BibTex RIS Cite

Genelleştirilmiş Fibonacci Çizgelerin Bazı Özellikleri

Year 2018, Volume: 22 Issue: 2, 661 - 666, 15.08.2018

Abstract

Bu çalışmada $k$. dereceden genelleştirilmiş Fibonacci çizgelerin kenar sayısı, düzlemselliği, çapı, yarıçapı, merkezi, kalınlığı ve çevresi gibi çeşitli özellikleri incelenmiş ve genelleştirilmiş Fibonacci çizgelerin kromatik polinomları yardımıyla kromatik sayıları ve kromatik indeksleri hesaplanmıştır. Ek olarak genelleştirilmiş $k$. dereceden Fibonacci çizgelerin bağlılık kromatik sayıları da elde edilmiştir.

References

  • [1] Golumbic, M. C., Perl, Y. 1979. Generalized Fibonacci maximum path graphs. Discrete Mathematics, 28, 237–245.
  • [2] Cohen, J, Fraigniaud, P., Gavoille, C. 2002. Recognizing Knödel graphs. Discrete Mathematics, 250(1-3), 41–62.
  • [3] Even, S., Monien, B. 1989. On the number of rounds necessary to disseminate information. Proceeding SPAA’89 Proceedings of the first annual ACM symposium on Parallel algorithms and architectures, 318–327.
  • [4] Korenblit, M., Levit V. E. 2002. The stconnectedness problem for a Fibonacci graph. WSEAS Transactions on Mathematics, 1(2), 89–93.
  • [5] Korenblit, M., Levit, V. E. 2011. Mincuts in generalized Fibonacci graphs of degree 3. Journal of Computational Methods in Sciences and Engineering, 11(5,6), 271–280.
  • [6] Gutman, I., El-Basil, S. 1986. Fibonacci graphs. Match, 20, 81–94.
  • [7] El-Basil, S. 1987. On color polynomials of Fibonacci graphs. Journal of Computational Chemistry, 8(7), 956–959.
  • [8] El-Basil, S. 1988. Theory and computational applications of Fibonacci graphs. Journal of Mathematical Chemistry, 2(1), 1–29.
  • [9] Klavžar, S. 2013. Structure of Fibonacci cubes: a survey. J. Comb. Optim., 25(4), 505–522.
  • [10] Wilson, R.J. 2012. Introduction to graph theory. 5th Edition. Pearson, England, 184s.
  • [11] Brualdi, R.A., Quinn Massey, J.J. 1993. Incidence and strong edge colorings of graphs. Discrete Math., 122(1-3), 51–58.
  • [12] Guiduli, B. 1997. On incidence coloring and star arboricity of graphs. Discrete Math., 163(1-3), 275–278.
  • [13] Chen, D.-L., Liu, X.-K., Wang, S.-D. 1998. The incidence coloring number of graph and the incidence coloring conjecture. Math. Econom. (People’s Republic of China), 15, 47–51.
  • [14] Maydanskiy, M. 2005. The incidence coloring conjecture for graphs of maximum degree 3. Discrete Math., 292, 131–141.
  • [15] Pai, K.-J., Chang,J.-M., Yang, J.-S., Wu, R.-Y. 2014. Incidence coloring on hypercubes. Theoret. Comput. Sci., 557, 59–65.
  • [16] Shiu, W. C., Sun, P. K. 2008. Invalid proofs on incidence coloring. Discrete Math., 308(24), 6575–6580.
  • [17] Sopena, E., Wu, J. 2013. The incidence chromatic number of toroidal grids. Discuss. Math. Graph Theory, 33, 315–327.
Year 2018, Volume: 22 Issue: 2, 661 - 666, 15.08.2018

Abstract

References

  • [1] Golumbic, M. C., Perl, Y. 1979. Generalized Fibonacci maximum path graphs. Discrete Mathematics, 28, 237–245.
  • [2] Cohen, J, Fraigniaud, P., Gavoille, C. 2002. Recognizing Knödel graphs. Discrete Mathematics, 250(1-3), 41–62.
  • [3] Even, S., Monien, B. 1989. On the number of rounds necessary to disseminate information. Proceeding SPAA’89 Proceedings of the first annual ACM symposium on Parallel algorithms and architectures, 318–327.
  • [4] Korenblit, M., Levit V. E. 2002. The stconnectedness problem for a Fibonacci graph. WSEAS Transactions on Mathematics, 1(2), 89–93.
  • [5] Korenblit, M., Levit, V. E. 2011. Mincuts in generalized Fibonacci graphs of degree 3. Journal of Computational Methods in Sciences and Engineering, 11(5,6), 271–280.
  • [6] Gutman, I., El-Basil, S. 1986. Fibonacci graphs. Match, 20, 81–94.
  • [7] El-Basil, S. 1987. On color polynomials of Fibonacci graphs. Journal of Computational Chemistry, 8(7), 956–959.
  • [8] El-Basil, S. 1988. Theory and computational applications of Fibonacci graphs. Journal of Mathematical Chemistry, 2(1), 1–29.
  • [9] Klavžar, S. 2013. Structure of Fibonacci cubes: a survey. J. Comb. Optim., 25(4), 505–522.
  • [10] Wilson, R.J. 2012. Introduction to graph theory. 5th Edition. Pearson, England, 184s.
  • [11] Brualdi, R.A., Quinn Massey, J.J. 1993. Incidence and strong edge colorings of graphs. Discrete Math., 122(1-3), 51–58.
  • [12] Guiduli, B. 1997. On incidence coloring and star arboricity of graphs. Discrete Math., 163(1-3), 275–278.
  • [13] Chen, D.-L., Liu, X.-K., Wang, S.-D. 1998. The incidence coloring number of graph and the incidence coloring conjecture. Math. Econom. (People’s Republic of China), 15, 47–51.
  • [14] Maydanskiy, M. 2005. The incidence coloring conjecture for graphs of maximum degree 3. Discrete Math., 292, 131–141.
  • [15] Pai, K.-J., Chang,J.-M., Yang, J.-S., Wu, R.-Y. 2014. Incidence coloring on hypercubes. Theoret. Comput. Sci., 557, 59–65.
  • [16] Shiu, W. C., Sun, P. K. 2008. Invalid proofs on incidence coloring. Discrete Math., 308(24), 6575–6580.
  • [17] Sopena, E., Wu, J. 2013. The incidence chromatic number of toroidal grids. Discuss. Math. Graph Theory, 33, 315–327.
There are 17 citations in total.

Details

Journal Section Articles
Authors

Handan Akyar

Emrah Akyar

Publication Date August 15, 2018
Published in Issue Year 2018 Volume: 22 Issue: 2

Cite

APA Akyar, H., & Akyar, E. (2018). Genelleştirilmiş Fibonacci Çizgelerin Bazı Özellikleri. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 661-666. https://doi.org/10.19113/sdufbed.96828
AMA Akyar H, Akyar E. Genelleştirilmiş Fibonacci Çizgelerin Bazı Özellikleri. J. Nat. Appl. Sci. August 2018;22(2):661-666. doi:10.19113/sdufbed.96828
Chicago Akyar, Handan, and Emrah Akyar. “Genelleştirilmiş Fibonacci Çizgelerin Bazı Özellikleri”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 2 (August 2018): 661-66. https://doi.org/10.19113/sdufbed.96828.
EndNote Akyar H, Akyar E (August 1, 2018) Genelleştirilmiş Fibonacci Çizgelerin Bazı Özellikleri. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 2 661–666.
IEEE H. Akyar and E. Akyar, “Genelleştirilmiş Fibonacci Çizgelerin Bazı Özellikleri”, J. Nat. Appl. Sci., vol. 22, no. 2, pp. 661–666, 2018, doi: 10.19113/sdufbed.96828.
ISNAD Akyar, Handan - Akyar, Emrah. “Genelleştirilmiş Fibonacci Çizgelerin Bazı Özellikleri”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/2 (August 2018), 661-666. https://doi.org/10.19113/sdufbed.96828.
JAMA Akyar H, Akyar E. Genelleştirilmiş Fibonacci Çizgelerin Bazı Özellikleri. J. Nat. Appl. Sci. 2018;22:661–666.
MLA Akyar, Handan and Emrah Akyar. “Genelleştirilmiş Fibonacci Çizgelerin Bazı Özellikleri”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 2, 2018, pp. 661-6, doi:10.19113/sdufbed.96828.
Vancouver Akyar H, Akyar E. Genelleştirilmiş Fibonacci Çizgelerin Bazı Özellikleri. J. Nat. Appl. Sci. 2018;22(2):661-6.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.