Research Article
BibTex RIS Cite

Investigation on the Suitability of Powder Particulars Used in Powder Bed/Feed Additive Manufacturing and Powder Manufacturing Methods

Year 2019, Volume: 22 Issue: 4, 801 - 810, 01.12.2019
https://doi.org/10.2339/politeknik.423707

Abstract

Powder
metallurgy (P/M) is known as an industrial part manufacturing by powder
pressing and sintering using ceramic and metal based particulars, but, P/M
method has incorperated the additive manufacturing as a new method which is
combined in technologies of laser, machine, design and software. The
manufacturing of prototype and/or useful industrial parts has become possible
as layer upon layer with today’s additive manufacturing technology by using
suitable laser, electron and ultraviolet beam in form of powder, wire, sheet
and melt from polymer, ceramic and metal based materials. The literature survey
has been done about the powder bed/feed additive manufacturing methods, the
powder characterizations used in these methods and powder manufacturing methods
in this study. In addition, the effect of dimension, shape, physical
properties, and chemical purity of powders on the product properties
manufactured by powder bed/feed additive manufacturing can be expressed with
respect of investigations in the literature.

References

  • [1] TTMD – Türk Toz Metalurjisi Derneği Online Yayını “Toz Metalurjisi”, Türk Toz Metalurjisi Derneği, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi, Makine Mühendisliği Bölümü, www.turktoz.gazi.edu.tr, Ankara, 2003.
  • [2] Öveçoğlu, M. L. “Toz Metalurjisi: Tarihsel Gelişim, Üretim Aşamaları ve Yeni Eğilimler”, 9. Uluslar arası Metalurji ve Malzeme Kongresi, TMMOB Metalurji Mühendisleri Odası Yayını, İstanbul, 449475, 1997.
  • [3] Yalçın B., Ergene B., “Endüstride Yeni Eğilim Olan 3-B Eklemeli İmalat Teknolojisi ve Metalurjisi”, SDÜ. Uluslararası Teknolojik Araştırmalar Dergisi., 9,3: 65-88, (2017).
  • [4] Lux Research Building the future: Assessing 3-D printing’s opportunities and challenges. 2013. Boston: Lux Research Inc. http://www.luxresearchinc.com/research. Erişim tarihi: 20 Ocak 2018.
  • [5] Katmanlı İmalat Teknolojileri ve Havacılık Uygulamaları, Sektör Değerlendirme Raporu, STM Mühendislik Teknoloji Danışmanlık, 1-22, Ankara, (2015). https://www.stm.com.tr/documents/file/Pdf/1.katmanli_imalat_teknolojileri_raporu.
  • [6]Additive Manufacturing Research Group; About Additive Manufacturing. http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/ (2017.
  • [7] Sunpreet S., Seeram R., Rupinder S., “ Material Issues in Additive Manufacturing: A review”; Journal of Manufacturing Processes, 25:185-200, (2017).
  • [8] Gibson I., Shi D., “Material Properties and Fabrication Parameters in Selective Laser Sintering Process”, Rapid Prototyping Journal, 3-4: 129-136, (1997).
  • [9] Mercelis P., Kruth J.P., “Residual stresses in selective laser sintering and selective laser melting”, Rapid Prototyping Journal, 12-5: 254-265, (2006).
  • [10] Redwood B., Additive manufacturing technologies overview, (2017). https://www.3dhubs.com/knowledge-base/additive-manufacturing-technologies-overview,
  • [11] Strano, G. Surface roughness analysis, modelling and prediction in selective laser melting, Journal of Materials Processing Technology, 213-4: 589-597, (2013).
  • [12] Metal AM; "Metal Katkı Üretim Süreçleri" başlıklı makale http://www.metal-am.com/introduction_to_metal-additive_manufacturing/processes.
  • [13] Hiemenz J., “Electron beam melting”, Advanced Materials & Processes, 165-3: 45-46, (2007).
  • [14] http://additivemanufacturing.com/2015/10/14/electron-beam-additive-manufacturing-ebam-advantages-of-wire-am-vs-powder-am/
  • [15] Upadhyaya, G.S. “Powder Metallurgy Technology”, Cambridge International Science Publishing, 1996.
  • [16] Kurt A.O., 2004-2010 www.aokurt.sakarya.edu.tr/dersler/dersler.htm.
  • [17]Toz Metalurjisi, Toz Üretim Teknikleri Ders Notları. http://rahmiunal.net/toz/tozuretimi/powder_product.html. Erişim tarihi: 4 Ocak 2018.
  • [18] Sadowski M, Ladani L, Brindley W, Romano J., “Optimizing quality of additively manufactured Inconel 718 using powder bed laser melting process”, Additive Manufacturing, 11:60–70, (2016).
  • [19] Herzog D., Seyda V., Wycisk E., Emmelmann C.,” Additive manufacturing of metals”, Acta Mater, 117:371–92, (2016).
  • [20] Helmer H., Bauerei A., Singer R.F., Körner C., “Grain structure evolution in Inconel 718 during selective electron beam melting”, Mater Sci Eng A; 668: 180-7, (2016).
  • [21] Dawes B.J., Bowerman R., “Introduction to the Additive Manufacturing Powder Metallurgy Supply Chain”, Johnson Matthey Technol. Rev., 59:243–256, (2015). doi:http://dx.doi.org/10.1595/205651315X688686.
  • [22] http://eklemeliimalat.info.tr/3-eklemeli-imalat-icin-metal-tozlari/#3.1. Erişim tarihi: 12 Ocak 2018.
  • [23] Uslan, İ., Küçükarslan, S., “Kalay Tozu Üretimine Gaz Atomizasyonu Parametrelerinin Etkisinin İncelenmesi”, Gazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 25-1: 1-8, (2010).
  • [24] http://rahmiunal.net/toz/tozuretimi/powder_product.html. Erişim tarihi: 28 Aralık 2017.
  • [25] http://eklemeliimalat.info.tr/3-eklemeli-imalat-icin-metal-tozlari/#3.1. Erişim tarihi: 12 Ocak 2018.
  • [26] Yamanoğlu R., Kocaeli Üniversitesi, Toz Üretim Yöntemleri Ders Notları, (http://docplayer.biz.tr/32188483-Toz-uretim-yontemleri-yrd-doc-dr-ridvan-yamanoglu.html.
  • [27] Evcin A., Afyon Kocatepe Üniversitesi; Toz Üretim Teknikleri Ders Notları, 2007http://www.kimmuh.com/evcin/toz/toz1a.pdf.
  • [28] Metal Eklemeli İmalat(M.E.I.) Teknolojileri, Destek Yapılar ve Hücresel Yapılar Ders Notları, Dumlupınar Üniverisitesi Açık Ders Notları Sistemi. http://www.adn.dpu.edu.tr/pluginfile.php. Erişim tarihi: 20 Ocak 2018.
  • [29] Simchi A.,“The role of particle size on the laser sintering of iron powder”, Metall. Mater. Trans. B., 35:937–948, 2004. doi:10.1007/s11663-004-0088-3.
  • [30] Spierings A.B., Herres N., Levy G., “Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts”, Rapid Prototyping J:17-3:195–202, (2011).
  • [31] Austin T. Sutton, Caitlin S. Kriewall , Ming C. Leu, Joseph W. Newkirk, “Powders For Addıtıve Manufacturıng Processes Characterızatıon Technıques And Effects On Part Propertıes”, Solid Freeform Fabrication, Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference Reviewed Paper, 1004-1030, (2016).
  • [32] A.E. Hawkins, “The Shape of Powder-Particle Outlines”, Research Studies Press Ltd., England, (1993).
  • [33] Freeman R. “Measuring the flow properties of consolidated, conditioned and aerated powders – A comparative study using a powder rheometer and a rotational shear cell”, Powder Technology, 174:25–33, (2007).
  • [34] Lyckfeldt, O., Euro PM 2013 Kongresi ve Sergisi Bildirileri Kitabı , Cilt. 2, Sayfa: 225-230, Avrupa Toz Metalürjisi Derneği, Shrewsbury-İngiltere, (2013).
  • [35] Hoegesa S., Zwirenb A., Schadeb C.,“Additive manufacturing using water”, Metal Powder Report, 72, (2017).
  • [36] Clayton, J. “Optimising metal powders for additive manufacturing”, Metal Powder Report, 69-5:14-17 (2014), https://doi.org/10.1016/S0026-0657(14)70223-1
  • [37] S.J. Kerber, J. “Tverberg, Stainless Steel, Adv. Mater. Process”. 33–36, (2000).
  • [38] Tang H.P., Qian M., Liu N., Zhang X.Z.,Yang G.Y., Wang J., “Effect of Powder Reuse Times on Additive Manufacturing of Ti-6Al-4V by Selective Electron Beam Melting”, The Journal of the Minerals, Metals and Materials Society, 67: 555–563, (2015). doi:10.1007/s11837-015-1300-4.
  • [39] Ardila L.C., Garciandia F., González-Díaz J.B., Álvarez P.,Echeverria A., Petite M.M., Deffley R., Ochoa J., “Effect of IN718 Recycled Powder Reuse on Properties of Parts Manufactured by Means of Selective Laser Melting”, Phys. Procedia., 56: 99–107, (2014). doi:10.1016/j.phpro.2014.08.152.
  • [40] Heim K, Bernier F, Pelletier R, Lefebvre L., “High resolution pore size analysis in metallic powders by X-ray tomography”, Case Studies in Nondestructive Testing and Evaluation, 6: 45–52, (2016)
  • [41] Athanassiadis A.G., Miskin M.Z., Paul K., Rodenberg N., Lee S.H., Merritt J., Brown E., Amend J., Lipsonb H., Jaeger H.M., “Particle shape effects on the stress response of granular packings”, Soft Matter,10: 48-59, (2014).
  • [42] Slotwinski J.A., Garboczi E.J., Stutzman P.E., Ferraris C.F., Watson S.S, Peltz M.A., “Characterization of Metal Powders Used for Additive Manufacturing”, J Res Natl Inst Stand Technol.; 119: 460–493, (2014).
  • [43] GKN. Powder Metallurgy, (2018).http://www.gkngroup.com/hoeganaes/media/Tech%20Library/SchadeAtomized%20Powders%20for%20Additive%20Manufacturing%20(1).pdf
  • [44] Karlsson J., Snis A., Engqvist H., Lausmaa J., “Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti–6Al–4V powder”, Journal of Materials Processing Technology, Volume 213, Issue 12, 2013, Pages 2109-2118 (2017)
  • [45] Starr T., Rafi K., Stucker B., Scherzer C., “Controlling phase composition in selective laser melted stainless steels”, Proc. Solid Free. Fabr. Symp.,: 439–446, (2012).
  • [46] Murr L.E., Martinez E., Hernandez J., Collins S., Amato K.N., Gaytan S.M., Shindo P.W., “Microstructures and properties of 17-4 PH stainless steel fabricated by selective laser melting”, J. Mater. Res. Technol.,1: 167–17, (2012). doi:10.1016/S2238-7854(12)70029-7.
  • [47] Maskery I, Aboulkhair N.T., Corfield M.R., Tuck C., Clare A.T., Leach R.K., Wildman R.D., Ashcroft I.A, Hague R.J.M, “Quantification and characterisation of porosity in selectively lasermelted Al-Si10-Mg using X-ray computed tomography”, Mater Charact., 111:193-204, (2016).

Toz Yataklı/Beslemeli Eklemeli İmalatta Kullanılan Partiküllerin Uygunluk Araştırması ve Partikül İmalat Yöntemleri

Year 2019, Volume: 22 Issue: 4, 801 - 810, 01.12.2019
https://doi.org/10.2339/politeknik.423707

Abstract

Toz metalürjisi
(TM); seramik ve metal esaslı partiküllerin preslenmesi ve sinterlenmesi ile
endüstriyel parça imalatı olarak bilinmekte ancak; lazer, makine, tasarım ve
yazılım teknolojilerinin bir araya getirildiği eklemeli imalat yöntemi olarak
adlandırılan yeni bir teknoloji ile tanışmıştır. Günümüz eklemeli imalat
teknolojisi ile, polimer, seramik ve metal esaslı malzemelerin partikül (toz),
tel, plaka/saç ve eriyik formları uygun şartlarda lazer, elektron ve
ultraviyole ışınları kullanılarak katmanlı bir şekilde kullanışlı prototip
ve/veya parça imalatı mümkün hale gelmiştir. Bu çalışmada, özellikle toz
beslemeli eklemeli imalat yöntemleri, bu yöntemlerde kullanılan partiküllerin
karakterleri ve toz imalat yöntemleri ile ilgili literatür araştırması
yapılmıştır. Ayrıca yapılan bu literatür araştırmasında, partikül tane
boyutunun, şeklinin, fiziksel özelliklerinin ve kimyasal saflığının, toz
beslemeli eklemeli imalat ile elde edilen ürünlerin özelliklerine etkisi ifade
edilmeye çalışılmıştır.




References

  • [1] TTMD – Türk Toz Metalurjisi Derneği Online Yayını “Toz Metalurjisi”, Türk Toz Metalurjisi Derneği, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi, Makine Mühendisliği Bölümü, www.turktoz.gazi.edu.tr, Ankara, 2003.
  • [2] Öveçoğlu, M. L. “Toz Metalurjisi: Tarihsel Gelişim, Üretim Aşamaları ve Yeni Eğilimler”, 9. Uluslar arası Metalurji ve Malzeme Kongresi, TMMOB Metalurji Mühendisleri Odası Yayını, İstanbul, 449475, 1997.
  • [3] Yalçın B., Ergene B., “Endüstride Yeni Eğilim Olan 3-B Eklemeli İmalat Teknolojisi ve Metalurjisi”, SDÜ. Uluslararası Teknolojik Araştırmalar Dergisi., 9,3: 65-88, (2017).
  • [4] Lux Research Building the future: Assessing 3-D printing’s opportunities and challenges. 2013. Boston: Lux Research Inc. http://www.luxresearchinc.com/research. Erişim tarihi: 20 Ocak 2018.
  • [5] Katmanlı İmalat Teknolojileri ve Havacılık Uygulamaları, Sektör Değerlendirme Raporu, STM Mühendislik Teknoloji Danışmanlık, 1-22, Ankara, (2015). https://www.stm.com.tr/documents/file/Pdf/1.katmanli_imalat_teknolojileri_raporu.
  • [6]Additive Manufacturing Research Group; About Additive Manufacturing. http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/ (2017.
  • [7] Sunpreet S., Seeram R., Rupinder S., “ Material Issues in Additive Manufacturing: A review”; Journal of Manufacturing Processes, 25:185-200, (2017).
  • [8] Gibson I., Shi D., “Material Properties and Fabrication Parameters in Selective Laser Sintering Process”, Rapid Prototyping Journal, 3-4: 129-136, (1997).
  • [9] Mercelis P., Kruth J.P., “Residual stresses in selective laser sintering and selective laser melting”, Rapid Prototyping Journal, 12-5: 254-265, (2006).
  • [10] Redwood B., Additive manufacturing technologies overview, (2017). https://www.3dhubs.com/knowledge-base/additive-manufacturing-technologies-overview,
  • [11] Strano, G. Surface roughness analysis, modelling and prediction in selective laser melting, Journal of Materials Processing Technology, 213-4: 589-597, (2013).
  • [12] Metal AM; "Metal Katkı Üretim Süreçleri" başlıklı makale http://www.metal-am.com/introduction_to_metal-additive_manufacturing/processes.
  • [13] Hiemenz J., “Electron beam melting”, Advanced Materials & Processes, 165-3: 45-46, (2007).
  • [14] http://additivemanufacturing.com/2015/10/14/electron-beam-additive-manufacturing-ebam-advantages-of-wire-am-vs-powder-am/
  • [15] Upadhyaya, G.S. “Powder Metallurgy Technology”, Cambridge International Science Publishing, 1996.
  • [16] Kurt A.O., 2004-2010 www.aokurt.sakarya.edu.tr/dersler/dersler.htm.
  • [17]Toz Metalurjisi, Toz Üretim Teknikleri Ders Notları. http://rahmiunal.net/toz/tozuretimi/powder_product.html. Erişim tarihi: 4 Ocak 2018.
  • [18] Sadowski M, Ladani L, Brindley W, Romano J., “Optimizing quality of additively manufactured Inconel 718 using powder bed laser melting process”, Additive Manufacturing, 11:60–70, (2016).
  • [19] Herzog D., Seyda V., Wycisk E., Emmelmann C.,” Additive manufacturing of metals”, Acta Mater, 117:371–92, (2016).
  • [20] Helmer H., Bauerei A., Singer R.F., Körner C., “Grain structure evolution in Inconel 718 during selective electron beam melting”, Mater Sci Eng A; 668: 180-7, (2016).
  • [21] Dawes B.J., Bowerman R., “Introduction to the Additive Manufacturing Powder Metallurgy Supply Chain”, Johnson Matthey Technol. Rev., 59:243–256, (2015). doi:http://dx.doi.org/10.1595/205651315X688686.
  • [22] http://eklemeliimalat.info.tr/3-eklemeli-imalat-icin-metal-tozlari/#3.1. Erişim tarihi: 12 Ocak 2018.
  • [23] Uslan, İ., Küçükarslan, S., “Kalay Tozu Üretimine Gaz Atomizasyonu Parametrelerinin Etkisinin İncelenmesi”, Gazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 25-1: 1-8, (2010).
  • [24] http://rahmiunal.net/toz/tozuretimi/powder_product.html. Erişim tarihi: 28 Aralık 2017.
  • [25] http://eklemeliimalat.info.tr/3-eklemeli-imalat-icin-metal-tozlari/#3.1. Erişim tarihi: 12 Ocak 2018.
  • [26] Yamanoğlu R., Kocaeli Üniversitesi, Toz Üretim Yöntemleri Ders Notları, (http://docplayer.biz.tr/32188483-Toz-uretim-yontemleri-yrd-doc-dr-ridvan-yamanoglu.html.
  • [27] Evcin A., Afyon Kocatepe Üniversitesi; Toz Üretim Teknikleri Ders Notları, 2007http://www.kimmuh.com/evcin/toz/toz1a.pdf.
  • [28] Metal Eklemeli İmalat(M.E.I.) Teknolojileri, Destek Yapılar ve Hücresel Yapılar Ders Notları, Dumlupınar Üniverisitesi Açık Ders Notları Sistemi. http://www.adn.dpu.edu.tr/pluginfile.php. Erişim tarihi: 20 Ocak 2018.
  • [29] Simchi A.,“The role of particle size on the laser sintering of iron powder”, Metall. Mater. Trans. B., 35:937–948, 2004. doi:10.1007/s11663-004-0088-3.
  • [30] Spierings A.B., Herres N., Levy G., “Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts”, Rapid Prototyping J:17-3:195–202, (2011).
  • [31] Austin T. Sutton, Caitlin S. Kriewall , Ming C. Leu, Joseph W. Newkirk, “Powders For Addıtıve Manufacturıng Processes Characterızatıon Technıques And Effects On Part Propertıes”, Solid Freeform Fabrication, Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference Reviewed Paper, 1004-1030, (2016).
  • [32] A.E. Hawkins, “The Shape of Powder-Particle Outlines”, Research Studies Press Ltd., England, (1993).
  • [33] Freeman R. “Measuring the flow properties of consolidated, conditioned and aerated powders – A comparative study using a powder rheometer and a rotational shear cell”, Powder Technology, 174:25–33, (2007).
  • [34] Lyckfeldt, O., Euro PM 2013 Kongresi ve Sergisi Bildirileri Kitabı , Cilt. 2, Sayfa: 225-230, Avrupa Toz Metalürjisi Derneği, Shrewsbury-İngiltere, (2013).
  • [35] Hoegesa S., Zwirenb A., Schadeb C.,“Additive manufacturing using water”, Metal Powder Report, 72, (2017).
  • [36] Clayton, J. “Optimising metal powders for additive manufacturing”, Metal Powder Report, 69-5:14-17 (2014), https://doi.org/10.1016/S0026-0657(14)70223-1
  • [37] S.J. Kerber, J. “Tverberg, Stainless Steel, Adv. Mater. Process”. 33–36, (2000).
  • [38] Tang H.P., Qian M., Liu N., Zhang X.Z.,Yang G.Y., Wang J., “Effect of Powder Reuse Times on Additive Manufacturing of Ti-6Al-4V by Selective Electron Beam Melting”, The Journal of the Minerals, Metals and Materials Society, 67: 555–563, (2015). doi:10.1007/s11837-015-1300-4.
  • [39] Ardila L.C., Garciandia F., González-Díaz J.B., Álvarez P.,Echeverria A., Petite M.M., Deffley R., Ochoa J., “Effect of IN718 Recycled Powder Reuse on Properties of Parts Manufactured by Means of Selective Laser Melting”, Phys. Procedia., 56: 99–107, (2014). doi:10.1016/j.phpro.2014.08.152.
  • [40] Heim K, Bernier F, Pelletier R, Lefebvre L., “High resolution pore size analysis in metallic powders by X-ray tomography”, Case Studies in Nondestructive Testing and Evaluation, 6: 45–52, (2016)
  • [41] Athanassiadis A.G., Miskin M.Z., Paul K., Rodenberg N., Lee S.H., Merritt J., Brown E., Amend J., Lipsonb H., Jaeger H.M., “Particle shape effects on the stress response of granular packings”, Soft Matter,10: 48-59, (2014).
  • [42] Slotwinski J.A., Garboczi E.J., Stutzman P.E., Ferraris C.F., Watson S.S, Peltz M.A., “Characterization of Metal Powders Used for Additive Manufacturing”, J Res Natl Inst Stand Technol.; 119: 460–493, (2014).
  • [43] GKN. Powder Metallurgy, (2018).http://www.gkngroup.com/hoeganaes/media/Tech%20Library/SchadeAtomized%20Powders%20for%20Additive%20Manufacturing%20(1).pdf
  • [44] Karlsson J., Snis A., Engqvist H., Lausmaa J., “Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti–6Al–4V powder”, Journal of Materials Processing Technology, Volume 213, Issue 12, 2013, Pages 2109-2118 (2017)
  • [45] Starr T., Rafi K., Stucker B., Scherzer C., “Controlling phase composition in selective laser melted stainless steels”, Proc. Solid Free. Fabr. Symp.,: 439–446, (2012).
  • [46] Murr L.E., Martinez E., Hernandez J., Collins S., Amato K.N., Gaytan S.M., Shindo P.W., “Microstructures and properties of 17-4 PH stainless steel fabricated by selective laser melting”, J. Mater. Res. Technol.,1: 167–17, (2012). doi:10.1016/S2238-7854(12)70029-7.
  • [47] Maskery I, Aboulkhair N.T., Corfield M.R., Tuck C., Clare A.T., Leach R.K., Wildman R.D., Ashcroft I.A, Hague R.J.M, “Quantification and characterisation of porosity in selectively lasermelted Al-Si10-Mg using X-ray computed tomography”, Mater Charact., 111:193-204, (2016).
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Uçan Karakılınç This is me 0000-0001-7782-3580

Bekir Yalçın 0000-0002-3784-7251

Berkay Ergene 0000-0001-6145-1970

Publication Date December 1, 2019
Submission Date May 15, 2018
Published in Issue Year 2019 Volume: 22 Issue: 4

Cite

APA Karakılınç, U., Yalçın, B., & Ergene, B. (2019). Toz Yataklı/Beslemeli Eklemeli İmalatta Kullanılan Partiküllerin Uygunluk Araştırması ve Partikül İmalat Yöntemleri. Politeknik Dergisi, 22(4), 801-810. https://doi.org/10.2339/politeknik.423707
AMA Karakılınç U, Yalçın B, Ergene B. Toz Yataklı/Beslemeli Eklemeli İmalatta Kullanılan Partiküllerin Uygunluk Araştırması ve Partikül İmalat Yöntemleri. Politeknik Dergisi. December 2019;22(4):801-810. doi:10.2339/politeknik.423707
Chicago Karakılınç, Uçan, Bekir Yalçın, and Berkay Ergene. “Toz Yataklı/Beslemeli Eklemeli İmalatta Kullanılan Partiküllerin Uygunluk Araştırması Ve Partikül İmalat Yöntemleri”. Politeknik Dergisi 22, no. 4 (December 2019): 801-10. https://doi.org/10.2339/politeknik.423707.
EndNote Karakılınç U, Yalçın B, Ergene B (December 1, 2019) Toz Yataklı/Beslemeli Eklemeli İmalatta Kullanılan Partiküllerin Uygunluk Araştırması ve Partikül İmalat Yöntemleri. Politeknik Dergisi 22 4 801–810.
IEEE U. Karakılınç, B. Yalçın, and B. Ergene, “Toz Yataklı/Beslemeli Eklemeli İmalatta Kullanılan Partiküllerin Uygunluk Araştırması ve Partikül İmalat Yöntemleri”, Politeknik Dergisi, vol. 22, no. 4, pp. 801–810, 2019, doi: 10.2339/politeknik.423707.
ISNAD Karakılınç, Uçan et al. “Toz Yataklı/Beslemeli Eklemeli İmalatta Kullanılan Partiküllerin Uygunluk Araştırması Ve Partikül İmalat Yöntemleri”. Politeknik Dergisi 22/4 (December 2019), 801-810. https://doi.org/10.2339/politeknik.423707.
JAMA Karakılınç U, Yalçın B, Ergene B. Toz Yataklı/Beslemeli Eklemeli İmalatta Kullanılan Partiküllerin Uygunluk Araştırması ve Partikül İmalat Yöntemleri. Politeknik Dergisi. 2019;22:801–810.
MLA Karakılınç, Uçan et al. “Toz Yataklı/Beslemeli Eklemeli İmalatta Kullanılan Partiküllerin Uygunluk Araştırması Ve Partikül İmalat Yöntemleri”. Politeknik Dergisi, vol. 22, no. 4, 2019, pp. 801-10, doi:10.2339/politeknik.423707.
Vancouver Karakılınç U, Yalçın B, Ergene B. Toz Yataklı/Beslemeli Eklemeli İmalatta Kullanılan Partiküllerin Uygunluk Araştırması ve Partikül İmalat Yöntemleri. Politeknik Dergisi. 2019;22(4):801-10.