Research Article
BibTex RIS Cite

Ahşap Malzemede İyileştirme Yöntemlerinin Karşılaştırılması ve Etkili Çözüm Önerileri

Year 2025, Volume: 5 Issue: 1, 122 - 141, 04.07.2025
https://doi.org/10.56590/stdarticle.1577266

Abstract

Giriş ve Çalışmanın Amacı: Bu çalışma, ahşap malzemede kullanılan iyileştirme yöntemlerinin performansını değerlendirmek ve en etkili yöntemi belirlemek amacıyla ortaya koyulmuştur. Çalışma, ısıl işlem, kimyasal modifikasyon ve polimer bazlı güçlendirme tekniklerinin ahşabın dayanıklılığı, maliyet etkinliği ve çevresel sürdürülebilirlik üzerindeki etkilerini karşılaştırmayı hedeflemektedir. Bu araştırma, özellikle ahşap malzemenin biyolojik ve mekanik bozulmaya karşı korunması gerekliliğinden doğmuş ve sektördeki farklı teknikler arasındaki farkları ortaya koyarak bu konuda önemli bir boşluğu doldurmayı hedeflemektedir.
Kavramsal/Kuramsal Çerçeve: Ahşap iyileştirme yöntemleri, özellikle termal ve kimyasal modifikasyon teknikleri, son yıllarda artan ilgi görmüştür. Bu yöntemler, ahşabın nem, su, UV ışınları ve biyolojik zararlara/zararlılara karşı korunmasını amaçlamaktadır. Ancak her yöntemin farklı avantaj ve dezavantajları bulunmakta, bu da belirli projeler için doğru yöntemin seçilmesini güçleştirmektedir. Bu çalışma, mevcut literatürde eksik kalan farklı modifikasyon tekniklerinin uygulama koşulları ve performanslarına dair daha kapsamlı bir karşılaştırma sunmaktadır.
Yöntem: Çalışmada karşılaştırmalı analiz yöntemi kullanılmıştır. İlgili alanyazında sunulan deneysel bulgular ve saha uygulamaları taranmış, yöntemlerin maliyet, dayanıklılık ve uygulama kolaylığı açısından kıyaslamaları yapılmıştır. Araştırmada ana veri toplama yöntemi olarak literatür analizi ve vaka çalışmaları tercih edilmiştir. Veriler, yayınlanmış makalelerden ve endüstriyel raporlardan derlenmiştir.
Bulgular: Araştırma bulguları, kimyasal modifikasyonun özellikle asetilasyon tekniğiyle ahşabın biyolojik ve mekanik performansını artırdığını ortaya koymaktadır. Isıl işlem, sürdürülebilir ve düşük maliyetli bir seçenek sunarken, mekanik dayanımda azalma ve renk değişimi gibi dezavantajlara sahiptir. Polimer bazlı güçlendirme yöntemleri, yüzey kalitesini artırmakla birlikte maliyetli ve karmaşık uygulamalara sahiptir.
Sonuç: Bu çalışmada, farklı modifikasyon yöntemlerinin avantaj ve dezavantajları detaylı biçimde analiz edilmiştir. Bulgular, ahşap projelerinde hem sürdürülebilirlik hem de performans için en uygun çözümleri sunmaktadır. Özellikle kimyasal modifikasyon yöntemlerinin, iç mekan uygulamaları için en etkili seçenek olduğu sonucuna varılmıştır. Isıl işlem yöntemleri ise düşük maliyetli dış mekan projeleri için tavsiye edilmektedir. Bu bulgular, sektör profesyonelleri ve araştırmacılar için pratik rehberlik sağlamaktadır. Gelecek araştırmalarda, modifikasyon yöntemlerinin birlikte kullanımı ve nano-teknoloji uygulamalarının daha fazla incelenmesi önerilmektedir.

References

  • AUGUSTINA, S., DWIANTO, W., WAHYUDI, I., SYAFII, W., GÉRARDIN, P., & MARBUN, S. (2023). Wood Impregnation in Relation to Its Mechanisms and Properties Enhancement. BioResources. https://doi.org/10.15376/biores.18.2
  • AKKUŞ, M. (2012). Renk Açma İşleminin Termal Modifikasyon Yapılmış Bazı Ağaç Malzemelere Etkisi (Master's thesis). Düzce University, Institute of Science, Department of Furniture Decoration Education.
  • AKPAN, E., WETZEL, B., & FRİEDRİCH, K. (2021). Eco-friendly and sustainable processing of wood-based materials. Green Chemistry, 23, 2198-2232. https://doi.org/10.1039/D0GC04430J.
  • ALİ, M., ABDULLAH, U., ASHAARİ, Z., HAMİD, N., & HUA, L. (2021). Hydrothermal Modification of Wood: A Review. Polymers, 13. https://doi.org/10.3390/polym13162612
  • AMARASİNGHE, I., QIAN, Y., GUNAWARDENA, T., MENDİS, P., & BELLEVİLLE, B. (2024). Composite Panels from Wood Waste: A Detailed Review of Processes, Standards, and Applications. Journal of Composite Science. https://doi.org/10.3390/jcs8100417
  • BAYSAL, E., TOKER, H., & ALTINOK, M. (2014). Effect of heat treatment on some physical properties of wood. Journal of Wood Science, 60(3), 210–215.
  • BLANCHET, P., & PEPİN, S. (2021). Trends in Chemical Wood Surface Improvements and Modifications: A Review of the Last Five Years. Coatings. https://doi.org/10.3390/coatings11121514.
  • BOUGRİER, C., DELGENES, J. P., & CARRÈRE, H. (2007). Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. INRA, UR050, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100, France.
  • CANDELIER, K., THEVENON, M.-F., PETRISSANS, A., DUMARCAY, S., GERARDIN, P., & PETRISSANS, M. (2016). Control of wood thermal treatment and its effects on decay resistance: A review. Annals of Forest Science, 73(3), 571–583. https://doi.org/10.1007/s13595-016-0541-x
  • ÇETİN, N. S., ÖZMEN, N., & BİRİNCİ, E. (2011). Acetylation of wood with various catalysts. Journal of Wood Chemistry and technology, 31(2), 142-153.
  • DAVID, M., ION, R., GRIGORESCU, R., IANCU, L., CONSTANTIN, M., STIRBESCU, R., & GHEBOİANU, A. (2022). Wood Surface Modification with Hybrid Materials Based on Multi-Walled Carbon Nanotubes. Nanomaterials, 12. https://doi.org/10.3390/nano12121990
  • EPMEIER, H., WESTİN, M., & RAPP, A. (2004). Differently Modified Wood: A Comparison of Selected Properties. Scandinavian Journal of Forest Research, 19, 31-37. https://doi.org/10.1080/02827580410017825
  • FURUNO, T., IMAMURA, Y., & KAJİTA, H. (2004). Modification of Wood by Treatment with Low Molecular Weight Phenol-Formaldehyde Resin: Enhancement of Properties through Neutralized Phenolic Resin and Penetration into Wood Cell Walls. Wood Science and Technology, 37, 349-361. https://doi.org/10.1007/s00226-003-0176-6
  • GADHAVE, R., & DHAWALE, P. (2022). State of research and trends in the development of polyvinyl acetate-based wood adhesive. Open Journal of Polymer Chemistry, 12(1), 13–42. https://doi.org/10.4236/ojpchem.2022.121002
  • HADİ, Y. S., HERLİYANA, E. N., PARİ, G., PARİ, R., & ABDİLLAH, I. B. (2022). Furfurylation effects on discoloration and physical-mechanical properties of wood from tropical plantation forests. Korean Wood Science and Technology, 50(1), 46-58. https://doi.org/10.5658/WOOD.2022.50.1.46
  • HİLL, C. A. S. (2006). Wood Modification: Chemical, Thermal and Other Processes. John Wiley & Sons.
  • JEBRANE, M.; SEBE, G. A (2007). novel simple route to wood acetylation by transesterification 264 with vinyl acetate. Holzforschung. 61(2), 143–147.
  • JONES, D., & SANDBERG, D. (2020). A Review of Wood Modification Globally – Updated Findings from COST FP1407. Interdisciplinary Perspectives on the Built Environment. https://doi.org/10.37947/IPBE.2020.VOL1.1.
  • KAZANO, S., OSADA, T., KOBAYASHI, S. ET AL. (2018) Experimental and analytical investigation on resin impregnation behavior in continuous carbon fiber reinforced thermoplastic polyimide composites. Mech Adv Mater Mod Process 4, 6 (2018). https://doi.org/10.1186/s40759-018-0039-3
  • KOCAEFE, D., HUANG, X., & KOCAEFE, Y. (2015). Dimensional Stabilization of Wood. Current Forestry Reports, 1, 151-161. https://doi.org/10.1007/s40725-015-0017-5.
  • KUTNAR, A., & MANTANİS, G. (2017). Wood modification technologies - a review. Iforest - Biogeosciences and Forestry, 10, 895-908. https://doi.org/10.3832/IFOR2380-010
  • LANDE, S., WESTİN, M., & SCHNEİDER, M. (2004). Properties of furfurylated wood. Scandinavian Journal of Forest Research, 19(5), 22–30.
  • MORAIS, S., FONSECA, H. M. A. C., OLIVEIRA, S. M. R., OLIVEIRA, H., GUPTA, V. K., SHARMA, B., & DE LOURDES PEREIRA, M. (2021). Environmental and Health Hazards of Chromated Copper Arsenate-Treated Wood: A Review. International Journal of Environmental Research and Public Health, 18(11), 5518. https://doi.org/10.3390/ijerph18115518
  • MILITZ, H. (2020). Wood modification research in Europe. Holzforschung, 74, 333 - 333. https://doi.org/10.1515/hf-2020-0050.
  • MILITZ, H., & LANDE, S. (2009). Challenges in wood modification technology on the way to practical applications. Wood Material Science & Engineering, 4, 23 - 29. https://doi.org/10.1080/17480270903275578.
  • NÉMETH, R., HORVÁTH, N., FODOR, F., BÁDER, M., & BAK, M. (2020). Wood Modification for Under-Utilised Hardwood Species. IOP Conference Series: Earth and Environmental Science, 505. https://doi.org/10.1088/1755-1315/505/1/012017.
  • OBATAYA, E.; MİNATO, K. (2009), Potassium acetate-catalyzed acetylation of wood at low tem259 peratures II: Vapour phase acetylation at room temperature. J. Wood Sci. 55, 260 23–26.
  • SANDBERG, D., HALLER, P., & NAVİ, P. (2012). Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. Wood Material Science & Engineering, 8(1), 64–88. https://doi.org/10.1080/17480272.2012.751935
  • SHAMAEV, V., DORNYAK, O., MEDVEDEV, I., RUSSU, A., & GARKUSHA, O. (2023). Stabilization of Shape and Dimensions of Compressed Wood Using Chemical and Physical Methods. E3S Web of Conferences. https://doi.org/10.1051/e3sconf/202339005044
  • SPEAR, M., CURLİNG, S., DİMİTRİOU, A., & ORMONDROYD, G. (2021). Examination of Functional Treatments for Modified Wood. Coatings. https://doi.org/10.3390/COATINGS11030327
  • SONG, J., CHEN, C., ZHU, S., ZHU, M., DAİ, J., RAY, U., Lİ, Y., KUANG, Y., Lİ, Y., QUİSPE, N., YAO, Y., GONG, A., LEİSTE, U., BRUCK, H., ZHU, J., VELLORE, A., Lİ, H., EKSİ, M., JİA, Z., MARTİNİ, A., Lİ, T., & HU, L. (2018). Transforming Bulk Natural Wood into a High-Performance Structural Material. Nature, 554, 224-228. https://doi.org/10.1038/nature25476Sandberg,
  • STORODUBTSEVA, T., BURYAKOVA, A., & RABOTKİN, A. (2021). Energy Saving of Wood Due to Its Modification. Proceedings of the All-Russian Scientific and Practical Conference "Modern Machines, Equipment, and IT Solutions for the Industrial Complex: Theory and Practice." https://doi.org/10.34220/mmeitsic2021_340-344
  • TUNCA, M. (2019). Geleneksel ahşap evlerde su ve nem kaynaklı bozulmalar üzerine bir araştırma: Taraklı örneği (Master's thesis). Gebze Technical University, Institute of Science, Department of Architecture.
  • TEACĂ, C., & TANASĂ, F. (2020). Wood Surface Modification—Classic and Modern Approaches in Wood Chemical Treatment by Esterification Reactions. THE Coatings, 10, 629. https://doi.org/10.3390/coatings10070629.
  • YALINKILIÇ A. C., AKSOY E., ATAR M., KESKİN H., (2021) “Ahşap malzemede renk açma ve vernikleme işleminin yanmada yıkılma süresine etkisi, Bölüm 1”, Politeknik Dergisi, 24(2): 637-643,
  • ZELINKA, S., ALTGEN, M., EMMERICH, L., GUIGO, N., KEPLINGER, T., KYMÄLÄİNEN, M., THYBRING, E., & THYGESEN, L. (2022). Examination of Wood Modification and Wood Functionalization Technologies. Forests. https://doi.org/10.3390/f13071004
  • ZHANG, Z., GUO, Q., HUANG, X., ZHANG, Q., FAN, J., & HUANG, J. (2023). Research Progress of Reinforced Modification of Fast-Growing Wood. Coatings. https://doi.org/10.3390/coatings14010053

Comparison of Enhancement Methods for Wood Material and Effective Solution Recommendations

Year 2025, Volume: 5 Issue: 1, 122 - 141, 04.07.2025
https://doi.org/10.56590/stdarticle.1577266

Abstract

Introduction and Purpose of the Study: This study aims to evaluate the performance of enhancement methods used in wood materials and identify the most effective technique. The study compares the impacts of thermal treatment, chemical modification, and polymer-based reinforcement techniques on the durability, cost-efficiency, and environmental sustainability of wood. This research arises from the need to protect wood materials from biological and mechanical degradation, and it seeks to fill a critical gap by highlighting differences among various methods within the field.
Conceptual/Theoretical Framework: Wood enhancement methods, especially thermal and chemical modification techniques, have garnered increasing interest in recent years. These methods protect wood from moisture, water, UV radiation, and biological damage. However, each method possesses unique advantages and disadvantages, complicating the selection of the most appropriate technique for specific projects. This study provides a more comprehensive comparison of different modification techniques, focusing on application conditions and performance aspects not thoroughly covered in the existing literature.
Methodology: The study employs a comparative analysis approach. Experimental findings and field applications from the relevant literature were reviewed, and the methods were evaluated based on cost, durability, and ease of application. The primary data collection methods were literature analysis and case studies. Data were compiled from published articles and industry reports.
Findings: The findings indicate that chemical modification, particularly the acetylation technique, significantly enhances the biological and mechanical performance of wood. While thermal treatment offers a sustainable and cost-effective option, it has disadvantages, such as reduced mechanical strength and color changes. Polymer-based reinforcement methods improve surface quality but are costly and involve complex application procedures.
Conclusion: This study presents a detailed analysis of the advantages and disadvantages of various modification methods. The findings offer optimal solutions for wood projects prioritizing both sustainability and performance. Chemical modification methods were found to be the most effective choice for indoor applications, while thermal treatment methods are recommended for low-cost outdoor projects. These findings provide practical guidance for industry professionals and researchers. Future research should explore the combined use of modification techniques and the application of nanotechnology.

References

  • AUGUSTINA, S., DWIANTO, W., WAHYUDI, I., SYAFII, W., GÉRARDIN, P., & MARBUN, S. (2023). Wood Impregnation in Relation to Its Mechanisms and Properties Enhancement. BioResources. https://doi.org/10.15376/biores.18.2
  • AKKUŞ, M. (2012). Renk Açma İşleminin Termal Modifikasyon Yapılmış Bazı Ağaç Malzemelere Etkisi (Master's thesis). Düzce University, Institute of Science, Department of Furniture Decoration Education.
  • AKPAN, E., WETZEL, B., & FRİEDRİCH, K. (2021). Eco-friendly and sustainable processing of wood-based materials. Green Chemistry, 23, 2198-2232. https://doi.org/10.1039/D0GC04430J.
  • ALİ, M., ABDULLAH, U., ASHAARİ, Z., HAMİD, N., & HUA, L. (2021). Hydrothermal Modification of Wood: A Review. Polymers, 13. https://doi.org/10.3390/polym13162612
  • AMARASİNGHE, I., QIAN, Y., GUNAWARDENA, T., MENDİS, P., & BELLEVİLLE, B. (2024). Composite Panels from Wood Waste: A Detailed Review of Processes, Standards, and Applications. Journal of Composite Science. https://doi.org/10.3390/jcs8100417
  • BAYSAL, E., TOKER, H., & ALTINOK, M. (2014). Effect of heat treatment on some physical properties of wood. Journal of Wood Science, 60(3), 210–215.
  • BLANCHET, P., & PEPİN, S. (2021). Trends in Chemical Wood Surface Improvements and Modifications: A Review of the Last Five Years. Coatings. https://doi.org/10.3390/coatings11121514.
  • BOUGRİER, C., DELGENES, J. P., & CARRÈRE, H. (2007). Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. INRA, UR050, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100, France.
  • CANDELIER, K., THEVENON, M.-F., PETRISSANS, A., DUMARCAY, S., GERARDIN, P., & PETRISSANS, M. (2016). Control of wood thermal treatment and its effects on decay resistance: A review. Annals of Forest Science, 73(3), 571–583. https://doi.org/10.1007/s13595-016-0541-x
  • ÇETİN, N. S., ÖZMEN, N., & BİRİNCİ, E. (2011). Acetylation of wood with various catalysts. Journal of Wood Chemistry and technology, 31(2), 142-153.
  • DAVID, M., ION, R., GRIGORESCU, R., IANCU, L., CONSTANTIN, M., STIRBESCU, R., & GHEBOİANU, A. (2022). Wood Surface Modification with Hybrid Materials Based on Multi-Walled Carbon Nanotubes. Nanomaterials, 12. https://doi.org/10.3390/nano12121990
  • EPMEIER, H., WESTİN, M., & RAPP, A. (2004). Differently Modified Wood: A Comparison of Selected Properties. Scandinavian Journal of Forest Research, 19, 31-37. https://doi.org/10.1080/02827580410017825
  • FURUNO, T., IMAMURA, Y., & KAJİTA, H. (2004). Modification of Wood by Treatment with Low Molecular Weight Phenol-Formaldehyde Resin: Enhancement of Properties through Neutralized Phenolic Resin and Penetration into Wood Cell Walls. Wood Science and Technology, 37, 349-361. https://doi.org/10.1007/s00226-003-0176-6
  • GADHAVE, R., & DHAWALE, P. (2022). State of research and trends in the development of polyvinyl acetate-based wood adhesive. Open Journal of Polymer Chemistry, 12(1), 13–42. https://doi.org/10.4236/ojpchem.2022.121002
  • HADİ, Y. S., HERLİYANA, E. N., PARİ, G., PARİ, R., & ABDİLLAH, I. B. (2022). Furfurylation effects on discoloration and physical-mechanical properties of wood from tropical plantation forests. Korean Wood Science and Technology, 50(1), 46-58. https://doi.org/10.5658/WOOD.2022.50.1.46
  • HİLL, C. A. S. (2006). Wood Modification: Chemical, Thermal and Other Processes. John Wiley & Sons.
  • JEBRANE, M.; SEBE, G. A (2007). novel simple route to wood acetylation by transesterification 264 with vinyl acetate. Holzforschung. 61(2), 143–147.
  • JONES, D., & SANDBERG, D. (2020). A Review of Wood Modification Globally – Updated Findings from COST FP1407. Interdisciplinary Perspectives on the Built Environment. https://doi.org/10.37947/IPBE.2020.VOL1.1.
  • KAZANO, S., OSADA, T., KOBAYASHI, S. ET AL. (2018) Experimental and analytical investigation on resin impregnation behavior in continuous carbon fiber reinforced thermoplastic polyimide composites. Mech Adv Mater Mod Process 4, 6 (2018). https://doi.org/10.1186/s40759-018-0039-3
  • KOCAEFE, D., HUANG, X., & KOCAEFE, Y. (2015). Dimensional Stabilization of Wood. Current Forestry Reports, 1, 151-161. https://doi.org/10.1007/s40725-015-0017-5.
  • KUTNAR, A., & MANTANİS, G. (2017). Wood modification technologies - a review. Iforest - Biogeosciences and Forestry, 10, 895-908. https://doi.org/10.3832/IFOR2380-010
  • LANDE, S., WESTİN, M., & SCHNEİDER, M. (2004). Properties of furfurylated wood. Scandinavian Journal of Forest Research, 19(5), 22–30.
  • MORAIS, S., FONSECA, H. M. A. C., OLIVEIRA, S. M. R., OLIVEIRA, H., GUPTA, V. K., SHARMA, B., & DE LOURDES PEREIRA, M. (2021). Environmental and Health Hazards of Chromated Copper Arsenate-Treated Wood: A Review. International Journal of Environmental Research and Public Health, 18(11), 5518. https://doi.org/10.3390/ijerph18115518
  • MILITZ, H. (2020). Wood modification research in Europe. Holzforschung, 74, 333 - 333. https://doi.org/10.1515/hf-2020-0050.
  • MILITZ, H., & LANDE, S. (2009). Challenges in wood modification technology on the way to practical applications. Wood Material Science & Engineering, 4, 23 - 29. https://doi.org/10.1080/17480270903275578.
  • NÉMETH, R., HORVÁTH, N., FODOR, F., BÁDER, M., & BAK, M. (2020). Wood Modification for Under-Utilised Hardwood Species. IOP Conference Series: Earth and Environmental Science, 505. https://doi.org/10.1088/1755-1315/505/1/012017.
  • OBATAYA, E.; MİNATO, K. (2009), Potassium acetate-catalyzed acetylation of wood at low tem259 peratures II: Vapour phase acetylation at room temperature. J. Wood Sci. 55, 260 23–26.
  • SANDBERG, D., HALLER, P., & NAVİ, P. (2012). Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. Wood Material Science & Engineering, 8(1), 64–88. https://doi.org/10.1080/17480272.2012.751935
  • SHAMAEV, V., DORNYAK, O., MEDVEDEV, I., RUSSU, A., & GARKUSHA, O. (2023). Stabilization of Shape and Dimensions of Compressed Wood Using Chemical and Physical Methods. E3S Web of Conferences. https://doi.org/10.1051/e3sconf/202339005044
  • SPEAR, M., CURLİNG, S., DİMİTRİOU, A., & ORMONDROYD, G. (2021). Examination of Functional Treatments for Modified Wood. Coatings. https://doi.org/10.3390/COATINGS11030327
  • SONG, J., CHEN, C., ZHU, S., ZHU, M., DAİ, J., RAY, U., Lİ, Y., KUANG, Y., Lİ, Y., QUİSPE, N., YAO, Y., GONG, A., LEİSTE, U., BRUCK, H., ZHU, J., VELLORE, A., Lİ, H., EKSİ, M., JİA, Z., MARTİNİ, A., Lİ, T., & HU, L. (2018). Transforming Bulk Natural Wood into a High-Performance Structural Material. Nature, 554, 224-228. https://doi.org/10.1038/nature25476Sandberg,
  • STORODUBTSEVA, T., BURYAKOVA, A., & RABOTKİN, A. (2021). Energy Saving of Wood Due to Its Modification. Proceedings of the All-Russian Scientific and Practical Conference "Modern Machines, Equipment, and IT Solutions for the Industrial Complex: Theory and Practice." https://doi.org/10.34220/mmeitsic2021_340-344
  • TUNCA, M. (2019). Geleneksel ahşap evlerde su ve nem kaynaklı bozulmalar üzerine bir araştırma: Taraklı örneği (Master's thesis). Gebze Technical University, Institute of Science, Department of Architecture.
  • TEACĂ, C., & TANASĂ, F. (2020). Wood Surface Modification—Classic and Modern Approaches in Wood Chemical Treatment by Esterification Reactions. THE Coatings, 10, 629. https://doi.org/10.3390/coatings10070629.
  • YALINKILIÇ A. C., AKSOY E., ATAR M., KESKİN H., (2021) “Ahşap malzemede renk açma ve vernikleme işleminin yanmada yıkılma süresine etkisi, Bölüm 1”, Politeknik Dergisi, 24(2): 637-643,
  • ZELINKA, S., ALTGEN, M., EMMERICH, L., GUIGO, N., KEPLINGER, T., KYMÄLÄİNEN, M., THYBRING, E., & THYGESEN, L. (2022). Examination of Wood Modification and Wood Functionalization Technologies. Forests. https://doi.org/10.3390/f13071004
  • ZHANG, Z., GUO, Q., HUANG, X., ZHANG, Q., FAN, J., & HUANG, J. (2023). Research Progress of Reinforced Modification of Fast-Growing Wood. Coatings. https://doi.org/10.3390/coatings14010053
There are 37 citations in total.

Details

Primary Language English
Subjects Architecture (Other)
Journal Section Research Articles
Authors

Minel Kurtuluş 0000-0003-4623-0613

Early Pub Date July 2, 2025
Publication Date July 4, 2025
Submission Date November 1, 2024
Acceptance Date June 29, 2025
Published in Issue Year 2025 Volume: 5 Issue: 1

Cite

APA Kurtuluş, M. (2025). Comparison of Enhancement Methods for Wood Material and Effective Solution Recommendations. ART/Icle: Sanat Ve Tasarım Dergisi, 5(1), 122-141. https://doi.org/10.56590/stdarticle.1577266

ART/icle: Journal of Art and Design

ISSN: 2718-1057
e-ISSN: 2791-7665