This paper defines the space S_(θ_uv)^α (Δ_s^j,f), encompassing all sequences that are (Δ_s^j,f)-lacunary statistically convergent of order α, utilizing an unbounded modulus function f, a double lacunary sequence θ_uv={(k_u,l_v )}, a generalized difference operator Δ_s^j, and a real number α ∈ (0,1]. Additionally, the space ω_(θ_uv)^α (Δ_s^j,f) is introduced to include all sequences that are strongly (Δ_s^j,f)-lacunary summable of order α. The paper investigates properties associated with these spaces, and under specific conditions, inclusion relations between the spaces S_(θ_uv)^α (Δ_s^j,f) and ω_(θ_uv)^α (Δ_s^j,f) are established.
Primary Language | English |
---|---|
Subjects | Operator Algebras and Functional Analysis |
Journal Section | Articles |
Authors | |
Publication Date | November 25, 2024 |
Submission Date | April 17, 2024 |
Acceptance Date | June 10, 2024 |
Published in Issue | Year 2024 Volume: 19 Issue: 2 |