Research Article
BibTex RIS Cite

Statistical Soft Wijsman Convergence

Year 2024, , 1342 - 1351, 31.12.2024
https://doi.org/10.16984/saufenbilder.1577812

Abstract

The concept of convergence is a fundamental tool for building or understanding a mathematical structure. In particular, many applied areas of mathematics require the analysis of sets or set-based approximations. A notable example is Wijsman convergence, a type of set convergence defined as the distance from a point to a set as determined by a metric function. Another important concept in our study is soft set theory, which generalizes classical set theory and provides an effective approach to addressing uncertainties in a parametric manner. Building on this foundation, we introduce the concepts of statistical and lacunary statistical convergence in the sense of Wijsman for sequences of closed sets within the framework of soft metric spaces. We establish fundamental properties associated with these types of convergence and explore their interrelationships, resulting in several inclusion results. Furthermore, we utilize a generalized version of the natural density function, referred to as the ϕ-weighted density function, to strengthen our findings.

References

  • D. Molodtsov, “Soft set theory—first results,” Computers and Mathematics with Applications, vol. 37, no. 4-5, pp. 19-31, 1999.
  • S. Das, S. Samanta, “Soft metric,” Annals of Fuzzy Mathematics and Informatics, vol. 6, no. 1, pp. 77-94, 2013.
  • S. Das, S. Samanta, “On soft metric spaces,” The Journal of Fuzzy Mathematics, vol. 21, no. 3, pp. 707-734, 2013.
  • J. C. R. Alcantud, A. Z. Khameneh, G. Santos-Garcia, M. Akram, “A systematic literature review of soft set theory,” Neural Computing and Applications, vol. 36, no. 16, pp. 8951-8975, 2024.
  • R. A. Wijsman, “Convergence of sequences of convex sets, cones and functions,” Bulletin of the American Mathematical Society, vol. 70, pp. 186-188, 1964.
  • R. A. Wijsman, “Convergence of sequences of convex sets, cones and functions. II,” Transactions of the American Mathematical Society, vol. 123, no. 1, pp. 32-45, 1966.
  • G. Beer, Topologies on Closed and Closed Convex Sets, vol. 268 of Mathematics and its Applications. Dordrecht: Kluwer Academic Publishers Group, 1993.
  • G. Beer, “Wijsman convergence: A survey,” Set-Valued Analysis, vol. 2, pp. 77-94, 1994.
  • R. T. Rockafellar, R. J. B. Wets, Variational Analysis, Springer Berlin, Heidelberg, 1997.
  • J. O. Royset, “Set-Convergence and Its Application: A Tutorial,” Set-Valued Variational Analysis, vol. 28, pp. 707–732, 2020.
  • H. Fast, “Sur la convergence statistique,” Colloquium Mathematicae, vol. 2, no. 3-4, pp. 241-244, 1951.
  • H. Steinhaus, “Sur la convergence ordinaire et la convergence asymptotique,” Colloquium Mathematicae, vol. 2, pp. 73-74, 1951.
  • I. J. Schoenberg, “The integrability of certain functions and related summability methods”, The American Mathematical Monthly, vol. 66, pp. 361-375, 1959.
  • I. J. Maddox, Statistical convergence in a locally convex space, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 104, pp. 141–145, 1988.
  • J. S. Connor, “The statistical and strong p-Cesàro convergence of sequences,” Analysis, vol. 8, no. 1-2, pp. 47-63, 1988.
  • J. A. Fridy, “On statistical convergence,” Analysis, vol. 5, pp. 301-313, 1985.
  • T. Šalát, “On statistically convergent sequences of real numbers,” Mathematica Slovaca, vol. 30, no. 2, pp. 139-150, 1980.
  • G. Di Maio, Lj. A. D. Kočínac, “Statistical convergence in topology,” Topology and its Applications, vol. 156, no. 1, pp. 28-45, 2008.
  • J. A. Fridy, C. Orhan, “Lacunary statistical convergence,” Pacific Journal of Mathematics, vol. 160, no. 1, pp. 43-51, 1993.
  • S. Pehlivan, B. Fisher, “Lacunary strong convergence with respect to a sequence of modulus functions,” Commentationes Mathematicae Universitatis Carolinae, vol. 36, no. 1, pp. 69-76, 1995.
  • H. Şengül, M. Et, “f-Lacunary Statistical Convergence and Strong f-Lacunary Summability of Order α”, Filomat, vol. 32, no. 13, pp. 4513-4521, 2018.
  • V. K. Bhardwaj, S. Dhawan, “f-Statistical convergence of order α and strong Cesàro summability of order with respect to a modulus,” Journal of Inequalities and Applications, vol. 332, 2015.
  • F. Nuray, B. E. Rhoades, “Statistical convergence of sequences of sets,” Fasciculi Mathematici, vol. 49, pp. 87–99, 2012.
  • U. Ulusu, F. Nuray, “Lacunary statistical convergence of sequence of sets,” Progress in Applied Mathematics, vol. 4, no. 2, pp. 99–109, 2012.
  • M. Balcerzak, P. Das, M. Filipczak, J. Swaczyna, “Generalized kinds of density and the associated ideals,” Acta Mathematica Hungarica, vol. 147, pp. 97-115, 2015.
  • E. Bayram, M. D. Çınar, “Soft Wijsman convergence,” Maejo International Journal of Science and Technology, vol. 18, no. 3, pp.267-279, 2024.
Year 2024, , 1342 - 1351, 31.12.2024
https://doi.org/10.16984/saufenbilder.1577812

Abstract

References

  • D. Molodtsov, “Soft set theory—first results,” Computers and Mathematics with Applications, vol. 37, no. 4-5, pp. 19-31, 1999.
  • S. Das, S. Samanta, “Soft metric,” Annals of Fuzzy Mathematics and Informatics, vol. 6, no. 1, pp. 77-94, 2013.
  • S. Das, S. Samanta, “On soft metric spaces,” The Journal of Fuzzy Mathematics, vol. 21, no. 3, pp. 707-734, 2013.
  • J. C. R. Alcantud, A. Z. Khameneh, G. Santos-Garcia, M. Akram, “A systematic literature review of soft set theory,” Neural Computing and Applications, vol. 36, no. 16, pp. 8951-8975, 2024.
  • R. A. Wijsman, “Convergence of sequences of convex sets, cones and functions,” Bulletin of the American Mathematical Society, vol. 70, pp. 186-188, 1964.
  • R. A. Wijsman, “Convergence of sequences of convex sets, cones and functions. II,” Transactions of the American Mathematical Society, vol. 123, no. 1, pp. 32-45, 1966.
  • G. Beer, Topologies on Closed and Closed Convex Sets, vol. 268 of Mathematics and its Applications. Dordrecht: Kluwer Academic Publishers Group, 1993.
  • G. Beer, “Wijsman convergence: A survey,” Set-Valued Analysis, vol. 2, pp. 77-94, 1994.
  • R. T. Rockafellar, R. J. B. Wets, Variational Analysis, Springer Berlin, Heidelberg, 1997.
  • J. O. Royset, “Set-Convergence and Its Application: A Tutorial,” Set-Valued Variational Analysis, vol. 28, pp. 707–732, 2020.
  • H. Fast, “Sur la convergence statistique,” Colloquium Mathematicae, vol. 2, no. 3-4, pp. 241-244, 1951.
  • H. Steinhaus, “Sur la convergence ordinaire et la convergence asymptotique,” Colloquium Mathematicae, vol. 2, pp. 73-74, 1951.
  • I. J. Schoenberg, “The integrability of certain functions and related summability methods”, The American Mathematical Monthly, vol. 66, pp. 361-375, 1959.
  • I. J. Maddox, Statistical convergence in a locally convex space, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 104, pp. 141–145, 1988.
  • J. S. Connor, “The statistical and strong p-Cesàro convergence of sequences,” Analysis, vol. 8, no. 1-2, pp. 47-63, 1988.
  • J. A. Fridy, “On statistical convergence,” Analysis, vol. 5, pp. 301-313, 1985.
  • T. Šalát, “On statistically convergent sequences of real numbers,” Mathematica Slovaca, vol. 30, no. 2, pp. 139-150, 1980.
  • G. Di Maio, Lj. A. D. Kočínac, “Statistical convergence in topology,” Topology and its Applications, vol. 156, no. 1, pp. 28-45, 2008.
  • J. A. Fridy, C. Orhan, “Lacunary statistical convergence,” Pacific Journal of Mathematics, vol. 160, no. 1, pp. 43-51, 1993.
  • S. Pehlivan, B. Fisher, “Lacunary strong convergence with respect to a sequence of modulus functions,” Commentationes Mathematicae Universitatis Carolinae, vol. 36, no. 1, pp. 69-76, 1995.
  • H. Şengül, M. Et, “f-Lacunary Statistical Convergence and Strong f-Lacunary Summability of Order α”, Filomat, vol. 32, no. 13, pp. 4513-4521, 2018.
  • V. K. Bhardwaj, S. Dhawan, “f-Statistical convergence of order α and strong Cesàro summability of order with respect to a modulus,” Journal of Inequalities and Applications, vol. 332, 2015.
  • F. Nuray, B. E. Rhoades, “Statistical convergence of sequences of sets,” Fasciculi Mathematici, vol. 49, pp. 87–99, 2012.
  • U. Ulusu, F. Nuray, “Lacunary statistical convergence of sequence of sets,” Progress in Applied Mathematics, vol. 4, no. 2, pp. 99–109, 2012.
  • M. Balcerzak, P. Das, M. Filipczak, J. Swaczyna, “Generalized kinds of density and the associated ideals,” Acta Mathematica Hungarica, vol. 147, pp. 97-115, 2015.
  • E. Bayram, M. D. Çınar, “Soft Wijsman convergence,” Maejo International Journal of Science and Technology, vol. 18, no. 3, pp.267-279, 2024.
There are 26 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Research Articles
Authors

Erdal Bayram 0000-0001-8488-359X

Early Pub Date December 28, 2024
Publication Date December 31, 2024
Submission Date November 1, 2024
Acceptance Date December 26, 2024
Published in Issue Year 2024

Cite

APA Bayram, E. (2024). Statistical Soft Wijsman Convergence. Sakarya University Journal of Science, 28(6), 1342-1351. https://doi.org/10.16984/saufenbilder.1577812
AMA Bayram E. Statistical Soft Wijsman Convergence. SAUJS. December 2024;28(6):1342-1351. doi:10.16984/saufenbilder.1577812
Chicago Bayram, Erdal. “Statistical Soft Wijsman Convergence”. Sakarya University Journal of Science 28, no. 6 (December 2024): 1342-51. https://doi.org/10.16984/saufenbilder.1577812.
EndNote Bayram E (December 1, 2024) Statistical Soft Wijsman Convergence. Sakarya University Journal of Science 28 6 1342–1351.
IEEE E. Bayram, “Statistical Soft Wijsman Convergence”, SAUJS, vol. 28, no. 6, pp. 1342–1351, 2024, doi: 10.16984/saufenbilder.1577812.
ISNAD Bayram, Erdal. “Statistical Soft Wijsman Convergence”. Sakarya University Journal of Science 28/6 (December 2024), 1342-1351. https://doi.org/10.16984/saufenbilder.1577812.
JAMA Bayram E. Statistical Soft Wijsman Convergence. SAUJS. 2024;28:1342–1351.
MLA Bayram, Erdal. “Statistical Soft Wijsman Convergence”. Sakarya University Journal of Science, vol. 28, no. 6, 2024, pp. 1342-51, doi:10.16984/saufenbilder.1577812.
Vancouver Bayram E. Statistical Soft Wijsman Convergence. SAUJS. 2024;28(6):1342-51.