Research Article
BibTex RIS Cite

The Class of Demi-Strongly Order Bounded Operators

Year 2024, , 364 - 370, 30.04.2024
https://doi.org/10.16984/saufenbilder.1371744

Abstract

In this paper, we introduce the class of demi-strongly order bounded operators on a Riesz space generalization of strongly order bounded operators. Let M be a Riesz space, an operator H from M into M is said to be a demi-strongly order bounded operator if for every net {u_α} in M^+ whenever 0≤u_α↑ ≤u^'',u^'' in M^(∼∼) and {u_α-H(u_α )} is order bounded in M, then {u_α} is order bounded in M. We obtain a characterization of the b-property by the term of demi-strongly order bounded operators. In addition, we study the relationship between strongly order bounded operators and demi-strongly order bounded operators. Finally, we also investigate some properties of the class of demi-strongly order bounded operators.

References

  • [1] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Berlin: Springer, 2006.
  • [2] S. Alpay, B. Altın, C. Tonyalı, “On property (b) of vector lattices,” Positivity, vol. 7, pp. 135-139, 2003.
  • [3] S. Alpay, B. Altın, C. Tonyalı, “A note on Riesz spaces with property-b,” Czechoslovak Mathematical Journal, vol. 56, no. 2, pp. 765-772, 2006.
  • [4] S. Alpay, B. Altın, “On Riesz spaces with b-property and strongly order bounded operators,” Rendiconti del Circolo Matematico di Palermo, vol. 60, pp. 1-12, 2011.
  • [5] D. A. Birnbaum, “Preregular maps between Banach lattices,” Bullettin of the Australian Mathematical Society, vol. 11, pp. 231-254, 1974.
  • [6] W. V. Petryshyn, “Construction of fixed points of demicompact mappings in Hilbert space,” Journal of Mathematical Analysis and Applications, vol.14, no.2, pp. 276-284, 1966.
  • [7] B. Krichen, D. O’Regan, “Weakly demicompact linear operators and axiomatic measures of weak noncompactness,” Mathematica Slovaca, vol. 69, no. 6, pp. 1403-1412, 2019.
  • [8] H. Benkhaled, M. Hajji, A. Jeribi, “On the class of Demi Dunford-Pettis Operators,” Rendiconti del Circolo Matematico di Palermo Series 2, vol. 72, pp. 901-911, 2023.
  • [9] H. Benkhaled, A. Elleuch, A. Jeribi, “The class of order weakly demicompact operators,” Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Series A. Matemáticas, vol. 114, no. 2, 2020.
  • [10] H. Benkhaled, A. Jeribi, “The class of demi KB-operators on Banach lattices,” Turkish Journal of Mathematics, vol. 47, no. 1, pp. 387-396, 2023.
  • [11] N. Machrafi, B. Altın, “A note on topologically b-order bounded sets and generalized b-weakly compact operators,” Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 2, pp. 483-493, 2021.
Year 2024, , 364 - 370, 30.04.2024
https://doi.org/10.16984/saufenbilder.1371744

Abstract

References

  • [1] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Berlin: Springer, 2006.
  • [2] S. Alpay, B. Altın, C. Tonyalı, “On property (b) of vector lattices,” Positivity, vol. 7, pp. 135-139, 2003.
  • [3] S. Alpay, B. Altın, C. Tonyalı, “A note on Riesz spaces with property-b,” Czechoslovak Mathematical Journal, vol. 56, no. 2, pp. 765-772, 2006.
  • [4] S. Alpay, B. Altın, “On Riesz spaces with b-property and strongly order bounded operators,” Rendiconti del Circolo Matematico di Palermo, vol. 60, pp. 1-12, 2011.
  • [5] D. A. Birnbaum, “Preregular maps between Banach lattices,” Bullettin of the Australian Mathematical Society, vol. 11, pp. 231-254, 1974.
  • [6] W. V. Petryshyn, “Construction of fixed points of demicompact mappings in Hilbert space,” Journal of Mathematical Analysis and Applications, vol.14, no.2, pp. 276-284, 1966.
  • [7] B. Krichen, D. O’Regan, “Weakly demicompact linear operators and axiomatic measures of weak noncompactness,” Mathematica Slovaca, vol. 69, no. 6, pp. 1403-1412, 2019.
  • [8] H. Benkhaled, M. Hajji, A. Jeribi, “On the class of Demi Dunford-Pettis Operators,” Rendiconti del Circolo Matematico di Palermo Series 2, vol. 72, pp. 901-911, 2023.
  • [9] H. Benkhaled, A. Elleuch, A. Jeribi, “The class of order weakly demicompact operators,” Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Series A. Matemáticas, vol. 114, no. 2, 2020.
  • [10] H. Benkhaled, A. Jeribi, “The class of demi KB-operators on Banach lattices,” Turkish Journal of Mathematics, vol. 47, no. 1, pp. 387-396, 2023.
  • [11] N. Machrafi, B. Altın, “A note on topologically b-order bounded sets and generalized b-weakly compact operators,” Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 2, pp. 483-493, 2021.
There are 11 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Research Articles
Authors

Gül Sinem Keleş 0000-0001-5712-239X

Birol Altın 0000-0002-1085-809X

Early Pub Date April 24, 2024
Publication Date April 30, 2024
Submission Date October 5, 2023
Acceptance Date January 22, 2024
Published in Issue Year 2024

Cite

APA Keleş, G. S., & Altın, B. (2024). The Class of Demi-Strongly Order Bounded Operators. Sakarya University Journal of Science, 28(2), 364-370. https://doi.org/10.16984/saufenbilder.1371744
AMA Keleş GS, Altın B. The Class of Demi-Strongly Order Bounded Operators. SAUJS. April 2024;28(2):364-370. doi:10.16984/saufenbilder.1371744
Chicago Keleş, Gül Sinem, and Birol Altın. “The Class of Demi-Strongly Order Bounded Operators”. Sakarya University Journal of Science 28, no. 2 (April 2024): 364-70. https://doi.org/10.16984/saufenbilder.1371744.
EndNote Keleş GS, Altın B (April 1, 2024) The Class of Demi-Strongly Order Bounded Operators. Sakarya University Journal of Science 28 2 364–370.
IEEE G. S. Keleş and B. Altın, “The Class of Demi-Strongly Order Bounded Operators”, SAUJS, vol. 28, no. 2, pp. 364–370, 2024, doi: 10.16984/saufenbilder.1371744.
ISNAD Keleş, Gül Sinem - Altın, Birol. “The Class of Demi-Strongly Order Bounded Operators”. Sakarya University Journal of Science 28/2 (April 2024), 364-370. https://doi.org/10.16984/saufenbilder.1371744.
JAMA Keleş GS, Altın B. The Class of Demi-Strongly Order Bounded Operators. SAUJS. 2024;28:364–370.
MLA Keleş, Gül Sinem and Birol Altın. “The Class of Demi-Strongly Order Bounded Operators”. Sakarya University Journal of Science, vol. 28, no. 2, 2024, pp. 364-70, doi:10.16984/saufenbilder.1371744.
Vancouver Keleş GS, Altın B. The Class of Demi-Strongly Order Bounded Operators. SAUJS. 2024;28(2):364-70.