Research Article
BibTex RIS Cite
Year 2024, , 542 - 549, 30.06.2024
https://doi.org/10.16984/saufenbilder.1358209

Abstract

References

  • [1] T. Yamaguchi, "Application of ZrO2 as a catalyst and a catalyst support", Catalysis today, vol. 20, pp. 199-217, 1994.
  • [2] Q. Zhang, X. Li, J. Shen, G. Wu, J. Wang, L. Chen, "ZrO2 thin films and ZrO2/SiO2 optical reflection filters deposited by sol–gel method", Materials Letters, vol. 45 pp. 311-314, 2000.
  • [3] J. H. Park, Y. B. Yoo, K. H. Lee, W. S. Jang, J. Y. Oh, S. S. Chae, H. W. Lee, S. W. Han, H. K. Baik, "Boron-doped peroxo-zirconium oxide dielectric for high-performance, low-temperature, solution-processed indium oxide thin-film transistor", ACS applied materials & interfaces, vol. 5 pp. 8067-8075, 2013.
  • [4] G. Balakrishnan, P. Kuppusami, S. Murugesan, C. Ghosh, R. Divakar, E. Mohandas, D. Sastikumar, "Characterization of Al2O3/ZrO2 nano multilayer thin films prepared by pulsed laser deposition", Materials Chemistry and Physics, vol. 133 pp. 299-303, 2012
  • [5] W. J. Shin, W.-H. Huang, M. Tao, "Low-cost spray-deposited ZrO2 for antireflection in Si solar cells", Materials Chemistry and Physics, vol. 230, pp. 37-43, 2019.
  • [6] U. Sikder, M. A. Zaman, "Optimization of multilayer antireflection coating for photovoltaic applications", Optics & Laser Technology, vol.79, pp. 88-94, 2016.
  • [7] A. J. Thosar, M. Thosar, R. Khanna, "Optimization of anti-reflection coating for improving the performance of GaAs solar cell", Indian Journal of Science and Technology, vol. 7 pp. 637-641, 2014.
  • [8] M. Epifani, C. Giannini, L. Tapfer, L. Vasanelli, "Sol–gel synthesis and characterization of Ag and Au nanoparticles in SiO2, TiO2, and ZrO2 thin films", Journal of the American Ceramic Society, vol. 83 pp. 2385-2393, 2000.
  • [9] J. Čyvienė, M. Laurikaitis, J. Dudonis, "Deposition of nanocomposite Zr–ZrO2 films by reactive cathodic vacuum arc evaporation", Materials Science and Engineering: B, vol. 118, pp. 238-241, 2005.
  • [10] D. Panda, T.-Y. Tseng, "Growth, dielectric properties, and memory device applications of ZrO2 thin films", Thin Solid Films, vol. 531 pp. 1-20, 2013.
  • [11] A. Uzum, I. Kanmaz, "Passivation properties of HfO2-SiO2 mixed metal oxide thin films with low reflectivity on silicon substrates for semiconductor devices", Thin Solid Films, vol. 738 pp. 138965, 2021.
  • [12] M. A. Khan, M. Sohel, M.A. Islam, F. I. Chowdhury, S. Akhtar, "Refractive Indices of Aqueous Solutions of Isomeric Butylamines at 303.15 K: Experimental and Correlative Approach", Journal of Applied Science & Process Engineering, vol. 8 pp. 1020-1030, 2021.
  • [13] S. Sharma, P. B. Patel, R. S. Patel, J. Vora, "Density and comparative refractive index study on mixing properties of binary liquid mixtures of eucalyptol with hydrocarbons at 303.15, 308.15 and 313.15 K", E-Journal of Chemistry, vol. 4 pp. 343-349, 2007.
  • [14] F. Pretorius, W. W. Focke, R. Androsch, E. du Toit, "Estimating binary liquid composition from density and refractive index measurements: A comprehensive review of mixing rules", Journal of Molecular Liquids, vol. 332 pp. 115893, 2021.
  • [15] A. Kowsar, M. Billah, S. Dey, S. C. Debnath, S. Yeakin, S. F. U. Farhad, "Comparative Study on Solar Cell Simulators, in: 2019" 2nd International Conference on Innovation in Engineering and Technology (ICIET), IEEE, 2019, pp. 1-6.
  • [16] S. M. Seck, E. N. Ndiaye, M. Fall, S. p. Charvet, "Study of efficiencies CdTe/CdS photovoltaic solar cell according to electrical properties by scaps simulation", Natural Resources, vol. 11 pp. 147-155, 2020.
  • [17] A. Teyou Ngoupo, S. Ouédraogo, J. Ndjaka, "Numerical analysis of interface properties effects in CdTe/CdS: O thin film solar cell by SCAPS-1D", Indian Journal of Physics, vol. 93 pp. 869-881, 2019.
  • [18] W. Zhang, K. Hu, J. Tu, A. Aierken, D. Xu, G. Song, X. Sun, L. Li, K. Chen, D. Zhang, "Broadband graded refractive index TiO2/Al2O3/MgF2 multilayer antireflection coating for high efficiency multi-junction solar cell", Solar Energy, vol. 217 pp. 271-279, 2021.
  • [19] K. Ali, S. A. Khan, M. M. Jafri, "Effect of double layer (SiO2/TiO2) anti-reflective coating on silicon solar cells", Int. J. Electrochem. Sci, vol. 9 pp. 7865-7874, 2014
  • [20] M. A. Zahid, M. Q. Khokhar, S. Park, S. Q. Hussain, Y. Kim, J. Yi, "Influence of Al2O3/IZO double-layer antireflective coating on the front side of rear emitter silicon heterojunction solar cell", Vacuum, vol. 200, pp. 110967, 2022.
  • [21] S.-Y. Lien, D.-S. Wuu, W.-C. Yeh, J.-C. Liu, "Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique", Solar Energy Materials and Solar Cells, vol. 90, pp. 2710-2719, 2006.
  • [22] F. Karaömerlioğlu, E. Mehmetov, "Optical Properties and Technological Applications of Multilayer Antireflection Coatings", vol. 19 pp. 1-6, 2008.
  • [23] X. Xiao, H. Z. Liu, J. Tu, "Multilayer antireflection coatings design for SiO2‐passivated silicon solar cells", Materialwissenschaft und Werkstofftechnik, vol. 53 pp. 80-88, 2022.
  • [24] İ. Kanmaz, "Simulation of CdS/p-Si/p+-Si and ZnO/CdS/p-Si/p+-Si Heterojunction Solar Cells", Results in Optics, pp. 100353, 2023.

Theoretical Analysis and Simulation of SiO2 and ZrO2 Based Antireflective Coatings to Improve Crystalline Silicon Solar Cell Efficiency

Year 2024, , 542 - 549, 30.06.2024
https://doi.org/10.16984/saufenbilder.1358209

Abstract

The Solar cell efficiency is crucial, and optical losses can hinder it significantly. Anti-reflective coatings are effective in minimizing these losses. In our study, we used Fresnel equations to calculate reflectance values for single-layer SiO2, ZrO2, a SiO2-ZrO2 mixture, and a double-layer SiO2/ZrO2 configuration. We then assessed their impact on crystalline silicon solar cells using the SCAPS program. The reflectance values of single-layer SiO2, ZrO2 and 10%SiO2-90%ZrO2 mixture were calculated as 19.17%, 13.09% and 13.01%, respectively. Notably, the double-layer SiO2/ZrO2 coating showed a low reflectance of 7.58%, a significant improvement compared to uncoated silicon at 37.45%. Efficiency values for crystalline silicon solar cells were calculated for single layer as 18,95% (SiO2), 20.39% (ZrO2), 20,40% (mixed coating) respectively and 21.68% for the double-layer SiO2/ZrO2 configuration.

References

  • [1] T. Yamaguchi, "Application of ZrO2 as a catalyst and a catalyst support", Catalysis today, vol. 20, pp. 199-217, 1994.
  • [2] Q. Zhang, X. Li, J. Shen, G. Wu, J. Wang, L. Chen, "ZrO2 thin films and ZrO2/SiO2 optical reflection filters deposited by sol–gel method", Materials Letters, vol. 45 pp. 311-314, 2000.
  • [3] J. H. Park, Y. B. Yoo, K. H. Lee, W. S. Jang, J. Y. Oh, S. S. Chae, H. W. Lee, S. W. Han, H. K. Baik, "Boron-doped peroxo-zirconium oxide dielectric for high-performance, low-temperature, solution-processed indium oxide thin-film transistor", ACS applied materials & interfaces, vol. 5 pp. 8067-8075, 2013.
  • [4] G. Balakrishnan, P. Kuppusami, S. Murugesan, C. Ghosh, R. Divakar, E. Mohandas, D. Sastikumar, "Characterization of Al2O3/ZrO2 nano multilayer thin films prepared by pulsed laser deposition", Materials Chemistry and Physics, vol. 133 pp. 299-303, 2012
  • [5] W. J. Shin, W.-H. Huang, M. Tao, "Low-cost spray-deposited ZrO2 for antireflection in Si solar cells", Materials Chemistry and Physics, vol. 230, pp. 37-43, 2019.
  • [6] U. Sikder, M. A. Zaman, "Optimization of multilayer antireflection coating for photovoltaic applications", Optics & Laser Technology, vol.79, pp. 88-94, 2016.
  • [7] A. J. Thosar, M. Thosar, R. Khanna, "Optimization of anti-reflection coating for improving the performance of GaAs solar cell", Indian Journal of Science and Technology, vol. 7 pp. 637-641, 2014.
  • [8] M. Epifani, C. Giannini, L. Tapfer, L. Vasanelli, "Sol–gel synthesis and characterization of Ag and Au nanoparticles in SiO2, TiO2, and ZrO2 thin films", Journal of the American Ceramic Society, vol. 83 pp. 2385-2393, 2000.
  • [9] J. Čyvienė, M. Laurikaitis, J. Dudonis, "Deposition of nanocomposite Zr–ZrO2 films by reactive cathodic vacuum arc evaporation", Materials Science and Engineering: B, vol. 118, pp. 238-241, 2005.
  • [10] D. Panda, T.-Y. Tseng, "Growth, dielectric properties, and memory device applications of ZrO2 thin films", Thin Solid Films, vol. 531 pp. 1-20, 2013.
  • [11] A. Uzum, I. Kanmaz, "Passivation properties of HfO2-SiO2 mixed metal oxide thin films with low reflectivity on silicon substrates for semiconductor devices", Thin Solid Films, vol. 738 pp. 138965, 2021.
  • [12] M. A. Khan, M. Sohel, M.A. Islam, F. I. Chowdhury, S. Akhtar, "Refractive Indices of Aqueous Solutions of Isomeric Butylamines at 303.15 K: Experimental and Correlative Approach", Journal of Applied Science & Process Engineering, vol. 8 pp. 1020-1030, 2021.
  • [13] S. Sharma, P. B. Patel, R. S. Patel, J. Vora, "Density and comparative refractive index study on mixing properties of binary liquid mixtures of eucalyptol with hydrocarbons at 303.15, 308.15 and 313.15 K", E-Journal of Chemistry, vol. 4 pp. 343-349, 2007.
  • [14] F. Pretorius, W. W. Focke, R. Androsch, E. du Toit, "Estimating binary liquid composition from density and refractive index measurements: A comprehensive review of mixing rules", Journal of Molecular Liquids, vol. 332 pp. 115893, 2021.
  • [15] A. Kowsar, M. Billah, S. Dey, S. C. Debnath, S. Yeakin, S. F. U. Farhad, "Comparative Study on Solar Cell Simulators, in: 2019" 2nd International Conference on Innovation in Engineering and Technology (ICIET), IEEE, 2019, pp. 1-6.
  • [16] S. M. Seck, E. N. Ndiaye, M. Fall, S. p. Charvet, "Study of efficiencies CdTe/CdS photovoltaic solar cell according to electrical properties by scaps simulation", Natural Resources, vol. 11 pp. 147-155, 2020.
  • [17] A. Teyou Ngoupo, S. Ouédraogo, J. Ndjaka, "Numerical analysis of interface properties effects in CdTe/CdS: O thin film solar cell by SCAPS-1D", Indian Journal of Physics, vol. 93 pp. 869-881, 2019.
  • [18] W. Zhang, K. Hu, J. Tu, A. Aierken, D. Xu, G. Song, X. Sun, L. Li, K. Chen, D. Zhang, "Broadband graded refractive index TiO2/Al2O3/MgF2 multilayer antireflection coating for high efficiency multi-junction solar cell", Solar Energy, vol. 217 pp. 271-279, 2021.
  • [19] K. Ali, S. A. Khan, M. M. Jafri, "Effect of double layer (SiO2/TiO2) anti-reflective coating on silicon solar cells", Int. J. Electrochem. Sci, vol. 9 pp. 7865-7874, 2014
  • [20] M. A. Zahid, M. Q. Khokhar, S. Park, S. Q. Hussain, Y. Kim, J. Yi, "Influence of Al2O3/IZO double-layer antireflective coating on the front side of rear emitter silicon heterojunction solar cell", Vacuum, vol. 200, pp. 110967, 2022.
  • [21] S.-Y. Lien, D.-S. Wuu, W.-C. Yeh, J.-C. Liu, "Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique", Solar Energy Materials and Solar Cells, vol. 90, pp. 2710-2719, 2006.
  • [22] F. Karaömerlioğlu, E. Mehmetov, "Optical Properties and Technological Applications of Multilayer Antireflection Coatings", vol. 19 pp. 1-6, 2008.
  • [23] X. Xiao, H. Z. Liu, J. Tu, "Multilayer antireflection coatings design for SiO2‐passivated silicon solar cells", Materialwissenschaft und Werkstofftechnik, vol. 53 pp. 80-88, 2022.
  • [24] İ. Kanmaz, "Simulation of CdS/p-Si/p+-Si and ZnO/CdS/p-Si/p+-Si Heterojunction Solar Cells", Results in Optics, pp. 100353, 2023.
There are 24 citations in total.

Details

Primary Language English
Subjects Condensed Matter Physics (Other)
Journal Section Research Articles
Authors

İmran Kanmaz 0000-0001-8827-1590

Early Pub Date June 6, 2024
Publication Date June 30, 2024
Submission Date September 11, 2023
Acceptance Date May 8, 2024
Published in Issue Year 2024

Cite

APA Kanmaz, İ. (2024). Theoretical Analysis and Simulation of SiO2 and ZrO2 Based Antireflective Coatings to Improve Crystalline Silicon Solar Cell Efficiency. Sakarya University Journal of Science, 28(3), 542-549. https://doi.org/10.16984/saufenbilder.1358209
AMA Kanmaz İ. Theoretical Analysis and Simulation of SiO2 and ZrO2 Based Antireflective Coatings to Improve Crystalline Silicon Solar Cell Efficiency. SAUJS. June 2024;28(3):542-549. doi:10.16984/saufenbilder.1358209
Chicago Kanmaz, İmran. “Theoretical Analysis and Simulation of SiO2 and ZrO2 Based Antireflective Coatings to Improve Crystalline Silicon Solar Cell Efficiency”. Sakarya University Journal of Science 28, no. 3 (June 2024): 542-49. https://doi.org/10.16984/saufenbilder.1358209.
EndNote Kanmaz İ (June 1, 2024) Theoretical Analysis and Simulation of SiO2 and ZrO2 Based Antireflective Coatings to Improve Crystalline Silicon Solar Cell Efficiency. Sakarya University Journal of Science 28 3 542–549.
IEEE İ. Kanmaz, “Theoretical Analysis and Simulation of SiO2 and ZrO2 Based Antireflective Coatings to Improve Crystalline Silicon Solar Cell Efficiency”, SAUJS, vol. 28, no. 3, pp. 542–549, 2024, doi: 10.16984/saufenbilder.1358209.
ISNAD Kanmaz, İmran. “Theoretical Analysis and Simulation of SiO2 and ZrO2 Based Antireflective Coatings to Improve Crystalline Silicon Solar Cell Efficiency”. Sakarya University Journal of Science 28/3 (June 2024), 542-549. https://doi.org/10.16984/saufenbilder.1358209.
JAMA Kanmaz İ. Theoretical Analysis and Simulation of SiO2 and ZrO2 Based Antireflective Coatings to Improve Crystalline Silicon Solar Cell Efficiency. SAUJS. 2024;28:542–549.
MLA Kanmaz, İmran. “Theoretical Analysis and Simulation of SiO2 and ZrO2 Based Antireflective Coatings to Improve Crystalline Silicon Solar Cell Efficiency”. Sakarya University Journal of Science, vol. 28, no. 3, 2024, pp. 542-9, doi:10.16984/saufenbilder.1358209.
Vancouver Kanmaz İ. Theoretical Analysis and Simulation of SiO2 and ZrO2 Based Antireflective Coatings to Improve Crystalline Silicon Solar Cell Efficiency. SAUJS. 2024;28(3):542-9.