewy, S. E., Choi, K., Lavicza, Z., Fenyvesi, K., & Houghton, T. (2021). STEAM practices to explore ancient architectures using augmented reality and 3D printing with GeoGebra. Open Education Studies, 3(1), 176-187. https://doi.org/10.1515/edu-2020-0150
  • Biembengut, M. S., & Hein, N. (2013). Mathematical modeling: Implications for teaching. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students' mathematical modeling competencies (pp. 481–490). Springer.
  • Blum, W., & Ferri, R. B. (2009). Mathematical modeling: Can it be taught and learnt? Journal of Mathematical Modeling and Application, 1(1), 45-58.
  • Boero, P. (2006). Habermas’ theory of rationality as a comprehensive frame for conjecturing and proving in school. In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.), Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 185–192). PME.
  • Boero, P., Douek, N., Morselli, F., & Pedemonte, B. (2010). Argumentation and proof: A contribution to theoretical perspectives and their classroom implementation. In M. F. F. Pinto, & T. F. Kawasaki (Eds.), Proceedings of the 34th conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 179–205). PME.
  • Boero P., & Morselli, F. (2009). The use of algebraic language in mathematical modelling and proving in the perspective of Habermas’ theory of rationality. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (pp. 964–973). CERME.
  • Bozkurt, G., & Yiğit Koyunkaya, M. Y. (2023). Using the instrumental orchestration model for planning and teaching technology-based mathematical tasks as part of a restructured practicum course. In A. Clark-Wilson, O. Robutti, & N. Sinclair (Eds.), The mathematics teacher in the digital era: International research on professional learning and practice (pp. 31 64). Springer. https://doi.org/10.1007/978-3-031-05254-5_2
  • Carreira, S., & Baioa, A.M. (2011). Students’ modeling routes in the context of object manipulation and experimentation in mathematics. In G. Kaiser, W. Blum, Rita Borromeo Gerri, & G. Stillman (Eds.), Trends in Teaching and Learning of Mathematical Modeling. International Perspectives on the Teaching and Learning of Mathematical Modeling (pp. 211 220). Springer. https://doi.org/10.1007/978-94-007-0910-2_22
  • Cevikbas, M. (2022). Fostering mathematical modeling competencies: A systematic literature review. In N. Buchholtz, B. Schwarz, K. Vorhölter (Eds.), Initiationen Mathematikdidaktischer Forschung (pp. 51–73). Springer Spektrum. https://doi.org/10.1007/978-3-658-36766-4_3
  • Cevikbas, M., Greefrath, G., & Siller, H. S. (2023). Advantages and challenges of using digital technologies in mathematical modeling education: A descriptive systematic literature review. Frontiers in Education, 8. Article 1142556. https://doi.org/10.3389/feduc.2023.1142556
  • Ciltas, A., Bilgili, S., & Nur Ondes, R. N. (2021). Lise düzeyinde matematiksel modelleme ve öğretime entegrasyonu. In E. Bukova Guzel, M. F. Dogan, & A. Ozaltun Celik (Eds.) Matematiksel modelleme: Teoriden uygulamaya bütünsel bakış (pp. 247-265). Pegem Academy.
  • Conner, A., Singletary, L. M., Smith, R. C., Wagner, P. A., & Francisco, R. T. (2014). Identifying kinds of reasoning in collective argumentation. Mathematical Thinking and Learning, 16(3), 181-200. https://doi.org/10.1080/10986065.2014.921131
  • Connor, J., Moss, L., & Grover, B. (2007). Student evaluation of mathematical statements using dynamic geometry software. International Journal of Mathematics Education in Science and Technology, 38(1), 55–63.
  • de Villiers, M. (2004). Using dynamic geometry to expand mathematics teachers’ understanding of proof. International Journal of Mathematical Education in Science and Technology, 35(5), 703-724. https://doi.org/10.1080/0020739042000232556
  • Douek, N. (2014). Pragmatic potential and critical issues. In P. Liljedahl, C. Nicol, S. Oesterle, & D. Allan (Eds.), Proceedings of the 38th Conference of the International Group for the Psychology of Mathematics Education and the 36th Conference of the North American Chapter of the Psychology of Mathematics Education (Vol. 1, pp. 209–213). PME.
  • English, L. D. (2004). Mathematical modeling in the primary school. In I. J. Putt, R. Faragher, & M. McLean (Eds.), Proceedings of the 27th Annual conference of the Mathematics Education Research Group of Australasia. Mathematics Education for the Third Millennium: Towards 2010 (Voll. 1, pp. 207-214). MERGA.
  • Erbaş, A. K, Çetinkaya, B., Alacacı., C., Çakıroğlu, E., Aydoğan Yenmez, A., Şen Zeytun, A., Korkmaz, H., Kertil, M., Didiş Kabar, M. G., Baş Ader, S., & Şahin, Z. (2024). Günlük hayattan modelleme problemleri lise matematik konuları için (s. 59-60). Türkiye Bilimler Akademisi.
  • Foster, J. K., Zhuang, Y., Conner, A., Park, H., & Singletary, L. M. (2020). One teacher’s analysis of her questioning in support of collective argumentation. In A. I. Sacristán, J. C. Cortés-Zavala, & P. M. Ruiz-Arias (Eds.), Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 2067–2071). PME.
  • Geiger, V. (2011). Factors affecting teachers’ adoption of innovative practices with technology and mathematical modeling. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in Teaching and Learning of Mathematical Modeling (pp. 305 314). Springer. https://doi.org/10.1007/978-94-007-0910-2_31
  • Gomez Marchant, C. N., Park, H., Zhuang, Y., Foster, J. K., & Conner, A. (2021). Theory to practice: Prospective mathematics teachers’ recontextualizing discourses surrounding collective argumentation. Journal of Mathematics Teacher Education, 24(6), 671 699. https://doi.org/10.1007/s10857-021-09500-9
  • Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective. In J. Van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational Design Research, (pp. 17–51). Routledge.
  • Greefrath, G. (2011). Using technologies: New possibilities of teaching and learning modeling – Overview. In G. Kaiser, W. Blum, F. R. Borromeo, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modeling (Vol.1, pp. 301–304). Springer. https://doi.org/10.1007/978-94-007-0910-2_30
  • Greefrath, G., & Siller, H. S. (2018). GeoGebra as a tool in modeling processes. In L. Ball, P. Drijvers, S. Ladel, H. S. Siller, M. Tabach, & C. Vale (Eds.), Uses of technology in primary and secondary mathematics education (pp. 363–374). Springer
  • Greefrath, G., & Siller, H. S. (2024). Mathematical modeling through and with digital resources. Frontiers in Education, 9, 1382594. https://doi.org/10.3389/feduc.2024.1382594
  • Habermas, J. (1998). On the pragmatics of communication. The MIT Press.
  • Hidiroglu, C. N. (2015). Analysing problem solving processes of mathematical modeling in the technology aided environment: An explanation on cognitive and meta cognitive structures. (Publication No. 395250) [Doctoral dissertation, Dokuz Eylül University]. National Thesis Center.
  • Hidiroglu, C. N. (2021). Matematiksel modellemede teknoloji kullanımı. In E. Bukova Guzel, M. F. Dogan, & A. Ozaltun Celik (Eds.), Matematiksel modelleme: Teoriden uygulamaya bütünsel bakış (pp. 265-294). Pegem Academy.
  • Hidiroglu, C. N., & Aktas, S. E. (2021). Structuring GeoGebra-aided mathematical modeling process within the framework of ladder problem solution. Başkent University Journal of Education, 8(2), 292-314.
  • Hidiroglu, C. N., & Bukova Guzel, E. (2014). Using GeoGebra in mathematical modeling: The height-foot length problem. Pamukkale University Journal of Education, 36(36), 29-44.
  • Hidiroglu, C. N., & Bukova Guzel, E. (2017). The conceptualization of the mathematical modeling process in technology-aided environment. International Journal for Technology in Mathematics Education, 24(1), 17-36. https://doi.org/10.1564/tme_v24.1.02
  • Hitt, F., Soto-Munguía, J. L., & Lupiáñez-Gómez, J. L. (2023). Tools and technologies in a sociocultural approach of learning mathematical modeling. In S. R. Sanchez, A. S. Bayés, P. Appelbaum, & G. Aldon (Eds.), The Role of the History of Mathematics in the Teaching/Learning Process (pp. 309-331). Springer. https://doi.org/10.1007/978-3-031-29900-1_13
  • Hohenwarter, M., Hohenwarter, J., Kreis, Y., & Lavicza, Z. (2008, July 6–13). Teaching and learning calculus with free dynamic mathematics software GeoGebra [Conference presentation]. 11th International Congress on Mathematical Education, Monterrey, Mexico.
  • Hollebrands, K. F. (2007). The role of a dynamic software program for geometry in the strategies high school mathematics students employ. Journal for Research in Mathematics Education, 38(2), 164-192. https://doi.org/10.2307/30034955
  • Kaiser, G. (2020). Mathematical modeling and applications in education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 553-561). Springer. https://doi.org/10.1007/978-3-030-15789-0_101
  • Kazemi, E., & Stipek, D. (2001). Promoting conceptual thinking in four upper-elementary mathematics classrooms. The Elementary School Journal, 102(1), 59-80.
  • Kertil, M., Erbaş, A. K., & Çetinkaya, B. (2017). İlköğretim matematik öğretmen adaylarının değişim oranı ile ilgili düşünme biçimlerinin bir modelleme etkinliği bağlamında incelenmesi. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 8(1), 188-217. https://doi.org/10.16949/turkbilmat.304212
  • Kol, M. (2014). İlköğretim matematik öğretmen adaylarının matematikselleştirme sürecinin bir matematiksel modelleme etkinliği süresince incelenmesi (Yayın No. 385004) [Yüksek lisans tezi, Orta Doğu Teknik Üniversitesi] Ulusal Tez Merkezi.
  • Kosko, K. W., Rougee, A., & Herbst, P. (2014). What actions do teachers envision when asked to facilitate mathematical argumentation in the classroom? Mathematics Education Research Journal, 26, 459-476. https://doi.org/10.1007/s13394-013-0116-1
  • Laborde, C. (2000). Dynamic geometry environments as a source of rich learning contexts for the complex activity of proving. Educational Studies in Mathematics, 44, 151 161. https://doi.org/10.1023/A:1012793121648
  • Lesh, R., & Doerr, H. (2003). Foundations of a models and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh, & H. Doerr (Eds.), Beyond constructivism, models and modeling perspectives on mathematics problem solving, learning and teaching (pp. 3–34). Routledge.
  • Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In A. E. Kelly, & R. A. Lesh (Ed.), Handbook of research design in mathematics and science education (pp. 591-646). Routledge.
  • Lingefjärd, T. (2007). Mathematical modeling in teacher education—Necessity or unnecessarily. In W. Blum, P. L. Galbraith, H.W. Henn, & M. Niss (Eds.), Modelling and Applications in Mathematics Education (Vol.10, pp. 333-340). Springer.
  • Lingefjärd, T. (2012). Learning mathematics through mathematical modeling. Journal of Mathematical Modeling and Application, 1(5), 41-49.
  • Marrades, R., & Gutiérrez, Á. (2000). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational Studies in Mathematics, 44, 87-125. https://doi.org/10.1023/A:1012785106627
  • Ministry of National Education. (2018). Matematik dersi öğretim programı (ilkokul ve ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8. sınıflar). http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=329
  • Ozcakir, B., & Cakiroglu, E. (2021). An augmented reality learning toolkit for fostering spatial ability in mathematics lesson: Design and development. European Journal of Science and Mathematics Education, 9(4), 145-167. https://doi.org/10.30935/scimath/11204
  • Ozcan, S., & Zengin, Y. (2024). Teachers’ use of rational questioning to support students’ collective argumentation through 5E-based Flipped Classroom Approach using GeoGebra. Science & Education. Advance online publication. https://doi.org/10.1007/s11191-024-00573-5
  • Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connecting theoretical approaches - First steps towards a conceptual framework. ZDM: The International Journal on Mathematics Education, 40(2), 165-178.
  • Radford, L. (2008). Connecting theories in mathematics education: Challenges and possibilities. ZDM: The International Journal on Mathematics Education, 40, 83-96.
  • Rodríguez, S.G., & Rigo, M. (2015). The culture of rationality in secondary school: An ethnographic approach. In K. Beswick, T. Muir, & J. Fielding-Wells (Eds.), Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education (Vol.4, pp. 89-96). PME.
  • Sen Zeytun, A., Cetinkaya, B., & Erbas, A. K. (2024). Why do prospective teachers have difficulties in mathematical modeling? Insights from their perspectives. International Journal of Mathematical Education in Science and Technology, 55(1), 1-24. https://doi.org/10.1080/0020739X.2023.2171922
  • Sezen Yuksel, N., Saglam Kaya, Y., Urhan, S., & Sefik, O. (2019). Matematik eğitiminde modelleme. In S. Dost (Ed.), Matematik eğitiminde modelleme etkinlikleri (pp. 59-71). Pegem Academy.
  • Sinclair, M. (2003). Some implications of the results of a case study for the design of pre-constructed, dynamic geometry sketches and accompanying materials. Educational Studies in Mathematics, 52(3), 289–317.
  • Stein, M. K., & Smith, M. S. (1998). Mathematical tasks as a framework for reflection: From research to practice. Mathematics Teaching in the Middle School, 3(4), 268 275. https://doi.org/10.5951/MTMS.3.4.0268
  • Tengler, K., Kastner-Hauler, O., Sabitzer, B., & Lavicza, Z. (2021). The effect of robotics-based storytelling activities on primary school students’ computational thinking. Education Sciences, 12(1), 10. http://doi.org/10.3390/educsci12010010
  • Thompson, K.A. (2007). Students’ understanding of trigonometry enhanced through the use of a real-world problem. (Publication No. 3280913) [Doctoral dissertation, Illinois State University] ProQuest Dissertations Publishing.
  • Trocki, A., & Hollebrands, K. (2018). The development of a framework for assessing dynamic geometry task quality. Digital Experiences in Mathematics Education, 4(2 3), 110 138. https://doi.org/10.1007/s40751-018-0041-8
  • Urhan, S. (2022). Using Habermas’ construct of rationality to analyze students’ computational thinking: The case of series and vector. Education and Information Technologies, 27(8), 10869–10948. https://doi.org/10.1007/s10639-022-11002-x
  • Urhan, S., & Dost, S. (2016). The use of mathematical modeling activities in courses: Teacher perspectives. Electronic Journal of Social Sciences, 15(59), 1279 1295. https://doi.org/10.17755/esosder.263231
  • Urhan, S., & Zengin, Y. (2023). Investigating university students’ argumentations and proofs using dynamic mathematics software in collaborative learning, debate, and self-reflection stages. International Journal of Research in Undergraduate Mathematics Education. 1(12), 1-28. https://doi.org/10.1007/s40753-022-00207-7
  • Watson, G. S., & Enderson, M. C. (2018). Preparing teachers to use Excelets: Developing creative modeling experiences for secondary mathematics students. In V. Freiman, & J. L. Tassell (Eds.), Creativity and Technology in Mathematics Education (Vol. 10, pp. 203 231). Springer. https://doi.org/10.1007/978-3-319-72381-5_8
  • Yigit Koyunkaya, M., & Bozkurt, G. (2019). An examination of GeoGebra tasks designed by pre-service mathematics teachers in terms of mathematical depth and technological action. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 13(2), 515 544. https://doi.org/10.17522/balikesirnef.573521
  • Zawojewski, J. S., Lesh, R., & English, L. (2003). A models and modeling perspective on the role of small group learning activities. In R. Lesh & H. Doerr (Eds.), Beyond constructivism: Models and modeling perspective on mathematics problem solving, learning, and teaching (pp. 337–358). Routledge.
  • Zengin, Y. (2019). Development of mathematical connection skills in a dynamic learning environment. Education & Information Technologies 24(3), 2175–2194. https://doi.org/10.1007/s10639-019-09870-x
  • Zengin, Y (2023). Effectiveness of a professional development course based on information and communication technologies on mathematics teachers' skills in designing technology-enhanced task. Education & Information Technologies 28(12), 16201–16231. https://doi.org/10.1007/s10639-023-11728-2
  • Zhuang, Y., & Conner, A. (2018). Analysis of teachers’ questioning in supporting mathematical argumentation by integrating Habermas’ rationality and Toulmin’s model. In T. Hodges, G. Roy, & A. Tyminski (Eds.), Proceedings of the 40th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1323–1330). PME.
  • Zhuang, Y., & Conner, A. (2022). Teachers’ use of rational questioning strategies to promote student participation in collective argumentation. Educational Studies in Mathematics, 111(3), 345–365. https://doi.org/10.1007/s10649-022-10160-6
There are 67 citations in total.

Details

Primary Language Turkish
Subjects Mathematics Education
Journal Section Articles
Authors

Selin Urhan 0000-0002-1665-7643

Selen Galiç 0000-0002-3524-6428

Şenol Dost 0000-0002-5762-8056

Zsolt Lavicza 0000-0002-3701-5068

Early Pub Date September 15, 2025
Publication Date September 19, 2025
Submission Date July 9, 2024
Acceptance Date April 17, 2025
Published in Issue Year 2025 Issue: 65

Cite

APA Urhan, S., Galiç, S., Dost, Ş., Lavicza, Z. (2025). Teknoloji Destekli Matematiksel Modellemede Öğretmenin Akılcı Sorgulaması: Tasarım ve Geliştirme Çalışması. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi(65), 160-187. https://doi.org/10.9779/pauefd.1513155