Research Article
BibTex RIS Cite

Optical Signal Investigation of Monolayer MoS2 Grown Via Glass-Assisted CVD On Patterned Surfaces

Year 2024, , 344 - 352, 30.04.2024
https://doi.org/10.16984/saufenbilder.1350708

Abstract

Enhancing photoluminescence (PL) in single-layer transition metal dichalcogenides has garnered significant interest, particularly for advancing high-performance 2D electronics and optoelectronics. The combination of surface engineering and contemporary growth methods has provided a platform for investigating optical signals. In this study, we present variations in PL and Raman signals of single-layer MoS2 flakes grown conformally using the glass-assisted CVD method on square-patterned surfaces with varying well depths. PL spectroscopy revealed a systematic and pronounced enhancement in intensities as the valley thickness decreased from 285 nm to 225 nm. Conversely, for the hill regions of the samples, the PL intensity initially increased with decreasing valley thickness and then decreased, despite the hill regions having a constant thickness of 300 nm. On the other hand, PL maps did not exhibit a systematic dependence of intensities on the hill-valley thickness distinction, contrary to expected results based on literature data for similar materials on flat surfaces. The origin of the intensity oscillations was attributed to possible mechanisms, including thickness-dependent interference and strain-related exciton funneling effects. Additionally, Raman measurements revealed irregular variations in intensity in hill regions, dependent on the thicknesses of the underlying SiO2 layers. Furthermore, we observed that the sizes of the flakes increased as the well depths of the underlying patterned surface decreased. This phenomenon might be attributed to alterations in the carrier gas flow pattern and varying temperature gradients between the hills and valleys. These results hold substantial potential to open new avenues for the integration of 2D transition metal dichalcogenides into on-chip electronic and optoelectronic devices.

Supporting Institution

The Scientific and Technological Research Council of Turkey

Project Number

121M601

Thanks

The author would like to thank Prof. Nihan Kosku Perkgoz and Prof. Feridun Ay for their valuable support.

References

  • [1] W. Zhu, T. Low, H. Wang, P. Ye, X. Duan, “Nanoscale electronic devices based on transition metal dichalcogenides”, 2D Materials, vol. 6, no. 3, pp. 1–18, 2019.
  • [2] T. J. Ko, M. Wang, C. Yoo, E. Okogbue, M. A. Islam, H. Li, M. S. Shawkat, S. S. Han, K. H. Oh, Y. Jung, “Large-area 2D TMD layers for mechanically reconfigurable electronic devices”, Journal of Physics D: Applied Physics, vol. 53, no. 31, pp. 1–27, 2020.
  • [3] E. Singh, P. Singh, K. S. Kim, G. Y. Yeom, H. S. Nalwa, “Flexible molybdenum disulfide (MoS2) atomic layers for wearable electronics and optoelectronics”, ACS Applied Materials & Interfaces, vol. 11, no. 12, pp. 11061–11105, 2019.
  • [4] J. Cheng, C. Wang, X. Zou, L. Liao, “Recent advances in optoelectronic devices based on 2D materials and their heterostructures”, Advanced Optical Materials, vol. 7, no. 1, pp. 1–15, 2019.
  • [5] S. Aftab, M. Z. Iqbal, S. Hussain, H. H. Hegazy, M. A. Saeed, “Transition metal dichalcogenides solar cells and integration with perovskites: A review”, Nano Energy, vol. 108, no. 108249, pp. 1–17, 2023.
  • [6] R. Sharma, R. Laishram, B. K. Gupta, “A Review on MX2 (M = Mo, W and X = S, Se) layered material for opto-electronic devices”, Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 13, no. 023001, pp. 1–18, 2022.
  • [7] S. Berciaud, S. Ryu, L. E. Brus, T. F. Heinz, “Probing the lntrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers”, Nano Letters, vol. 9, no. 1, pp. 346–352, 2009.
  • [8] D. Sercombe, S. Schwarz, O. Del Pozo-Zamudio, F. Liu, B. J. Robinson, E. A. Chekhovich, I. I. Tartakovskii, O. Kolosov, A. I. Tartakovskii, “Optical investigation of the natural electron doping in thin MoS 2 films deposited on dielectric substrates”, Scientific Reports, vol. 3, no. 3489, pp. 1–6, 2013.
  • [9] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor”, Physical Review Letters, vol. 105, no. 13, p. 136805, Sep. 2010.
  • [10] N. Scheuschner, O. Ochedowski, A. M. Kaulitz, R. Gillen, M. Schleberger, J. Maultzsch, “Photoluminescence of freestanding single- and few-layer MoS 2”, Physical Review B - Condensed Matter and Materials Physics, vol. 89, no. 12, pp. 2–7, 2014.
  • [11] H. Fang, H. A. Bechtel, E. Plis, M. C. Martin, S. Krishna, E. Yablonovitch, A. Javey, “Quantum of optical absorption in two-dimensional semiconductors”, Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 29, pp. 11688–11691, 2013.
  • [12] S. L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, K. Tsukagoshi, “Quantitative raman spectrum and reliable thickness identification for atomic layers on insulating substrates”, ACS Nano, vol. 6, no. 8, pp. 7381–7388, 2012.
  • [13] D. Yoon, H. Moon, Y. W. Son, J. S. Choi, B. H. Park, Y. H. Cha, Y. D. Kim, H. Cheong, “Interference effect on Raman spectrum of graphene on SiO2 /Si”, Physical Review B - Condensed Matter and Materials Physics, vol. 80, no. 12, pp. 1–6, 2009.
  • [14] F. G. Aras, J. Avad, A. Yeltik, “Glass‐assisted chemical vapor deposition‐grown monolayer MoS2: Effective control of size distribution via surface patterning”, Physica Status Solidi, vol. 219, no. 24, pp. 1–8, 2022.
  • [15] F. G. Aras, A. Yeltik, “Role of gas flow direction on monolayer MoS2 growth on patterned surfaces via CVD”, Semiconductor Science and Technology, vol. 38, no. 015013, pp. 1–8, 2023.
  • [16] H. Zhang, Y. Wan, Y. Ma, W. Wang, Y. Wang, L. Dai, “Interference effect on optical signals of monolayer MoS2”, Applied Physics Letters, vol. 107, no. 10, pp. 1–5, 2015.
  • [17] D.-H. Lien, J. S. Kang, M. Amani, K. Chen, M. Tosun, H. -P. Wang, T. Roy, M. S. Eggleston, M. C. Wu, M. Dubey, S. -C. Lee, J. -H. He, A. Javey, “Engineering light outcoupling in 2D materials”, Nano Letters, vol. 15, no. 2, pp. 1356–1361, 2015.
  • [18] F. G. Aras, A. Yilmaz, H. G. Tasdelen, A. Ozden, F. Ay, N. K. Perkgoz, A. Yeltik, “A review on recent advances of chemical vapor deposition technique for monolayer transition metal dichalcogenides (MX2: Mo, W; S, Se, Te)”, Materials Science in Semiconductor Processing, vol. 148, no. 106829, pp. 1–22, 2022.
  • [19] G. U. Özküçük, C. Odacı, E. Şahin, F. Ay, N. K. Perkgöz, “Glass-assisted CVD growth of large-area MoS2, WS2 and MoSe2 monolayers on Si/SiO2 substrate”, Materials Science in Semiconductor Processing, vol. 105, no. 104679, pp. 1–7, 2020.
  • [20] I. W. Lisheshar, “Hybrid supercapacitors based on two dimensional materials: MXenes, Graphene and TMDCs”, Eskisehir Technical University, 2019.
  • [21] Z. Cheng, M. Xia, S. Liu, R. Hu, G. Liang, S. Zhang, “Role of rough substrate on the growth of large single-crystal MoS2 by chemical vapor deposition”, Applied Surface Science, vol. 476, pp. 1008–1015, May 2019.
  • [22] H. Kim, W. Kim, M. O. Brien, N. Mcevoy, “Optimized single-layer MoS2 field-effect transistors by non-covalent functionalisation”, Nanoscale, vol. 10, no. 37, pp. 17557–17566, 2018.
  • [23] S. Li, “Salt-assisted chemical vapor deposition of two-dimensional transition metal dichalcogenides”, iScience, vol. 24, no. 11, p. 103229, 2021.
  • [24] Y. Yoo, Z. P. Degregorio, J. E. Johns, “Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2”, Journal of The American Chemical Society, vol. 137, no. 45, pp. 14281–14287, 2015.
  • [25] H. Liu, Y. Zhu, Q. Meng, X. Lu, S. Kong, Z. Huang, P. Jiang, X. Bao, “Role of the carrier gas flow rate in monolayer MoS2 growth by modified chemical vapor deposition”, Nano Research, vol. 10, no. 2, pp. 643–651, 2017.
  • [26] K. Wang, A. A. Puretzky, Z. Hu, B. R. Srijanto, X. Li, N. Gupta, H. Yu, M. Tian, M. Mahjouri-Samani, X. Gao, A. Oyedele, C. M. Rouleau, G. Eres, B. I. Yakobson, M. Yoon, K. Xiao, D. B. Geohegan, “Strain tolerance of two-dimensional crystal growth on curved surfaces”, Science Advances, vol. 5, no. 5, pp. 1–11, 2019.
  • [27] T. Yang, X. Huang, H. Zhou, G. Wu, T. Lai, “Excitation mechanism of A1g mode and origin of nonlinear temperature dependence of Raman shift of CVD-grown mono- and few-layer MoS2 films”, Optics Express, vol. 24, no. 11, p. 12281, 2016.
  • [28] H. Guo, Y. Sun, P. Zhai, J. Zeng, S. Zhang, P. Hu, H. Yao, J. Duan, M. Hou, J. Liu, “Resonant Raman spectroscopy study of swift heavy ion irradiated MoS2”, Nuclear Instruments and Methods in Physics Research B, vol. 381, pp. 1–5, 2016.
Year 2024, , 344 - 352, 30.04.2024
https://doi.org/10.16984/saufenbilder.1350708

Abstract

Project Number

121M601

References

  • [1] W. Zhu, T. Low, H. Wang, P. Ye, X. Duan, “Nanoscale electronic devices based on transition metal dichalcogenides”, 2D Materials, vol. 6, no. 3, pp. 1–18, 2019.
  • [2] T. J. Ko, M. Wang, C. Yoo, E. Okogbue, M. A. Islam, H. Li, M. S. Shawkat, S. S. Han, K. H. Oh, Y. Jung, “Large-area 2D TMD layers for mechanically reconfigurable electronic devices”, Journal of Physics D: Applied Physics, vol. 53, no. 31, pp. 1–27, 2020.
  • [3] E. Singh, P. Singh, K. S. Kim, G. Y. Yeom, H. S. Nalwa, “Flexible molybdenum disulfide (MoS2) atomic layers for wearable electronics and optoelectronics”, ACS Applied Materials & Interfaces, vol. 11, no. 12, pp. 11061–11105, 2019.
  • [4] J. Cheng, C. Wang, X. Zou, L. Liao, “Recent advances in optoelectronic devices based on 2D materials and their heterostructures”, Advanced Optical Materials, vol. 7, no. 1, pp. 1–15, 2019.
  • [5] S. Aftab, M. Z. Iqbal, S. Hussain, H. H. Hegazy, M. A. Saeed, “Transition metal dichalcogenides solar cells and integration with perovskites: A review”, Nano Energy, vol. 108, no. 108249, pp. 1–17, 2023.
  • [6] R. Sharma, R. Laishram, B. K. Gupta, “A Review on MX2 (M = Mo, W and X = S, Se) layered material for opto-electronic devices”, Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 13, no. 023001, pp. 1–18, 2022.
  • [7] S. Berciaud, S. Ryu, L. E. Brus, T. F. Heinz, “Probing the lntrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers”, Nano Letters, vol. 9, no. 1, pp. 346–352, 2009.
  • [8] D. Sercombe, S. Schwarz, O. Del Pozo-Zamudio, F. Liu, B. J. Robinson, E. A. Chekhovich, I. I. Tartakovskii, O. Kolosov, A. I. Tartakovskii, “Optical investigation of the natural electron doping in thin MoS 2 films deposited on dielectric substrates”, Scientific Reports, vol. 3, no. 3489, pp. 1–6, 2013.
  • [9] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor”, Physical Review Letters, vol. 105, no. 13, p. 136805, Sep. 2010.
  • [10] N. Scheuschner, O. Ochedowski, A. M. Kaulitz, R. Gillen, M. Schleberger, J. Maultzsch, “Photoluminescence of freestanding single- and few-layer MoS 2”, Physical Review B - Condensed Matter and Materials Physics, vol. 89, no. 12, pp. 2–7, 2014.
  • [11] H. Fang, H. A. Bechtel, E. Plis, M. C. Martin, S. Krishna, E. Yablonovitch, A. Javey, “Quantum of optical absorption in two-dimensional semiconductors”, Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 29, pp. 11688–11691, 2013.
  • [12] S. L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, K. Tsukagoshi, “Quantitative raman spectrum and reliable thickness identification for atomic layers on insulating substrates”, ACS Nano, vol. 6, no. 8, pp. 7381–7388, 2012.
  • [13] D. Yoon, H. Moon, Y. W. Son, J. S. Choi, B. H. Park, Y. H. Cha, Y. D. Kim, H. Cheong, “Interference effect on Raman spectrum of graphene on SiO2 /Si”, Physical Review B - Condensed Matter and Materials Physics, vol. 80, no. 12, pp. 1–6, 2009.
  • [14] F. G. Aras, J. Avad, A. Yeltik, “Glass‐assisted chemical vapor deposition‐grown monolayer MoS2: Effective control of size distribution via surface patterning”, Physica Status Solidi, vol. 219, no. 24, pp. 1–8, 2022.
  • [15] F. G. Aras, A. Yeltik, “Role of gas flow direction on monolayer MoS2 growth on patterned surfaces via CVD”, Semiconductor Science and Technology, vol. 38, no. 015013, pp. 1–8, 2023.
  • [16] H. Zhang, Y. Wan, Y. Ma, W. Wang, Y. Wang, L. Dai, “Interference effect on optical signals of monolayer MoS2”, Applied Physics Letters, vol. 107, no. 10, pp. 1–5, 2015.
  • [17] D.-H. Lien, J. S. Kang, M. Amani, K. Chen, M. Tosun, H. -P. Wang, T. Roy, M. S. Eggleston, M. C. Wu, M. Dubey, S. -C. Lee, J. -H. He, A. Javey, “Engineering light outcoupling in 2D materials”, Nano Letters, vol. 15, no. 2, pp. 1356–1361, 2015.
  • [18] F. G. Aras, A. Yilmaz, H. G. Tasdelen, A. Ozden, F. Ay, N. K. Perkgoz, A. Yeltik, “A review on recent advances of chemical vapor deposition technique for monolayer transition metal dichalcogenides (MX2: Mo, W; S, Se, Te)”, Materials Science in Semiconductor Processing, vol. 148, no. 106829, pp. 1–22, 2022.
  • [19] G. U. Özküçük, C. Odacı, E. Şahin, F. Ay, N. K. Perkgöz, “Glass-assisted CVD growth of large-area MoS2, WS2 and MoSe2 monolayers on Si/SiO2 substrate”, Materials Science in Semiconductor Processing, vol. 105, no. 104679, pp. 1–7, 2020.
  • [20] I. W. Lisheshar, “Hybrid supercapacitors based on two dimensional materials: MXenes, Graphene and TMDCs”, Eskisehir Technical University, 2019.
  • [21] Z. Cheng, M. Xia, S. Liu, R. Hu, G. Liang, S. Zhang, “Role of rough substrate on the growth of large single-crystal MoS2 by chemical vapor deposition”, Applied Surface Science, vol. 476, pp. 1008–1015, May 2019.
  • [22] H. Kim, W. Kim, M. O. Brien, N. Mcevoy, “Optimized single-layer MoS2 field-effect transistors by non-covalent functionalisation”, Nanoscale, vol. 10, no. 37, pp. 17557–17566, 2018.
  • [23] S. Li, “Salt-assisted chemical vapor deposition of two-dimensional transition metal dichalcogenides”, iScience, vol. 24, no. 11, p. 103229, 2021.
  • [24] Y. Yoo, Z. P. Degregorio, J. E. Johns, “Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2”, Journal of The American Chemical Society, vol. 137, no. 45, pp. 14281–14287, 2015.
  • [25] H. Liu, Y. Zhu, Q. Meng, X. Lu, S. Kong, Z. Huang, P. Jiang, X. Bao, “Role of the carrier gas flow rate in monolayer MoS2 growth by modified chemical vapor deposition”, Nano Research, vol. 10, no. 2, pp. 643–651, 2017.
  • [26] K. Wang, A. A. Puretzky, Z. Hu, B. R. Srijanto, X. Li, N. Gupta, H. Yu, M. Tian, M. Mahjouri-Samani, X. Gao, A. Oyedele, C. M. Rouleau, G. Eres, B. I. Yakobson, M. Yoon, K. Xiao, D. B. Geohegan, “Strain tolerance of two-dimensional crystal growth on curved surfaces”, Science Advances, vol. 5, no. 5, pp. 1–11, 2019.
  • [27] T. Yang, X. Huang, H. Zhou, G. Wu, T. Lai, “Excitation mechanism of A1g mode and origin of nonlinear temperature dependence of Raman shift of CVD-grown mono- and few-layer MoS2 films”, Optics Express, vol. 24, no. 11, p. 12281, 2016.
  • [28] H. Guo, Y. Sun, P. Zhai, J. Zeng, S. Zhang, P. Hu, H. Yao, J. Duan, M. Hou, J. Liu, “Resonant Raman spectroscopy study of swift heavy ion irradiated MoS2”, Nuclear Instruments and Methods in Physics Research B, vol. 381, pp. 1–5, 2016.
There are 28 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Research Articles
Authors

Aydan Yeltik 0000-0001-6976-4680

Project Number 121M601
Early Pub Date April 24, 2024
Publication Date April 30, 2024
Submission Date August 27, 2023
Acceptance Date January 5, 2024
Published in Issue Year 2024

Cite

APA Yeltik, A. (2024). Optical Signal Investigation of Monolayer MoS2 Grown Via Glass-Assisted CVD On Patterned Surfaces. Sakarya University Journal of Science, 28(2), 344-352. https://doi.org/10.16984/saufenbilder.1350708
AMA Yeltik A. Optical Signal Investigation of Monolayer MoS2 Grown Via Glass-Assisted CVD On Patterned Surfaces. SAUJS. April 2024;28(2):344-352. doi:10.16984/saufenbilder.1350708
Chicago Yeltik, Aydan. “Optical Signal Investigation of Monolayer MoS2 Grown Via Glass-Assisted CVD On Patterned Surfaces”. Sakarya University Journal of Science 28, no. 2 (April 2024): 344-52. https://doi.org/10.16984/saufenbilder.1350708.
EndNote Yeltik A (April 1, 2024) Optical Signal Investigation of Monolayer MoS2 Grown Via Glass-Assisted CVD On Patterned Surfaces. Sakarya University Journal of Science 28 2 344–352.
IEEE A. Yeltik, “Optical Signal Investigation of Monolayer MoS2 Grown Via Glass-Assisted CVD On Patterned Surfaces”, SAUJS, vol. 28, no. 2, pp. 344–352, 2024, doi: 10.16984/saufenbilder.1350708.
ISNAD Yeltik, Aydan. “Optical Signal Investigation of Monolayer MoS2 Grown Via Glass-Assisted CVD On Patterned Surfaces”. Sakarya University Journal of Science 28/2 (April 2024), 344-352. https://doi.org/10.16984/saufenbilder.1350708.
JAMA Yeltik A. Optical Signal Investigation of Monolayer MoS2 Grown Via Glass-Assisted CVD On Patterned Surfaces. SAUJS. 2024;28:344–352.
MLA Yeltik, Aydan. “Optical Signal Investigation of Monolayer MoS2 Grown Via Glass-Assisted CVD On Patterned Surfaces”. Sakarya University Journal of Science, vol. 28, no. 2, 2024, pp. 344-52, doi:10.16984/saufenbilder.1350708.
Vancouver Yeltik A. Optical Signal Investigation of Monolayer MoS2 Grown Via Glass-Assisted CVD On Patterned Surfaces. SAUJS. 2024;28(2):344-52.