Research Article
BibTex RIS Cite
Year 2020, , 151 - 160, 01.02.2020
https://doi.org/10.16984/saufenbilder.545929

Abstract

References

  • [1] A. T. Adesulu-Dahunsi, A. I. Sanni, and K. Jeyaram, “Production, characterization and In vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44,” LWT - Food Sci. Technol., vol. 87, pp. 432–442, 2018.
  • [2] Y. Abid, A. Casillo, H. Gharsallah, I. Joulak, R. Lanzetta, M. M. Corsaro, H. Attia, and S. Azabou, “Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria,” Int. J. Biol. Macromol., 2017.
  • [3] L. Ai, Q. Guo, H. Ding, B. Guo, W. Chen, and S. W. Cui, “Structure characterization of exopolysaccharides from Lactobacillus casei LC2W from skim milk,” Food Hydrocoll., vol. 56, pp. 134–143, 2016.
  • [4] W. Di, L. Zhang, S. Wang, H. Yi, X. Han, and R. Fan, “Physicochemical characterization and antitumour activity of exopolysaccharides produced by Lactobacillus casei SB27 from yak milk,” Carbohydr. Polym., vol. 171, pp. 307–315, 2017.
  • [5] M. Korakli, M. G. Gänzle, and R. F. Vogel, “Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis,” J. Appl. Microbiol., vol. 92, no. 5, pp. 958–965, 2002.
  • [6] S. Tsuneda, H. Aikawa, H. Hayashi, A. Yuasa, and A. Hirata, “Extracellular polymeric substances responsible for bacterial adhesion onto solid surface,” FEMS Microbiol. Lett., vol. 223, no. 2, pp. 287–292, 2003.
  • [7] E. N. Karasu and E. Ermis, “Determination of the effect of exopolysaccharide (EPS) from Lactobacillus brevis E25 on adhesion of food powders on the surfaces, using the centrifuge technique,” J. Food Eng., vol. 242, pp. 106–114, 2019.
  • [8] E. Dertli, I. J. Colquhoun, G. L. Côté, G. Le Gall, and A. Narbad, “Structural analysis of the α-D-glucan produced by the sourdough isolate Lactobacillus brevis E25,” Food Chem., vol. 242, no. March 2017, pp. 45–52, 2018.
  • [9] E. Dertli, I. J. Colquhoun, A. P. Gunning, R. J. Bongaerts, G. Le Gall, B. B. Bonev, M. J. Mayer, and A. Narbad, “Structure and biosynthesis of two exopolysaccharides produced by lactobacillus johnsonii FI9785,” J. Biol. Chem., vol. 288, no. 44, pp. 31938–31951, 2013.
  • [10] A. Yilmaz, F. Bozkurt, P. K. Cicek, E. Dertli, M. Z. Durak, and M. T. Yilmaz, “A novel antifungal surface-coating application to limit postharvest decay on coated apples: Molecular, thermal and morphological properties of electrospun zein???nanofiber mats loaded with curcumin,” Innov. Food Sci. Emerg. Technol., vol. 37, pp. 74–83, 2016.
  • [11] M. Ayyash, B. Abu-Jdayil, F. Hamed, and R. Shaker, “Rheological, textural, microstructural and sensory impact of exopolysaccharide-producing Lactobacillus plantarum isolated from camel milk on low-fat akawi cheese,” LWT - Food Sci. Technol., vol. 87, pp. 423–431, 2018.
  • [12] F. Mozzi, G. Savoy de Giori, and G. Font de Valdez, “UDP-galactose 4-epimerase: A key enzyme in exopolysaccharide formation by Lactobacillus casei CRL 87 in controlled pH batch cultures,” J. Appl. Microbiol., vol. 94, no. 2, pp. 175–183, 2003.
  • [13] B. Degeest, F. Mozzi, and L. De Vuyst, “Effect of medium composition and temperature and pH changes on exopolysaccharide yields and stability during Streptococcus thermophilus LY03 fermentations,” Int. J. Food Microbiol., vol. 79, no. 3, pp. 161–174, 2002.
  • [14] E. Dertli, E. Mercan, M. Arici, M. T. Yilmaz, and O. Sağdiç, “Characterisation of lactic acid bacteria from Turkish sourdough and determination of their exopolysaccharide (EPS) production characteristics,” LWT - Food Sci. Technol., vol. 71, pp. 116–124, 2016.
  • [15] M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, “Colorimetric Method for Determination of Sugars and Related Substances,” Anal. Chem., vol. 28, no. 3, pp. 350–356, 1956.
  • [16] M. Polak-Berecka, A. Choma, A. Waśko, S. Górska, A. Gamian, and J. Cybulska, “Physicochemical characterization of exopolysaccharides produced by Lactobacillus rhamnosus on various carbon sources,” Carbohydr. Polym., vol. 117, pp. 501–509, 2015.
  • [17] K. K. T. Goh, R. D. Haisman, and H. Singh, “Examination of exopolysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus using confocal laser scanning and scanning electron microscopy techniques,” J. Food Sci., vol. 70, no. 4, 2005.
  • [18] H. İspirli and E. Dertli, “Isolation and identification of exopolysaccharide producer lactic acid bacteria from Turkish yogurt,” J. Food Process. Preserv., vol. 42, no. 1, 2018.
  • [19] S. Mende, H. Rohm, and D. Jaros, “Influence of exopolysaccharides on the structure, texture, stability and sensory properties of yoghurt and related products,” International Dairy Journal, vol. 52. pp. 57–71, 2016.
  • [20] A. S. Demirci, I. Palabiyik, D. D. Altan, D. Apaydın, and T. Gumus, “Yield and rheological properties of exopolysaccharide from a local isolate: Xanthomonas axonopodis pv. vesicatoria,” Electron. J. Biotechnol., vol. 30, pp. 18–23, 2017.
  • [21] P. Manochai, Y. Phimolsiripol, and P. Seesuriyachan, “Response surface optimization of exopolysaccharide production from sugarcane juice by Lactobacillus confusus TISTR 1498,” Chiang Mai Univ. J. Nat. Sci., vol. 13, no. 1, pp. 425–438, 2014.
  • [22] C. H. Shu and M. Y. Lung, “Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorata in batch cultures,” Process Biochem., vol. 39, no. 8, pp. 931–937, 2004.
  • [23] F. Gancel and G. Novel, “Exopolysaccharide Production by Streptococcus salivarius ssp. thermophilus Cultures. 1. Conditions of Production,” J. Dairy Sci., vol. 77, no. 3, pp. 685–688, 1994.
  • [24] R. Xu, S. Ma, Y. Wang, L. Liu, and P. Li, “Screening, identification and statistic optimization of a novel exopolysaccharide producing Lactobacillus paracasei HCT,” African J. Microbiol. Res., vol. 4, no. 9, pp. 783–795, 2010.
  • [25] W. Wongsuphachat, A. H-Kittikun, and S. Maneerat, “Optimization of exopolysaccharides production by Weissella confusa NH 02 isolated from thai fermented sausages,” Songklanakarin J. Sci. Technol., vol. 32, no. 1, pp. 27–35, 2010.
  • [26] Chintana Tayuan, “Growth and exopolysaccharide production by Weissella sp. from low-cost substitutes for sucrose,” African J. Microbiol. Res., vol. 5, no. 22, pp. 3693–3701, 2011.
  • [27] L. De Vuyst, F. De Vin, F. Vaningelgem, and B. Degeest, “Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria,” in International Dairy Journal, 2001, vol. 11, no. 9, pp. 687–707.
  • [28] B. Degeest, F. Vaningelgem, and L. De Vuyst, “Microbial physiology, fermentation kinetics, and process engineering of heteropolysaccharide production by lactic acid bacteria,” in International Dairy Journal, 2001, vol. 11, no. 9, pp. 747–757.
  • [29] L. Gamar-Nourani, K. Blondeau, and J. M. Simonet, “Influence of culture conditions on exopolysaccharide production by Lactobacillus rhamnosus strain C83,” J. Appl. Microbiol., vol. 85, no. 4, pp. 664–672, 1998.
  • [30] P. Seesuriyachan, A. Kuntiya, P. Hanmoungjai, and C. Techapun, “Exopolysaccharide production by lactobacillus confusus TISTR 1498 using coconut water as an alternative carbon source: The effect of peptone, yeast extract and beef extract,” Songklanakarin J. Sci. Technol., vol. 33, no. 4, pp. 379–387, 2011.
  • [31] M. E. Esgalhado, J. C. Roseiro, and M. T. Amaral-Collaço, “Interactive effects of pH and temperature on cell growth and polymer production by Xanthomonas campestris,” Process Biochem., vol. 30, no. 7, pp. 667–671, 1995.[32] L. Qiang, L. Yumei, H. Sheng, L. Yingzi, S. Dongxue, H. Dake, W. Jiajia, Q. Yanhong, and Z. Yuxia, “Optimization of fermentation conditions and properties of an exopolysaccharide from Klebsiella sp. H-207 and application in adsorption of hexavalent chromium,” PLoS One, vol. 8, no. 1, p. e53542, 2013.
  • [33] Z. Chen, J. Shi, X. Yang, B. Nan, Y. Liu, and Z. Wang, “Chemical and physical characteristics and antioxidant activities of the exopolysaccharide produced by Tibetan kefir grains during milk fermentation,” Int. Dairy J., vol. 43, pp. 15–21, 2015.
  • [34] M. Miao, C. Huang, X. Jia, S. W. Cui, B. Jiang, and T. Zhang, “Physicochemical characteristics of a high molecular weight bioengineered α-D-glucan from Leuconostoc citreum SK24.002,” Food Hydrocoll., vol. 50, pp. 37–43, 2015.
  • [35] Y. Wang, Z. Ahmed, W. Feng, C. Li, and S. Song, “Physicochemical properties of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir,” Int. J. Biol. Macromol., vol. 43, no. 3, pp. 283–288, 2008.
  • [36] A. N. Hassan, J. F. Frank, and K. B. Qvist, “Direct Observation of Bacterial Exopolysaccharides in Dairy Products Using Confocal Scanning Laser Microscopy,” J. Dairy Sci., vol. 85, no. 7, pp. 1705–1708, 2002.

Optimization of exopolysaccharide production of Lactobacillus brevis E25 using RSM and characterization

Year 2020, , 151 - 160, 01.02.2020
https://doi.org/10.16984/saufenbilder.545929

Abstract

Response surface
methodology was used to determine the exopolysaccharide production of Lactobacillus brevis E25. The effects of three variables,
temperature (30, 36 and 42 °C), incubation time (18, 33 and 48 h) and initial
pH of growth medium (4.5, 5.5 and 6.5) were studied. Under optimum growth conditions, the amount of exopolysaccharide
derived from Lactobacillus brevis E25 ranged from 10 to 35 gL-1. The size of EPS molecules ranged from 105 to 107 Da.
Infra red spectrum analysis
showed characteristics absorption peaks indicating the presence of -OH, C=O and
C-H groups. Furthermore, only glucose was detected as monosaccharide in
exopolysaccharide structure, revealing that the structure of exopolysaccharide
is a
homopolymeric glucan type. Based on the differential scanning calorimeter
thermograms, exopolysaccharide’s melting temperature was observed around 116 °C.

References

  • [1] A. T. Adesulu-Dahunsi, A. I. Sanni, and K. Jeyaram, “Production, characterization and In vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44,” LWT - Food Sci. Technol., vol. 87, pp. 432–442, 2018.
  • [2] Y. Abid, A. Casillo, H. Gharsallah, I. Joulak, R. Lanzetta, M. M. Corsaro, H. Attia, and S. Azabou, “Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria,” Int. J. Biol. Macromol., 2017.
  • [3] L. Ai, Q. Guo, H. Ding, B. Guo, W. Chen, and S. W. Cui, “Structure characterization of exopolysaccharides from Lactobacillus casei LC2W from skim milk,” Food Hydrocoll., vol. 56, pp. 134–143, 2016.
  • [4] W. Di, L. Zhang, S. Wang, H. Yi, X. Han, and R. Fan, “Physicochemical characterization and antitumour activity of exopolysaccharides produced by Lactobacillus casei SB27 from yak milk,” Carbohydr. Polym., vol. 171, pp. 307–315, 2017.
  • [5] M. Korakli, M. G. Gänzle, and R. F. Vogel, “Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis,” J. Appl. Microbiol., vol. 92, no. 5, pp. 958–965, 2002.
  • [6] S. Tsuneda, H. Aikawa, H. Hayashi, A. Yuasa, and A. Hirata, “Extracellular polymeric substances responsible for bacterial adhesion onto solid surface,” FEMS Microbiol. Lett., vol. 223, no. 2, pp. 287–292, 2003.
  • [7] E. N. Karasu and E. Ermis, “Determination of the effect of exopolysaccharide (EPS) from Lactobacillus brevis E25 on adhesion of food powders on the surfaces, using the centrifuge technique,” J. Food Eng., vol. 242, pp. 106–114, 2019.
  • [8] E. Dertli, I. J. Colquhoun, G. L. Côté, G. Le Gall, and A. Narbad, “Structural analysis of the α-D-glucan produced by the sourdough isolate Lactobacillus brevis E25,” Food Chem., vol. 242, no. March 2017, pp. 45–52, 2018.
  • [9] E. Dertli, I. J. Colquhoun, A. P. Gunning, R. J. Bongaerts, G. Le Gall, B. B. Bonev, M. J. Mayer, and A. Narbad, “Structure and biosynthesis of two exopolysaccharides produced by lactobacillus johnsonii FI9785,” J. Biol. Chem., vol. 288, no. 44, pp. 31938–31951, 2013.
  • [10] A. Yilmaz, F. Bozkurt, P. K. Cicek, E. Dertli, M. Z. Durak, and M. T. Yilmaz, “A novel antifungal surface-coating application to limit postharvest decay on coated apples: Molecular, thermal and morphological properties of electrospun zein???nanofiber mats loaded with curcumin,” Innov. Food Sci. Emerg. Technol., vol. 37, pp. 74–83, 2016.
  • [11] M. Ayyash, B. Abu-Jdayil, F. Hamed, and R. Shaker, “Rheological, textural, microstructural and sensory impact of exopolysaccharide-producing Lactobacillus plantarum isolated from camel milk on low-fat akawi cheese,” LWT - Food Sci. Technol., vol. 87, pp. 423–431, 2018.
  • [12] F. Mozzi, G. Savoy de Giori, and G. Font de Valdez, “UDP-galactose 4-epimerase: A key enzyme in exopolysaccharide formation by Lactobacillus casei CRL 87 in controlled pH batch cultures,” J. Appl. Microbiol., vol. 94, no. 2, pp. 175–183, 2003.
  • [13] B. Degeest, F. Mozzi, and L. De Vuyst, “Effect of medium composition and temperature and pH changes on exopolysaccharide yields and stability during Streptococcus thermophilus LY03 fermentations,” Int. J. Food Microbiol., vol. 79, no. 3, pp. 161–174, 2002.
  • [14] E. Dertli, E. Mercan, M. Arici, M. T. Yilmaz, and O. Sağdiç, “Characterisation of lactic acid bacteria from Turkish sourdough and determination of their exopolysaccharide (EPS) production characteristics,” LWT - Food Sci. Technol., vol. 71, pp. 116–124, 2016.
  • [15] M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, “Colorimetric Method for Determination of Sugars and Related Substances,” Anal. Chem., vol. 28, no. 3, pp. 350–356, 1956.
  • [16] M. Polak-Berecka, A. Choma, A. Waśko, S. Górska, A. Gamian, and J. Cybulska, “Physicochemical characterization of exopolysaccharides produced by Lactobacillus rhamnosus on various carbon sources,” Carbohydr. Polym., vol. 117, pp. 501–509, 2015.
  • [17] K. K. T. Goh, R. D. Haisman, and H. Singh, “Examination of exopolysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus using confocal laser scanning and scanning electron microscopy techniques,” J. Food Sci., vol. 70, no. 4, 2005.
  • [18] H. İspirli and E. Dertli, “Isolation and identification of exopolysaccharide producer lactic acid bacteria from Turkish yogurt,” J. Food Process. Preserv., vol. 42, no. 1, 2018.
  • [19] S. Mende, H. Rohm, and D. Jaros, “Influence of exopolysaccharides on the structure, texture, stability and sensory properties of yoghurt and related products,” International Dairy Journal, vol. 52. pp. 57–71, 2016.
  • [20] A. S. Demirci, I. Palabiyik, D. D. Altan, D. Apaydın, and T. Gumus, “Yield and rheological properties of exopolysaccharide from a local isolate: Xanthomonas axonopodis pv. vesicatoria,” Electron. J. Biotechnol., vol. 30, pp. 18–23, 2017.
  • [21] P. Manochai, Y. Phimolsiripol, and P. Seesuriyachan, “Response surface optimization of exopolysaccharide production from sugarcane juice by Lactobacillus confusus TISTR 1498,” Chiang Mai Univ. J. Nat. Sci., vol. 13, no. 1, pp. 425–438, 2014.
  • [22] C. H. Shu and M. Y. Lung, “Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorata in batch cultures,” Process Biochem., vol. 39, no. 8, pp. 931–937, 2004.
  • [23] F. Gancel and G. Novel, “Exopolysaccharide Production by Streptococcus salivarius ssp. thermophilus Cultures. 1. Conditions of Production,” J. Dairy Sci., vol. 77, no. 3, pp. 685–688, 1994.
  • [24] R. Xu, S. Ma, Y. Wang, L. Liu, and P. Li, “Screening, identification and statistic optimization of a novel exopolysaccharide producing Lactobacillus paracasei HCT,” African J. Microbiol. Res., vol. 4, no. 9, pp. 783–795, 2010.
  • [25] W. Wongsuphachat, A. H-Kittikun, and S. Maneerat, “Optimization of exopolysaccharides production by Weissella confusa NH 02 isolated from thai fermented sausages,” Songklanakarin J. Sci. Technol., vol. 32, no. 1, pp. 27–35, 2010.
  • [26] Chintana Tayuan, “Growth and exopolysaccharide production by Weissella sp. from low-cost substitutes for sucrose,” African J. Microbiol. Res., vol. 5, no. 22, pp. 3693–3701, 2011.
  • [27] L. De Vuyst, F. De Vin, F. Vaningelgem, and B. Degeest, “Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria,” in International Dairy Journal, 2001, vol. 11, no. 9, pp. 687–707.
  • [28] B. Degeest, F. Vaningelgem, and L. De Vuyst, “Microbial physiology, fermentation kinetics, and process engineering of heteropolysaccharide production by lactic acid bacteria,” in International Dairy Journal, 2001, vol. 11, no. 9, pp. 747–757.
  • [29] L. Gamar-Nourani, K. Blondeau, and J. M. Simonet, “Influence of culture conditions on exopolysaccharide production by Lactobacillus rhamnosus strain C83,” J. Appl. Microbiol., vol. 85, no. 4, pp. 664–672, 1998.
  • [30] P. Seesuriyachan, A. Kuntiya, P. Hanmoungjai, and C. Techapun, “Exopolysaccharide production by lactobacillus confusus TISTR 1498 using coconut water as an alternative carbon source: The effect of peptone, yeast extract and beef extract,” Songklanakarin J. Sci. Technol., vol. 33, no. 4, pp. 379–387, 2011.
  • [31] M. E. Esgalhado, J. C. Roseiro, and M. T. Amaral-Collaço, “Interactive effects of pH and temperature on cell growth and polymer production by Xanthomonas campestris,” Process Biochem., vol. 30, no. 7, pp. 667–671, 1995.[32] L. Qiang, L. Yumei, H. Sheng, L. Yingzi, S. Dongxue, H. Dake, W. Jiajia, Q. Yanhong, and Z. Yuxia, “Optimization of fermentation conditions and properties of an exopolysaccharide from Klebsiella sp. H-207 and application in adsorption of hexavalent chromium,” PLoS One, vol. 8, no. 1, p. e53542, 2013.
  • [33] Z. Chen, J. Shi, X. Yang, B. Nan, Y. Liu, and Z. Wang, “Chemical and physical characteristics and antioxidant activities of the exopolysaccharide produced by Tibetan kefir grains during milk fermentation,” Int. Dairy J., vol. 43, pp. 15–21, 2015.
  • [34] M. Miao, C. Huang, X. Jia, S. W. Cui, B. Jiang, and T. Zhang, “Physicochemical characteristics of a high molecular weight bioengineered α-D-glucan from Leuconostoc citreum SK24.002,” Food Hydrocoll., vol. 50, pp. 37–43, 2015.
  • [35] Y. Wang, Z. Ahmed, W. Feng, C. Li, and S. Song, “Physicochemical properties of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir,” Int. J. Biol. Macromol., vol. 43, no. 3, pp. 283–288, 2008.
  • [36] A. N. Hassan, J. F. Frank, and K. B. Qvist, “Direct Observation of Bacterial Exopolysaccharides in Dairy Products Using Confocal Scanning Laser Microscopy,” J. Dairy Sci., vol. 85, no. 7, pp. 1705–1708, 2002.
There are 35 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Articles
Authors

Ertan Ermiş 0000-0002-1461-7357

Ecem Poyraz This is me

Enes Dertli 0000-0002-0421-6103

Mustafa Tahsin Yılmaz 0000-0002-5385-8858

Publication Date February 1, 2020
Submission Date March 28, 2019
Acceptance Date October 31, 2019
Published in Issue Year 2020

Cite

APA Ermiş, E., Poyraz, E., Dertli, E., Yılmaz, M. T. (2020). Optimization of exopolysaccharide production of Lactobacillus brevis E25 using RSM and characterization. Sakarya University Journal of Science, 24(1), 151-160. https://doi.org/10.16984/saufenbilder.545929
AMA Ermiş E, Poyraz E, Dertli E, Yılmaz MT. Optimization of exopolysaccharide production of Lactobacillus brevis E25 using RSM and characterization. SAUJS. February 2020;24(1):151-160. doi:10.16984/saufenbilder.545929
Chicago Ermiş, Ertan, Ecem Poyraz, Enes Dertli, and Mustafa Tahsin Yılmaz. “Optimization of Exopolysaccharide Production of Lactobacillus Brevis E25 Using RSM and Characterization”. Sakarya University Journal of Science 24, no. 1 (February 2020): 151-60. https://doi.org/10.16984/saufenbilder.545929.
EndNote Ermiş E, Poyraz E, Dertli E, Yılmaz MT (February 1, 2020) Optimization of exopolysaccharide production of Lactobacillus brevis E25 using RSM and characterization. Sakarya University Journal of Science 24 1 151–160.
IEEE E. Ermiş, E. Poyraz, E. Dertli, and M. T. Yılmaz, “Optimization of exopolysaccharide production of Lactobacillus brevis E25 using RSM and characterization”, SAUJS, vol. 24, no. 1, pp. 151–160, 2020, doi: 10.16984/saufenbilder.545929.
ISNAD Ermiş, Ertan et al. “Optimization of Exopolysaccharide Production of Lactobacillus Brevis E25 Using RSM and Characterization”. Sakarya University Journal of Science 24/1 (February 2020), 151-160. https://doi.org/10.16984/saufenbilder.545929.
JAMA Ermiş E, Poyraz E, Dertli E, Yılmaz MT. Optimization of exopolysaccharide production of Lactobacillus brevis E25 using RSM and characterization. SAUJS. 2020;24:151–160.
MLA Ermiş, Ertan et al. “Optimization of Exopolysaccharide Production of Lactobacillus Brevis E25 Using RSM and Characterization”. Sakarya University Journal of Science, vol. 24, no. 1, 2020, pp. 151-60, doi:10.16984/saufenbilder.545929.
Vancouver Ermiş E, Poyraz E, Dertli E, Yılmaz MT. Optimization of exopolysaccharide production of Lactobacillus brevis E25 using RSM and characterization. SAUJS. 2020;24(1):151-60.

Cited By








30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.