Research Article
BibTex RIS Cite

Investigation of Permeability of Thiocolchicoside Through Transdermal Drug Delivery System Using Franz Diffusion Cell

Year 2024, Volume: 28 Issue: 4, 804 - 815
https://doi.org/10.16984/saufenbilder.1456568

Abstract

Recently, drug release applications through the skin have become very popular. One of the most remarkable of these drug release applications is transdermal drug release systems, which are drug release methods that allow the active substance to pass into the systemic circulation through the skin or artificial membranes. In this study, the optimization conditions required for the release and permeation tests of a gel drug containing the active substance thiocolchicoside were comparatively investigated using synthetic membranes without human or animal skin. For this purpose, the permeability of the gel drug in gel form and the active ingredient thiocolchicoside was carried out using Franz Diffusion Cell. As a result of the investigations, it was observed that the best synthetic membrane for the permeability of thiocolchicoside in the Franz Diffusion Cell was the Supor membrane. In addition, the method's relative standard deviation values, detection, and quantification limits were determined, and permeation studies were carried out. In this study, the correlation coefficient was found to be 0.9992, and the limits of detection and quantification were 0.026 and 0.078 µg/L. In this way, the sensitivity and reliability of the validation study were determined.

Supporting Institution

Düzce University

Project Number

2023.05.03.1406

Thanks

The author wants to thank Düzce University.

References

  • F. Bigucci, A. Abruzzo, B. Saladini, M. C. Gallucci, T. Cerchiara, B. Luppi, “Development and characterization of chitosan/hyaluronan film for transdermal delivery of thiocolchicoside,” Carbohydrate Polymers, vol. 130, pp. 32-40, 2015.
  • M. Artusi, P. Santi, P. Colombo, H. E. Junginger, “Buccal delivery of thiocolchicoside: in vitro and in vivo permeation studies,” International Journal of Pharmaceutics, vol. 250, pp. 203-213, 2003.
  • G. C. Ceschel, P. Maffei, S. Porzio, G. Melillo, G. F. Caselli, M. C. Dragani, G. Clavenna, “In vitro permeation screening of a new formulation of thiocolchicoside containing various enhancers,” Drug Delivery, vol. 9, pp. 259-263, 2002.
  • M. Artusi, S. Nicoli, P. Colombo, R. Bettini, A. Sacchi, P. Santi, “Effect of chemical enhancers and iontophoresis on thiocolchicoside permeation across rabbit and human skin in vitro,” Journal of Pharmaceutical Sciences, vol. 93, pp. 2431-2438, 2004.
  • C. Aguzzi, S. Rossi, M. Bagnasco, L. Lanata, G. Sandri, F. Bona, et al., “Penetration and distribution of thiocolchicoside through human skin: comparison between a commercial foam (Miotens®) and a drug solution,” AAPS PharmSciTech, vol. 9, pp. 1185-1190, 2008.
  • S. Bhamburkar, S. Khandare, S. Patharkar, S. Thakare, “Thiocolchicoside: An Updated Review,” vol. 12, pp. 213-218, 2022.
  • M. Carta, L. Murru, P. Bota, G. Talani, G. Sechi, P. Riu, et al., “The muscle relaxant Thiocolchicoside is an antagonist of GABA-A receptor in the central nervous system,” Neuropharmacology, vol. 51, pp. 805-815, 2006.
  • M. Trellu, A. Filali‐Ansary, D. Françon, R. Adam, P. Lluel, C. Dubruc, et al., “New metabolic and pharmacokinetic characteristics of thiocolchicoside and its active metabolite in healthy humans,” Fundamental & Clinical Pharmacology, vol. 18, pp. 493-50, 2004.
  • Y. Yang, P. Manda, N. Pavurala, M. A. Khan, Y. S. Krishnaiah, “Development and validation of in vitro–in vivo correlation (IVIVC) for estradiol transdermal drug delivery systems,” Journal of Controlled Release, vol. 210, pp. 58-66, 2015.
  • A. Arunachalam, M. Karthikeyan, D. V. Kumar, M. Prathap, S. Sethuraman, S. Ashutoshkumar, et al., “Transdermal drug delivery system: a review,” International Journal of Current Pharmaceutical Research, vol. 1, pp. 70-75, 2010.
  • A. D. Mali, “An updated review on transdermal drug delivery systems,” Skin, vol. 1, pp. 244-254, 2015.
  • G. M. Shingade, “Review on: recent trend on transdermal drug delivery system,” Journal of Drug Delivery and Therapeutics, vol. 2, pp. 62-75, 2012.
  • A. V. Patel, B. N. Shah, “Transdermal drug delivery system: a review,” Pharma Science Monitor, vol. 9, pp. 378-390, 2018.
  • P. Chinchole, S. Savale, K. Wadile, “A novel approach on transdermal drug delivery system [TDDS],” World Journal of Pharmacy and Pharmaceutical Sciences, vol. 5, pp. 932-958, 2016.
  • D. D. Biradar, N. Sanghavi, “Technologies in transdermal drug delivery system: a review,” Small, vol. 6, pp. 528-541, 2014.
  • P. M. Satturwar, S. V. Fulzele, A. K. Dorle, “Evaluation of polymerized rosin for the formulation and development of transdermal drug delivery system: a technical note,” AAPS Pharmscitech, vol. 6, pp. E649-E654, 2005.
  • M. A. Kassem, M. H. Aboul-Einien, M. M. El Taweel, “Dry gel containing optimized felodipine-loaded transferosomes: A promising transdermal delivery system to enhance drug bioavailability,” AAPS Pharmscitech, vol. 19, pp. 2155-2173, 2018.
  • D. A. Davis, P. P. Martins, M. S. Zamloot, S. A. Kucera, R. O. Williams, H. D. Smyth, et al., “Complex drug delivery systems: Controlling transdermal permeation rates with multiple active pharmaceutical ingredients,” AAPS PharmSciTech, vol. 21, pp. 1-11, 2020.
  • N. Thakur, B. Kaur, C. Sharma, M. Goswami, “Evaluation of the Dermal Irritation and Skin Sensitization Due to Thiocolchicoside Transdermal Drug Delivery System,” International Journal of Health Sciences, (III), pp. 3057-3066, 2022.
  • M. Paradkar, S. Vaghela, “Thiocolchicoside niosomal gel formulation for the pain management of rheumatoid arthritis through topical drug delivery,” Drug Delivery Letters, vol. 8, pp. 159-168, 2018.
  • Y. M. Rao, P. Gayatri, M. Ajitha, P. P. Kumar, “Chemical Permeation Enhancers for Transdermal Delivery of Thiocolchicoside: Assessment of Ex-vivo Skin Flux and In-vivo Pharmacokinetics,” International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN), vol. 10, pp. 3827-3835, 2017.
  • P. Panda, A. Sahu, “Permeation Enhancers for Transdermal Drug Delivery: Strategies and Advancements Focusing Macromolecules,” International Journal of Advanced Pharmaceutical Sciences and Research, vol. 3, pp.1-11, 2023.
  • L. Allen, H. C. Ansel, “Ansel's pharmaceutical dosage forms and drug delivery systems,” Tenth ed., Lippincott Williams & Wilkins, Philadelphia, 2013.
  • R. B. Saudagar, P. A. Gangurde, “Formulation, development and evaluation of film-forming gel for prolonged dermal delivery of miconaole nitrate,” Research Journal of Topical Cosmetic Sciences, vol. 8, pp. 19-29, 2017.
  • Y. Yang, R. Ou, S. Guan, X. Ye, B. Hu, Y. Zhang, et al., “A novel drug delivery gel of terbinafine hydrochloride with high penetration for external use,” Drug Delivery, vol. 22, pp. 1086-1093, 2015.
  • M. M. Patel, Z. M. Vora, “Formulation development and optimization of transungual drug delivery system of terbinafine hydrochloride for the treatment of onychomycosis,” Drug Delivery and Translational Research, vol. 6, pp. 263-275, 2016.
  • S. T. Tanrıverdi, Ö. Özer, “Novel topical formulations of Terbinafine-HCl for treatment of onychomycosis,” European Journal of Life Sciences, vol. 48, pp. 628-636, 2013.
  • L. Sun, D. Cun, B. Yuan, H. Cui, H. Xi, L. Mu, et al., “Formulation and in vitro/in vivo correlation of a drug‐in‐adhesive transdermal patch containing azasetron,” Journal of Pharmaceutical Sciences, vol. 101, pp. 4540-4548, 2012.
  • A. K. Gupta, M. Venkataraman, N. H. Shear, V. Piguet, “Onychomycosis in children–review on treatment and management strategies,” Journal of Dermatological Treatment, vol. 3, pp. 1213-1224, 2022.
  • A. Simon, M. I. Amaro, A. M. Healy, L. M. Cabral, V. P. de Sousa, “Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation,” International Journal of Pharmaceutics, vol. 512, pp. 234-24, 2016.
  • B. Godin, E. Touitou, “Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models,” Advanced Drug Delivery Reviews, vol. 59, pp. 1152-1161, 2007.
  • L. N. R. Katakam, N. K. Katari, “Development of in-vitro release testing method for permethrin cream formulation using Franz Vertical Diffusion Cell apparatus by HPLC,” Talanta Open, vol. 4, pp. 100056, 2021.
  • I. Neri, S. Laneri, R. Di Lorenzo, I. Dini, G. Russo, L. Grumetto, “Parabens permeation through biological membranes: a comparative study using Franz cell diffusion system and biomimetic liquid chromatography,” Molecules, vol. 27, pp. 4263, 2022.
  • E. Abd, J. Gomes, C. C. Sales, S. Yousef, F. Forouz, K. C. Telaprolu, et al., “Deformable liposomes as enhancer of caffeine penetration through human skin in a Franz diffusion cell test,” International Journal of Cosmetic Science, vol. 43, pp. 1-10, 2021.
  • R. D. Kirk, T. Akanji, H. Li, J. Shen, S. Allababidi, N. P. Seeram, et al., “Evaluations of Skin Permeability of Cannabidiol and Its Topical Formulations by Skin Membrane-Based Parallel Artificial Membrane Permeability Assay and Franz Cell Diffusion Assay,” Medical Cannabis and Cannabinoids, vol. 5, 129-137, 2022.
  • I. Pulsoni, M. Lubda, M. Aiello, A. Fedi, M. Marzagalli, J. von Hagen, et al., “Comparison between Franz diffusion cell and a novel micro-physiological system for in vitro penetration assay using different skin models,” SLAS Technology, vol. 27, pp. 161-171, 2022.
  • M. J. Reese, G. D. Bowers, J. E. Humphreys, E. P. Gould, S. L. Ford, L. O. Webster, et al., “Drug interaction profile of the HIV integrase inhibitor cabotegravir: assessment from in vitro studies and a clinical investigation with midazolam,” Xenobiotica, vol. 46, pp. 445-456, 2016.
  • S. F. Ng, J. Rouse, D. Sanderson, G. Eccleston, “A comparative study of transmembrane diffusion and permeation of ibuprofen across synthetic membranes using Franz diffusion cells,” Pharmaceutics, vol. 2, pp. 209-223, 2010.
  • S. F. Ng, J. J. Rouse, F. D. Sanderson, G. M. Eccleston, “The relevance of polymeric synthetic membranes in topical formulation assessment and drug diffusion study,” Archives of Pharmacal Research, vol. 35, pp. 579-593, 2012.
  • T. J. Franz, P. A. Lehman, S. G. Raney, “Use of excised human skin to assess the bioequivalence of topical products,” Skin Pharmacology and Physiology, vol. 22, pp. 276-286, 2009.
  • A. S. Silva, J. M. Cruz Freire, R. Sendón, R. Franz, P. Paseiro Losada, “Migration and diffusion of diphenylbutadiene from packages into foods,” Journal of Agricultural and Food Chemistry, vol. 57, pp. 10225-10230, 2009.
  • D. Ramsden, “Bridging in vitro and in vivo metabolism and transport of faldaprevir in human using a novel cocultured human hepatocyte system, HepatoPac,” Drug Metabolism and Disposition, vol. 42, pp. 394-406, 2014.
  • A. M. Barbero, H. F. Frasch, “Pig and guinea pig skin as surrogates for human in vitro penetration studies: a quantitative review,” Toxicology in Vitro, vol. 23, pp. 1-13, 2009.
  • G. A. Simon, H. I. Maibach, “The pig as an experimental animal model of percutaneous permeation in man: qualitative and quantitative observations–an overview,” Skin Pharmacology and Physiology, vol. 13, pp. 229-234, 2000.
  • H. Annepogu, H. A. Ahad, D. Nayakanti, “Determining the best poloxamer carrier for thiocolchicoside solid dispersions,” Turkish Journal of Pharmaceutical Sciences, vol. 17, pp. 372-377, 2020.
  • N. Thakur, B. Kaur, M. Goswami, C. Sharma, “Compatibility studies of the Thiocolchicoside with Eudragit RLPO, Eudragit E100 and Eudragit L100 using thermal and non-thermal methods,” Drug Combination Therapy, vol. 4, pp. 1-10, 2021.
  • R. R. Joshi, K. R. Gupta, “Solid-state characterization of thiocolchicoside,” International Journal of Advanced Pharmaceutical Sciences and Research, vol. 4, pp. 1441-1450, 2013.
  • G. A. Shabir, “Validation of high-performance liquid chromatography methods for pharmaceutical analysis: Understanding the differences and similarities between validation requirements of the US Food and Drug Administration, the US Pharmacopeia and the International Conference on Harmonization,” Journal of Chromatography A, vol. 987, pp. 57-66, 2003.
  • USP. Validation of Compendial Procedures. In: The United States Pharmacopeia and National Formulary, (2015b).
  • ICH. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Validation of Analytical Procedures: Text and Methodology Q2(R1), (2005).
  • F. CDER, “Guidance for Industry, Nonsterile Semisolid Dosage Forms,” US Department of Health and Human Services May 1997.
  • Chapter, U. S. P. “1724> Semisolid Drug Products—Performance Tests.” USP: Rockvill, MD, USA, 2014.
  • S. F. Ng, J. J. Rouse, F. D. Sanderson, V. Meidan, G. M. Eccleston, “Validation of a static Franz diffusion cell system for in vitro permeation studies,” AAPS Pharmscitech, vol. 11, pp. 1432-1441, 2010.
  • F. Iliopoulos, P. J. Caspers, G. J. Puppels, M. E. Lane, “Franz cell diffusion testing and quantitative confocal raman spectroscopy: In vitro-in vivo correlation,” Pharmaceutics, vol. 12, pp. 887-899, 2020.
Year 2024, Volume: 28 Issue: 4, 804 - 815
https://doi.org/10.16984/saufenbilder.1456568

Abstract

Project Number

2023.05.03.1406

References

  • F. Bigucci, A. Abruzzo, B. Saladini, M. C. Gallucci, T. Cerchiara, B. Luppi, “Development and characterization of chitosan/hyaluronan film for transdermal delivery of thiocolchicoside,” Carbohydrate Polymers, vol. 130, pp. 32-40, 2015.
  • M. Artusi, P. Santi, P. Colombo, H. E. Junginger, “Buccal delivery of thiocolchicoside: in vitro and in vivo permeation studies,” International Journal of Pharmaceutics, vol. 250, pp. 203-213, 2003.
  • G. C. Ceschel, P. Maffei, S. Porzio, G. Melillo, G. F. Caselli, M. C. Dragani, G. Clavenna, “In vitro permeation screening of a new formulation of thiocolchicoside containing various enhancers,” Drug Delivery, vol. 9, pp. 259-263, 2002.
  • M. Artusi, S. Nicoli, P. Colombo, R. Bettini, A. Sacchi, P. Santi, “Effect of chemical enhancers and iontophoresis on thiocolchicoside permeation across rabbit and human skin in vitro,” Journal of Pharmaceutical Sciences, vol. 93, pp. 2431-2438, 2004.
  • C. Aguzzi, S. Rossi, M. Bagnasco, L. Lanata, G. Sandri, F. Bona, et al., “Penetration and distribution of thiocolchicoside through human skin: comparison between a commercial foam (Miotens®) and a drug solution,” AAPS PharmSciTech, vol. 9, pp. 1185-1190, 2008.
  • S. Bhamburkar, S. Khandare, S. Patharkar, S. Thakare, “Thiocolchicoside: An Updated Review,” vol. 12, pp. 213-218, 2022.
  • M. Carta, L. Murru, P. Bota, G. Talani, G. Sechi, P. Riu, et al., “The muscle relaxant Thiocolchicoside is an antagonist of GABA-A receptor in the central nervous system,” Neuropharmacology, vol. 51, pp. 805-815, 2006.
  • M. Trellu, A. Filali‐Ansary, D. Françon, R. Adam, P. Lluel, C. Dubruc, et al., “New metabolic and pharmacokinetic characteristics of thiocolchicoside and its active metabolite in healthy humans,” Fundamental & Clinical Pharmacology, vol. 18, pp. 493-50, 2004.
  • Y. Yang, P. Manda, N. Pavurala, M. A. Khan, Y. S. Krishnaiah, “Development and validation of in vitro–in vivo correlation (IVIVC) for estradiol transdermal drug delivery systems,” Journal of Controlled Release, vol. 210, pp. 58-66, 2015.
  • A. Arunachalam, M. Karthikeyan, D. V. Kumar, M. Prathap, S. Sethuraman, S. Ashutoshkumar, et al., “Transdermal drug delivery system: a review,” International Journal of Current Pharmaceutical Research, vol. 1, pp. 70-75, 2010.
  • A. D. Mali, “An updated review on transdermal drug delivery systems,” Skin, vol. 1, pp. 244-254, 2015.
  • G. M. Shingade, “Review on: recent trend on transdermal drug delivery system,” Journal of Drug Delivery and Therapeutics, vol. 2, pp. 62-75, 2012.
  • A. V. Patel, B. N. Shah, “Transdermal drug delivery system: a review,” Pharma Science Monitor, vol. 9, pp. 378-390, 2018.
  • P. Chinchole, S. Savale, K. Wadile, “A novel approach on transdermal drug delivery system [TDDS],” World Journal of Pharmacy and Pharmaceutical Sciences, vol. 5, pp. 932-958, 2016.
  • D. D. Biradar, N. Sanghavi, “Technologies in transdermal drug delivery system: a review,” Small, vol. 6, pp. 528-541, 2014.
  • P. M. Satturwar, S. V. Fulzele, A. K. Dorle, “Evaluation of polymerized rosin for the formulation and development of transdermal drug delivery system: a technical note,” AAPS Pharmscitech, vol. 6, pp. E649-E654, 2005.
  • M. A. Kassem, M. H. Aboul-Einien, M. M. El Taweel, “Dry gel containing optimized felodipine-loaded transferosomes: A promising transdermal delivery system to enhance drug bioavailability,” AAPS Pharmscitech, vol. 19, pp. 2155-2173, 2018.
  • D. A. Davis, P. P. Martins, M. S. Zamloot, S. A. Kucera, R. O. Williams, H. D. Smyth, et al., “Complex drug delivery systems: Controlling transdermal permeation rates with multiple active pharmaceutical ingredients,” AAPS PharmSciTech, vol. 21, pp. 1-11, 2020.
  • N. Thakur, B. Kaur, C. Sharma, M. Goswami, “Evaluation of the Dermal Irritation and Skin Sensitization Due to Thiocolchicoside Transdermal Drug Delivery System,” International Journal of Health Sciences, (III), pp. 3057-3066, 2022.
  • M. Paradkar, S. Vaghela, “Thiocolchicoside niosomal gel formulation for the pain management of rheumatoid arthritis through topical drug delivery,” Drug Delivery Letters, vol. 8, pp. 159-168, 2018.
  • Y. M. Rao, P. Gayatri, M. Ajitha, P. P. Kumar, “Chemical Permeation Enhancers for Transdermal Delivery of Thiocolchicoside: Assessment of Ex-vivo Skin Flux and In-vivo Pharmacokinetics,” International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN), vol. 10, pp. 3827-3835, 2017.
  • P. Panda, A. Sahu, “Permeation Enhancers for Transdermal Drug Delivery: Strategies and Advancements Focusing Macromolecules,” International Journal of Advanced Pharmaceutical Sciences and Research, vol. 3, pp.1-11, 2023.
  • L. Allen, H. C. Ansel, “Ansel's pharmaceutical dosage forms and drug delivery systems,” Tenth ed., Lippincott Williams & Wilkins, Philadelphia, 2013.
  • R. B. Saudagar, P. A. Gangurde, “Formulation, development and evaluation of film-forming gel for prolonged dermal delivery of miconaole nitrate,” Research Journal of Topical Cosmetic Sciences, vol. 8, pp. 19-29, 2017.
  • Y. Yang, R. Ou, S. Guan, X. Ye, B. Hu, Y. Zhang, et al., “A novel drug delivery gel of terbinafine hydrochloride with high penetration for external use,” Drug Delivery, vol. 22, pp. 1086-1093, 2015.
  • M. M. Patel, Z. M. Vora, “Formulation development and optimization of transungual drug delivery system of terbinafine hydrochloride for the treatment of onychomycosis,” Drug Delivery and Translational Research, vol. 6, pp. 263-275, 2016.
  • S. T. Tanrıverdi, Ö. Özer, “Novel topical formulations of Terbinafine-HCl for treatment of onychomycosis,” European Journal of Life Sciences, vol. 48, pp. 628-636, 2013.
  • L. Sun, D. Cun, B. Yuan, H. Cui, H. Xi, L. Mu, et al., “Formulation and in vitro/in vivo correlation of a drug‐in‐adhesive transdermal patch containing azasetron,” Journal of Pharmaceutical Sciences, vol. 101, pp. 4540-4548, 2012.
  • A. K. Gupta, M. Venkataraman, N. H. Shear, V. Piguet, “Onychomycosis in children–review on treatment and management strategies,” Journal of Dermatological Treatment, vol. 3, pp. 1213-1224, 2022.
  • A. Simon, M. I. Amaro, A. M. Healy, L. M. Cabral, V. P. de Sousa, “Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation,” International Journal of Pharmaceutics, vol. 512, pp. 234-24, 2016.
  • B. Godin, E. Touitou, “Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models,” Advanced Drug Delivery Reviews, vol. 59, pp. 1152-1161, 2007.
  • L. N. R. Katakam, N. K. Katari, “Development of in-vitro release testing method for permethrin cream formulation using Franz Vertical Diffusion Cell apparatus by HPLC,” Talanta Open, vol. 4, pp. 100056, 2021.
  • I. Neri, S. Laneri, R. Di Lorenzo, I. Dini, G. Russo, L. Grumetto, “Parabens permeation through biological membranes: a comparative study using Franz cell diffusion system and biomimetic liquid chromatography,” Molecules, vol. 27, pp. 4263, 2022.
  • E. Abd, J. Gomes, C. C. Sales, S. Yousef, F. Forouz, K. C. Telaprolu, et al., “Deformable liposomes as enhancer of caffeine penetration through human skin in a Franz diffusion cell test,” International Journal of Cosmetic Science, vol. 43, pp. 1-10, 2021.
  • R. D. Kirk, T. Akanji, H. Li, J. Shen, S. Allababidi, N. P. Seeram, et al., “Evaluations of Skin Permeability of Cannabidiol and Its Topical Formulations by Skin Membrane-Based Parallel Artificial Membrane Permeability Assay and Franz Cell Diffusion Assay,” Medical Cannabis and Cannabinoids, vol. 5, 129-137, 2022.
  • I. Pulsoni, M. Lubda, M. Aiello, A. Fedi, M. Marzagalli, J. von Hagen, et al., “Comparison between Franz diffusion cell and a novel micro-physiological system for in vitro penetration assay using different skin models,” SLAS Technology, vol. 27, pp. 161-171, 2022.
  • M. J. Reese, G. D. Bowers, J. E. Humphreys, E. P. Gould, S. L. Ford, L. O. Webster, et al., “Drug interaction profile of the HIV integrase inhibitor cabotegravir: assessment from in vitro studies and a clinical investigation with midazolam,” Xenobiotica, vol. 46, pp. 445-456, 2016.
  • S. F. Ng, J. Rouse, D. Sanderson, G. Eccleston, “A comparative study of transmembrane diffusion and permeation of ibuprofen across synthetic membranes using Franz diffusion cells,” Pharmaceutics, vol. 2, pp. 209-223, 2010.
  • S. F. Ng, J. J. Rouse, F. D. Sanderson, G. M. Eccleston, “The relevance of polymeric synthetic membranes in topical formulation assessment and drug diffusion study,” Archives of Pharmacal Research, vol. 35, pp. 579-593, 2012.
  • T. J. Franz, P. A. Lehman, S. G. Raney, “Use of excised human skin to assess the bioequivalence of topical products,” Skin Pharmacology and Physiology, vol. 22, pp. 276-286, 2009.
  • A. S. Silva, J. M. Cruz Freire, R. Sendón, R. Franz, P. Paseiro Losada, “Migration and diffusion of diphenylbutadiene from packages into foods,” Journal of Agricultural and Food Chemistry, vol. 57, pp. 10225-10230, 2009.
  • D. Ramsden, “Bridging in vitro and in vivo metabolism and transport of faldaprevir in human using a novel cocultured human hepatocyte system, HepatoPac,” Drug Metabolism and Disposition, vol. 42, pp. 394-406, 2014.
  • A. M. Barbero, H. F. Frasch, “Pig and guinea pig skin as surrogates for human in vitro penetration studies: a quantitative review,” Toxicology in Vitro, vol. 23, pp. 1-13, 2009.
  • G. A. Simon, H. I. Maibach, “The pig as an experimental animal model of percutaneous permeation in man: qualitative and quantitative observations–an overview,” Skin Pharmacology and Physiology, vol. 13, pp. 229-234, 2000.
  • H. Annepogu, H. A. Ahad, D. Nayakanti, “Determining the best poloxamer carrier for thiocolchicoside solid dispersions,” Turkish Journal of Pharmaceutical Sciences, vol. 17, pp. 372-377, 2020.
  • N. Thakur, B. Kaur, M. Goswami, C. Sharma, “Compatibility studies of the Thiocolchicoside with Eudragit RLPO, Eudragit E100 and Eudragit L100 using thermal and non-thermal methods,” Drug Combination Therapy, vol. 4, pp. 1-10, 2021.
  • R. R. Joshi, K. R. Gupta, “Solid-state characterization of thiocolchicoside,” International Journal of Advanced Pharmaceutical Sciences and Research, vol. 4, pp. 1441-1450, 2013.
  • G. A. Shabir, “Validation of high-performance liquid chromatography methods for pharmaceutical analysis: Understanding the differences and similarities between validation requirements of the US Food and Drug Administration, the US Pharmacopeia and the International Conference on Harmonization,” Journal of Chromatography A, vol. 987, pp. 57-66, 2003.
  • USP. Validation of Compendial Procedures. In: The United States Pharmacopeia and National Formulary, (2015b).
  • ICH. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Validation of Analytical Procedures: Text and Methodology Q2(R1), (2005).
  • F. CDER, “Guidance for Industry, Nonsterile Semisolid Dosage Forms,” US Department of Health and Human Services May 1997.
  • Chapter, U. S. P. “1724> Semisolid Drug Products—Performance Tests.” USP: Rockvill, MD, USA, 2014.
  • S. F. Ng, J. J. Rouse, F. D. Sanderson, V. Meidan, G. M. Eccleston, “Validation of a static Franz diffusion cell system for in vitro permeation studies,” AAPS Pharmscitech, vol. 11, pp. 1432-1441, 2010.
  • F. Iliopoulos, P. J. Caspers, G. J. Puppels, M. E. Lane, “Franz cell diffusion testing and quantitative confocal raman spectroscopy: In vitro-in vivo correlation,” Pharmaceutics, vol. 12, pp. 887-899, 2020.
There are 54 citations in total.

Details

Primary Language English
Subjects Analytical Spectrometry
Journal Section Research Articles
Authors

Hale Karagüzel 0009-0009-2044-7655

Sezen Sivrikaya Özak 0000-0003-4483-2880

Aslıhan Dalmaz 0000-0002-1691-2616

Project Number 2023.05.03.1406
Early Pub Date August 1, 2024
Publication Date
Submission Date March 21, 2024
Acceptance Date May 22, 2024
Published in Issue Year 2024 Volume: 28 Issue: 4

Cite

APA Karagüzel, H., Sivrikaya Özak, S., & Dalmaz, A. (2024). Investigation of Permeability of Thiocolchicoside Through Transdermal Drug Delivery System Using Franz Diffusion Cell. Sakarya University Journal of Science, 28(4), 804-815. https://doi.org/10.16984/saufenbilder.1456568
AMA Karagüzel H, Sivrikaya Özak S, Dalmaz A. Investigation of Permeability of Thiocolchicoside Through Transdermal Drug Delivery System Using Franz Diffusion Cell. SAUJS. August 2024;28(4):804-815. doi:10.16984/saufenbilder.1456568
Chicago Karagüzel, Hale, Sezen Sivrikaya Özak, and Aslıhan Dalmaz. “Investigation of Permeability of Thiocolchicoside Through Transdermal Drug Delivery System Using Franz Diffusion Cell”. Sakarya University Journal of Science 28, no. 4 (August 2024): 804-15. https://doi.org/10.16984/saufenbilder.1456568.
EndNote Karagüzel H, Sivrikaya Özak S, Dalmaz A (August 1, 2024) Investigation of Permeability of Thiocolchicoside Through Transdermal Drug Delivery System Using Franz Diffusion Cell. Sakarya University Journal of Science 28 4 804–815.
IEEE H. Karagüzel, S. Sivrikaya Özak, and A. Dalmaz, “Investigation of Permeability of Thiocolchicoside Through Transdermal Drug Delivery System Using Franz Diffusion Cell”, SAUJS, vol. 28, no. 4, pp. 804–815, 2024, doi: 10.16984/saufenbilder.1456568.
ISNAD Karagüzel, Hale et al. “Investigation of Permeability of Thiocolchicoside Through Transdermal Drug Delivery System Using Franz Diffusion Cell”. Sakarya University Journal of Science 28/4 (August 2024), 804-815. https://doi.org/10.16984/saufenbilder.1456568.
JAMA Karagüzel H, Sivrikaya Özak S, Dalmaz A. Investigation of Permeability of Thiocolchicoside Through Transdermal Drug Delivery System Using Franz Diffusion Cell. SAUJS. 2024;28:804–815.
MLA Karagüzel, Hale et al. “Investigation of Permeability of Thiocolchicoside Through Transdermal Drug Delivery System Using Franz Diffusion Cell”. Sakarya University Journal of Science, vol. 28, no. 4, 2024, pp. 804-15, doi:10.16984/saufenbilder.1456568.
Vancouver Karagüzel H, Sivrikaya Özak S, Dalmaz A. Investigation of Permeability of Thiocolchicoside Through Transdermal Drug Delivery System Using Franz Diffusion Cell. SAUJS. 2024;28(4):804-15.