Research Article
BibTex RIS Cite

24 Ocak 2020 Sivrice (Türkiye) Depremi (Mw 6.8): Yer Hareketi Tahmin Denklemlerinin Değerlendirilmesi ve Mikrotremor Çalışmaları

Year 2021, , 125 - 148, 20.12.2021
https://doi.org/10.46464/tdad.1003057

Abstract

Doğu Anadolu Fay Zonu’nda (DAFZ) 24 Ocak 2020 tarihinde meydana gelen Mw 6.8 büyüklüğündeki deprem can ve mal kayıplarına sebep olmuştur. Yapısal hasarların zemin açısından araştırılması amacı ile üç farklı hasar gören yapının çevresinde mikrotremor ölçümleri alınmıştır. Bu ölçümler sonucu elde edilen zeminin frekans ve büyütme faktörleri kullanılarak ampirik bağıntılar yardımıyla Vs30, hasar görebilirlik indisi (Kg) ve zemin deformasyon tahmini gibi parametreler elde edilmiştir. Mikrotremor ölçümlerinden elde edilen zemin hâkim frekans ve büyütme faktörü değerleri Kesrik, Elazığ ve Sivrice için sırasıyla ~1.75 Hz; ~0.55 Hz ve ~1.4 Hz olarak elde edilirken büyütme faktörü değerleri ise ~5.1, ~4.2 ve ~2.3 olarak hesaplanmıştır. En yüksek hasar görebilirlik indisi Elazığ Merkez’de en düşük değer ise Sivrice’de elde edilmiştir. Ayrıca gözlenen en büyük yer ivmesi değerleri ile beş farklı yer hareketi tahmin denklemi karşılaştırılmış ve en iyi uyum sağlayan model belirlenmiştir.

References

  • Abrahamson N.A., Silva W.J., Kamai R., 2014. Summary of the ASK14 ground motion relation for active crustal regions, Earthquake Spectra 30 (3), 1025-1055
  • AFAD, 2020. 24 Ocak 2020 Sivrice (Elazig) Mw 6.8 Depremi Raporu, Ankara. Erişim adresi: https://deprem.afad.gov.tr/depremdokumanlari/1831
  • Akkar S., Bommer J.J., 2010. Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the Mediterranean region, and the Middle East, Seismological Research Letters 81(2), 195-206
  • Akkar S., Sandikkaya M.A., Bommer J.J., 2014. Empirical ground-motion models for point-and extended-source crustal earthquake scenarios in Europe and the Middle East, Bulletin of Earthquake Engineering 12 (1), 359-387
  • Aksoy E., Inceoz M., Kocyigit A., 2007. Lake Hazar basin: A negative flower structure on the east anatolian fault system (EAFS), SE Turkey, Turkish Journal of Earth Sciences 16(3), 319-338
  • Ambraseys N.N., Simpson K.U., Bommer J.J., 1996. Prediction of horizontal response spectra in Europe, Earthquake Engineering & Structural Dynamics 25(4), 371-400
  • ATA-DAM, 2020. 24 Ocak 2020 (20:55 TS) Mw=6.8 Elazığ-Sivrice Depremi Değerlendirme Raporu, Erişim adresi: https://atauni.edu.tr/yuklemeler/6e78326bb6db9ebe8d4c82123bfbc62c.pdf
  • Ateş E., 2021. Mikrotremor, Deprem ve Yüzey Dalgalarının Çok Kanallı Analiz Yöntemi Kayıtları Kullanılarak Zemin Özelliklerinin Belirlenmesi: AFAD Kampüsünden Örnek Bir Uygulama, Doğal Afetler ve Çevre Dergisi 7(2), 240-251
  • Aydin U., Pamuk E., Ozer C., 2021. Investigation of soil dynamic characteristics at seismic stations using H/V spectral ratio method in Marmara Region, Turkey, Natural Hazards 1-20
  • Bayrak E., Yilmaz Ş., Softa M., Turker T., Bayrak Y., 2015. Earthquake hazard analysis for East Anatolian fault zone, Turkey, Natural Hazards 76(2), 1063-1077
  • Bommer J.J., Douglas J., Strasser F.O., 2003. Style-of-faulting in ground-motion prediction equations, Bulletin of Earthquake Engineering 1(2), 171-203
  • Bonilla L.F., Steidl J.H., Lindley G.T., Tumarkin A.G., Archuleta R.J., 1997. Site amplification in the San Fernando Valley, California: variability of site-effect estimation using the S-wave, coda, and H/V methods, Bulletin of the Seismological Society of America 87(3), 710-730
  • Boore D.M., Atkinson G.M., 2008. Ground-motion Prediction Equations for the Average Horizontal Component of PGA, PGV and 5% Damped PSA at Spectral Periods Between 0.01 s and 10 s, Earthquake Spectra 24(1), 99-138
  • Borcherdt R.D., Wentworth C.M., Glassmoyer G., Fumal T., Mork P., Gibbs J., 1991. On the observation and predictive GIS mapping of ground response in the San Francisco Bay region, California. In Fourth International Conference on Seismic Zonation, Stanford, California Procs., Earth. Eng. Res. Inst. 3, 545-552
  • Burchfiel B.C., Stewart J.H., 1966. “Pull-apart” origin of the central segment of Death Valley, California, Geological Society of America Bulletin 77(4), 439-442
  • Campbell K.W., 1997. Empirical Near-Source Attenuation Relationships for Horizontal and Vertical Components of Peak Ground Acceleration, Peak Ground Velocity, and Pseudo-Absolute Acceleration Response Spectra, Seismological Research Letters 68(1), 154-179
  • Campbell K.W., 2003. Strong-motion attenuation relations, International Geophysics Series 81(B), 1003-1012
  • Campbell K.W., Bozorgnia Y., 2014. NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra, Earthquake Spectra 30(3), 1087-1115
  • Cetin H., Guneyli H., Mayer L., 2003. Paleoseismology of the Palu-Lake Hazar segment of the East Anatolian fault zone, Turkey, Tectonophysics 374 (3-4), 163-197
  • Cetin K.O., Cakir E., Ilgac M., Can G., Soylemez B., Elsaid A., Cuceoglu F., Gulerce Z., Askan A., Aydin S., Gör M., 2021. Geotechnical aspects of reconnaissance findings after 2020 January 24th, M6. 8 Sivrice-Elazig-Turkey earthquake, Bulletin of Earthquake Engineering 1-45
  • Cheloni D., Akinci A., 2020. Source modelling and strong ground motion simulations for the 24 January 2020, M w 6.8 Elazig earthquake, Turkey, Geophysical Journal International 223 (2), 1054-1068
  • Coban K.H., Sayil N., 2020. Different probabilistic models for earthquake occurrences along the North and East Anatolian fault zones, Arabian Journal of Geosciences 13(18), 1-16
  • Dikmen Ü., Hasançebi N., Arısoy M.Ö., Demirci İ., 2016. Estimation of source, path and site effect from S-waves of local earthquakes in Izmir, western Turkey, Jeofizik 18, 14-35
  • Dogru A., Bulut F., Yaltirak C., Aktug B., 2021. Slip distribution of the 2020 Elazig Earthquake (Mw 6.75) and its influence on earthquake hazard in the Eastern Anatolia, Geophys. J. Int. 224:389-400, https://doi.org/10.1093/gji/ggaa471
  • Duman T.Y., Emre O., 2013. The East Anatolian Fault: geometry, segmentation and jog characteristics, Geological Society London, Special Publications, 372, 495-529
  • Emre O., Duman T.Y., Ozalp S., Elmaci H., Olgun Ş., Saroglu F., 2013. Active Fault Map of Turkey with an Explanatory Text. 1:1,250,000 Scale, General Directorate of Mineral Research and Exploration, Special Publication Series-30, Ankara-Turkey. ISBN: 978-605-5310-56-1
  • Emre O., Duman T.Y., Ozalp S., Saroglu F., Olgun S., Elmaci H., Can T., 2018. Active fault database of Turkey, Bulletin of Earthquake Engineering 16(8), 3229-3275
  • Gallovic F., Zahradnik J., Plicka V., Sokos E., Evangelidis C., Fountoulakis I., Turhan F., 2020. Complex rupture dynamics on an immature fault during the 2020 Mw 6.8 Elazig earthquake, Turkey, Communications Earth & Environment 1(1), 1-8
  • Graizer V.M., Kalkan E., 2015. Update of the Graizer-Kalkan ground-motion prediction equations for shallow crustal continental earthquakes (p. 79), US Department of the Interior, US Geological Survey.
  • Hempton M.R., Dunne L.A., 1984. Sedimentation in pull-apart basins: active examples in eastern Turkey, The Journal of Geology 92(5), 513-530
  • Hubert-Ferrari A., Lamair L., Hage S., Schmidt S., Cagatay M.N., Avsar U., 2020. A 3800 yr paleoseismic record (Lake Hazar sediments, eastern Turkey): Implications for the East Anatolian Fault seismic cycle, Earth and Planetary Science Letters 538, 116152
  • Ishihara K., 1996. Soil behaviour in earthquake geotechnics, Oxford Engineering Science Series.
  • Jamalreyhani M., Buyukakpinar P., Cesca S., Dahm T., Sudhaus H., Rezapour M., Isken M.P., Asayesh B.M., Heimann S., 2020. Seismicity related to the eastern sector of Anatolian escape tectonic: the example of the 24 January 2020 Mw 6.77 Elazig-Sivrice earthquake, Solid Earth Discussions 1-22
  • Kalkan E., Gulkan P., 2004. Site-dependent spectra derived from ground motion records in Turkey, Earthquake Spectra 20(4), 1111-1138
  • Konno K., Ohmachi T., 1998. Ground-Motion Characteristics Estimated from Spectral Ratio between Horizontal and Vertical Components, Bulletin of the Seismological Society of America 88, 1, 228-241
  • Lermo J., Chavez-Garcia F.J., 1993. Site effect evaluation using spectral ratios with only one station, Bulletin of the seismological society of America 83(5), 1574-1594
  • Louie J.N., 2001. Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays, Bulletin of the Seismological Society of America 91(2), 347-364
  • Moreno D.G., Hubert‐Ferrari A., Moernaut J., Fraser J.G., Boes X., Van Daele M., Avsar U., Cagatay N., De Batist M., 2011. Structure and recent evolution of the Hazar basin: A strike‐slip basin on the East Anatolian fault, eastern Turkey, Basin Research 23(2), 191-207
  • Nakamura Y., 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1)
  • Nakamura, Y., 1996. Real-time information systems for seismic hazards mitigation UrEDAS, HERAS and PIC. Quarterly Report-Rtri, 37(3), 112-127
  • Nakamura Y., 1997. Seismic vulnerability indices for ground and structures using microtremor, In World Congress on Railway Research in Florence, Italy
  • Nakamura Y., 2000. Clear identification of fundamental idea of Nakamura’s technique and its applications, In Proceedings of the 12th world conference on earthquake engineering, New Zealand: Auckland, 24, 25-30
  • Nakamura Y., 2019. What Is the Nakamura Method?, Seismological Research Letters 90(4), 1437-1443
  • Nalbant S.S., McCloskey J., Steacy S., Barka A.A., 2002. Stress accumulation and increased seismic risk in eastern Turkey, Earth and Planetary Science Letters 195(3-4), 291-298
  • Okada H., 2003. The microseismic survey method: Society of Exploration Geophysicists of Japan, Geophysical Monograph Series, 12
  • Ozer C., 2019. Investigation of the local soil effects of Erzurum and its surroundings using SSR and HVSR methods, DEU Faculty of Engineering Journal of Science and Engineering 21(61), 247-257
  • Ozer C., 2021. 4-D tomographic change of Vp and Vp/Vs structure before destructive earthquakes: a case study of the Sivrice-Elazig earthquake (mw= 6.8), Eastern Turkey, Natural Hazards 108, 1901-1917
  • Ozer C., Ozyazicioglu M., Gok E., Polat O., 2019. Imaging the crustal structure throughout the East Anatolian fault zone, Turkey, by local earthquake tomography, Pure and Applied Geophysics, 176(6), 2235-2261
  • Pamuk E., Ozdag O.C., Ozyalin S., Akgun M., 2017. Soil characterization of Tinaztepe region (İzmir/Turkey) using surface wave methods and Nakamura (HVSR) technique, Earthquake Engineering and Engineering Vibration 16(2), 447-458
  • Pamuk E., Ozer Ç., 2020. The Site Effect Investigation with Using Horizontal-to-Vertical Spectral Ratio Method on Earthquake Data, South of Turkey, Geotectonics 54(4), 563-576
  • Park C.B., Miller R.D., Xia J., 1999. Multichannel analysis of surface waves, Geophysics 64(3), 800-808
  • Parolai S., 2012. Investigation of site response in urban areas by using earthquake data and seismic noise. In New manual of seismological observatory practice 2 (NMSOP-2), 1-38
  • Pousse‐Beltran L., Nissen E., Bergman E.A., Cambaz M.D., Gaudreau E., Karasozen E., Tan F., 2020. The 2020 M w 6.8 Elazig (Turkey) earthquake reveals rupture behavior of the East Anatolian Fault, Geophysical Research Letters 47, e2020GL088136
  • Ragon T., Simons M., Bletery Q., Cavalie O., Fielding E., 2021. A stochastic view of the 2020 Elazig Mw 6.8 earthquake (Turkey), Geophysical Research Letters 48, e2020GL090704
  • Sadigh K., Chang C.Y., Egan J.A., Makdisi F., Youngs R.R., 1997. Attenuation relationships for shallow crustal earthquakes based on California strong motion data, Seismological research letters 68(1), 180-189
  • Sertçelik F., 2012. Estimation of coda wave attenuation in the east Anatolia fault zone, Turkey, Pure and applied Geophysics 169(7), 1189-1204
  • Stanko D., Markusic S., 2020. An empirical relationship between resonance frequency, bedrock depth and VS30 for Croatia based on HVSR forward modelling, Natural Hazards 103(3), 3715-3743
  • Subasi O., Hasal M.E., Ozaslan B., Iyisan R., 2019. Yamanaka, H., Chimoto, K., Bir Boyutlu Dinamik Analiz ve Mikrotremor Ölçüm Sonuçlarının Karşılaştırılması, Teknik Dergi 30(5), 9459-9481
  • Şahin Ş., Öksüm E., 2021. The Relation of Seismic Velocity and Attenuation Pattern in the East Anatolian Fault Zone with Earthquake Occurrence: Example of January 24, 2020 Sivrice Earthquake, Maden Tetkik ve Arama Dergisi 164, 1-26
  • Şaroglu F., Emre O., Kusçu I., 1992. The East Anatolian fault zone of Turkey, Annales Tectonicae 99-125 (Special Issue-Supplement to Volume VI)
  • TADAS, 2020. Türkiye İvme Veritabanı ve Analiz Sistemi, AFAD. Erişim adresi: https://tadas.afad.gov.tr
  • Taymaz T., Ganas A., Yolsal-Cevikbilen S., Vera F., Eken T., Erman C., Keles D., Kapetanidis V., Valkaniotis S., Karasante I., Tsironi V., Gaebler P., Melgar D., Ocalan T., 2021. Source Mechanism and Rupture Process of the 24 January 2020 Mw 6.7 Doganyol-Sivrice Earthquake obtained from Seismological Waveform Analysis and Space Geodetic Observations on the East Anatolian Fault Zone (Turkey), Tectonophysics 804, 228745
  • TBDY, 2018. Türkiye Bina Deprem Yönetmeliği, Afet ve Acil Durum Yönetimi Başkanlığı, Ankara.
  • TDTH, 2018. Türkiye Deprem Tehlike Haritaları İnteraktif Web Uygulaması. Erişim adresi: tdth.afad.gov.tr
  • Wathelet M., Chatelain J.L., Cornou C., Di Giulio G., Guillier B., Ohrnberger M., Savvaidis A., 2020. Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing, Seismological Research Letters 91(3), 1878-1889
  • Xu J., Liu C., Xiong X., 2020. Source Process of the 24 January 2020 Mw 6.7 East Anatolian Fault Zone, Turkey, Earthquake, Seismological Society of America 91(6), 3120-3128
  • Yalcinkaya E., Alptekin O., 2005. Site effect and its relationship to the intensity and damage observed in the June 27, 1998 Adana-Ceyhan earthquake, Pure and Applied Geophysics 162(5), 913-930
  • Zülfikar A.C., 2020. 24 Ocak 2020. Elazığ Depreminin Kuvvetli Yer Hareketi Verilerinin Değerlendirilmesi, Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35(3), 821-834

January 24, 2020 Sivrice (Turkey) Earthquake (Mw 6.8): Evaluation of Ground-Motion Prediction Equations and Microtremor Studies

Year 2021, , 125 - 148, 20.12.2021
https://doi.org/10.46464/tdad.1003057

Abstract

The Mw 6.8 January 24, 2020, earthquake has occurred on the Eastern Anatolian Fault Zone (EAFZ) caused loss of life and property. Microtremor measurements have been applied near three different damaged buildings to investigate structural damages in terms of soil features. The parameters such as Vs30, vulnerability index, and soil deformation estimation are obtained with the help of empirical relations using the soil dominant frequency and soil amplification factors calculated as a result of these survey measurements. The soil dominant frequencies have been obtained as ~1.75 Hz; ~0.55 Hz and ~1.4 Hz while the amplification factor values have been calculated as ~5.1, ~4.2, and ~2.3 for Kesrik, Elazig, and Sivrice; respectively. The highest vulnerability index is obtained in Elazig City center and the lowest value is observed in Sivrice. In addition, five different ground-motion prediction equations are compared with the observed peak ground acceleration values, and the best fitted model has been determined.

References

  • Abrahamson N.A., Silva W.J., Kamai R., 2014. Summary of the ASK14 ground motion relation for active crustal regions, Earthquake Spectra 30 (3), 1025-1055
  • AFAD, 2020. 24 Ocak 2020 Sivrice (Elazig) Mw 6.8 Depremi Raporu, Ankara. Erişim adresi: https://deprem.afad.gov.tr/depremdokumanlari/1831
  • Akkar S., Bommer J.J., 2010. Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the Mediterranean region, and the Middle East, Seismological Research Letters 81(2), 195-206
  • Akkar S., Sandikkaya M.A., Bommer J.J., 2014. Empirical ground-motion models for point-and extended-source crustal earthquake scenarios in Europe and the Middle East, Bulletin of Earthquake Engineering 12 (1), 359-387
  • Aksoy E., Inceoz M., Kocyigit A., 2007. Lake Hazar basin: A negative flower structure on the east anatolian fault system (EAFS), SE Turkey, Turkish Journal of Earth Sciences 16(3), 319-338
  • Ambraseys N.N., Simpson K.U., Bommer J.J., 1996. Prediction of horizontal response spectra in Europe, Earthquake Engineering & Structural Dynamics 25(4), 371-400
  • ATA-DAM, 2020. 24 Ocak 2020 (20:55 TS) Mw=6.8 Elazığ-Sivrice Depremi Değerlendirme Raporu, Erişim adresi: https://atauni.edu.tr/yuklemeler/6e78326bb6db9ebe8d4c82123bfbc62c.pdf
  • Ateş E., 2021. Mikrotremor, Deprem ve Yüzey Dalgalarının Çok Kanallı Analiz Yöntemi Kayıtları Kullanılarak Zemin Özelliklerinin Belirlenmesi: AFAD Kampüsünden Örnek Bir Uygulama, Doğal Afetler ve Çevre Dergisi 7(2), 240-251
  • Aydin U., Pamuk E., Ozer C., 2021. Investigation of soil dynamic characteristics at seismic stations using H/V spectral ratio method in Marmara Region, Turkey, Natural Hazards 1-20
  • Bayrak E., Yilmaz Ş., Softa M., Turker T., Bayrak Y., 2015. Earthquake hazard analysis for East Anatolian fault zone, Turkey, Natural Hazards 76(2), 1063-1077
  • Bommer J.J., Douglas J., Strasser F.O., 2003. Style-of-faulting in ground-motion prediction equations, Bulletin of Earthquake Engineering 1(2), 171-203
  • Bonilla L.F., Steidl J.H., Lindley G.T., Tumarkin A.G., Archuleta R.J., 1997. Site amplification in the San Fernando Valley, California: variability of site-effect estimation using the S-wave, coda, and H/V methods, Bulletin of the Seismological Society of America 87(3), 710-730
  • Boore D.M., Atkinson G.M., 2008. Ground-motion Prediction Equations for the Average Horizontal Component of PGA, PGV and 5% Damped PSA at Spectral Periods Between 0.01 s and 10 s, Earthquake Spectra 24(1), 99-138
  • Borcherdt R.D., Wentworth C.M., Glassmoyer G., Fumal T., Mork P., Gibbs J., 1991. On the observation and predictive GIS mapping of ground response in the San Francisco Bay region, California. In Fourth International Conference on Seismic Zonation, Stanford, California Procs., Earth. Eng. Res. Inst. 3, 545-552
  • Burchfiel B.C., Stewart J.H., 1966. “Pull-apart” origin of the central segment of Death Valley, California, Geological Society of America Bulletin 77(4), 439-442
  • Campbell K.W., 1997. Empirical Near-Source Attenuation Relationships for Horizontal and Vertical Components of Peak Ground Acceleration, Peak Ground Velocity, and Pseudo-Absolute Acceleration Response Spectra, Seismological Research Letters 68(1), 154-179
  • Campbell K.W., 2003. Strong-motion attenuation relations, International Geophysics Series 81(B), 1003-1012
  • Campbell K.W., Bozorgnia Y., 2014. NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra, Earthquake Spectra 30(3), 1087-1115
  • Cetin H., Guneyli H., Mayer L., 2003. Paleoseismology of the Palu-Lake Hazar segment of the East Anatolian fault zone, Turkey, Tectonophysics 374 (3-4), 163-197
  • Cetin K.O., Cakir E., Ilgac M., Can G., Soylemez B., Elsaid A., Cuceoglu F., Gulerce Z., Askan A., Aydin S., Gör M., 2021. Geotechnical aspects of reconnaissance findings after 2020 January 24th, M6. 8 Sivrice-Elazig-Turkey earthquake, Bulletin of Earthquake Engineering 1-45
  • Cheloni D., Akinci A., 2020. Source modelling and strong ground motion simulations for the 24 January 2020, M w 6.8 Elazig earthquake, Turkey, Geophysical Journal International 223 (2), 1054-1068
  • Coban K.H., Sayil N., 2020. Different probabilistic models for earthquake occurrences along the North and East Anatolian fault zones, Arabian Journal of Geosciences 13(18), 1-16
  • Dikmen Ü., Hasançebi N., Arısoy M.Ö., Demirci İ., 2016. Estimation of source, path and site effect from S-waves of local earthquakes in Izmir, western Turkey, Jeofizik 18, 14-35
  • Dogru A., Bulut F., Yaltirak C., Aktug B., 2021. Slip distribution of the 2020 Elazig Earthquake (Mw 6.75) and its influence on earthquake hazard in the Eastern Anatolia, Geophys. J. Int. 224:389-400, https://doi.org/10.1093/gji/ggaa471
  • Duman T.Y., Emre O., 2013. The East Anatolian Fault: geometry, segmentation and jog characteristics, Geological Society London, Special Publications, 372, 495-529
  • Emre O., Duman T.Y., Ozalp S., Elmaci H., Olgun Ş., Saroglu F., 2013. Active Fault Map of Turkey with an Explanatory Text. 1:1,250,000 Scale, General Directorate of Mineral Research and Exploration, Special Publication Series-30, Ankara-Turkey. ISBN: 978-605-5310-56-1
  • Emre O., Duman T.Y., Ozalp S., Saroglu F., Olgun S., Elmaci H., Can T., 2018. Active fault database of Turkey, Bulletin of Earthquake Engineering 16(8), 3229-3275
  • Gallovic F., Zahradnik J., Plicka V., Sokos E., Evangelidis C., Fountoulakis I., Turhan F., 2020. Complex rupture dynamics on an immature fault during the 2020 Mw 6.8 Elazig earthquake, Turkey, Communications Earth & Environment 1(1), 1-8
  • Graizer V.M., Kalkan E., 2015. Update of the Graizer-Kalkan ground-motion prediction equations for shallow crustal continental earthquakes (p. 79), US Department of the Interior, US Geological Survey.
  • Hempton M.R., Dunne L.A., 1984. Sedimentation in pull-apart basins: active examples in eastern Turkey, The Journal of Geology 92(5), 513-530
  • Hubert-Ferrari A., Lamair L., Hage S., Schmidt S., Cagatay M.N., Avsar U., 2020. A 3800 yr paleoseismic record (Lake Hazar sediments, eastern Turkey): Implications for the East Anatolian Fault seismic cycle, Earth and Planetary Science Letters 538, 116152
  • Ishihara K., 1996. Soil behaviour in earthquake geotechnics, Oxford Engineering Science Series.
  • Jamalreyhani M., Buyukakpinar P., Cesca S., Dahm T., Sudhaus H., Rezapour M., Isken M.P., Asayesh B.M., Heimann S., 2020. Seismicity related to the eastern sector of Anatolian escape tectonic: the example of the 24 January 2020 Mw 6.77 Elazig-Sivrice earthquake, Solid Earth Discussions 1-22
  • Kalkan E., Gulkan P., 2004. Site-dependent spectra derived from ground motion records in Turkey, Earthquake Spectra 20(4), 1111-1138
  • Konno K., Ohmachi T., 1998. Ground-Motion Characteristics Estimated from Spectral Ratio between Horizontal and Vertical Components, Bulletin of the Seismological Society of America 88, 1, 228-241
  • Lermo J., Chavez-Garcia F.J., 1993. Site effect evaluation using spectral ratios with only one station, Bulletin of the seismological society of America 83(5), 1574-1594
  • Louie J.N., 2001. Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays, Bulletin of the Seismological Society of America 91(2), 347-364
  • Moreno D.G., Hubert‐Ferrari A., Moernaut J., Fraser J.G., Boes X., Van Daele M., Avsar U., Cagatay N., De Batist M., 2011. Structure and recent evolution of the Hazar basin: A strike‐slip basin on the East Anatolian fault, eastern Turkey, Basin Research 23(2), 191-207
  • Nakamura Y., 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1)
  • Nakamura, Y., 1996. Real-time information systems for seismic hazards mitigation UrEDAS, HERAS and PIC. Quarterly Report-Rtri, 37(3), 112-127
  • Nakamura Y., 1997. Seismic vulnerability indices for ground and structures using microtremor, In World Congress on Railway Research in Florence, Italy
  • Nakamura Y., 2000. Clear identification of fundamental idea of Nakamura’s technique and its applications, In Proceedings of the 12th world conference on earthquake engineering, New Zealand: Auckland, 24, 25-30
  • Nakamura Y., 2019. What Is the Nakamura Method?, Seismological Research Letters 90(4), 1437-1443
  • Nalbant S.S., McCloskey J., Steacy S., Barka A.A., 2002. Stress accumulation and increased seismic risk in eastern Turkey, Earth and Planetary Science Letters 195(3-4), 291-298
  • Okada H., 2003. The microseismic survey method: Society of Exploration Geophysicists of Japan, Geophysical Monograph Series, 12
  • Ozer C., 2019. Investigation of the local soil effects of Erzurum and its surroundings using SSR and HVSR methods, DEU Faculty of Engineering Journal of Science and Engineering 21(61), 247-257
  • Ozer C., 2021. 4-D tomographic change of Vp and Vp/Vs structure before destructive earthquakes: a case study of the Sivrice-Elazig earthquake (mw= 6.8), Eastern Turkey, Natural Hazards 108, 1901-1917
  • Ozer C., Ozyazicioglu M., Gok E., Polat O., 2019. Imaging the crustal structure throughout the East Anatolian fault zone, Turkey, by local earthquake tomography, Pure and Applied Geophysics, 176(6), 2235-2261
  • Pamuk E., Ozdag O.C., Ozyalin S., Akgun M., 2017. Soil characterization of Tinaztepe region (İzmir/Turkey) using surface wave methods and Nakamura (HVSR) technique, Earthquake Engineering and Engineering Vibration 16(2), 447-458
  • Pamuk E., Ozer Ç., 2020. The Site Effect Investigation with Using Horizontal-to-Vertical Spectral Ratio Method on Earthquake Data, South of Turkey, Geotectonics 54(4), 563-576
  • Park C.B., Miller R.D., Xia J., 1999. Multichannel analysis of surface waves, Geophysics 64(3), 800-808
  • Parolai S., 2012. Investigation of site response in urban areas by using earthquake data and seismic noise. In New manual of seismological observatory practice 2 (NMSOP-2), 1-38
  • Pousse‐Beltran L., Nissen E., Bergman E.A., Cambaz M.D., Gaudreau E., Karasozen E., Tan F., 2020. The 2020 M w 6.8 Elazig (Turkey) earthquake reveals rupture behavior of the East Anatolian Fault, Geophysical Research Letters 47, e2020GL088136
  • Ragon T., Simons M., Bletery Q., Cavalie O., Fielding E., 2021. A stochastic view of the 2020 Elazig Mw 6.8 earthquake (Turkey), Geophysical Research Letters 48, e2020GL090704
  • Sadigh K., Chang C.Y., Egan J.A., Makdisi F., Youngs R.R., 1997. Attenuation relationships for shallow crustal earthquakes based on California strong motion data, Seismological research letters 68(1), 180-189
  • Sertçelik F., 2012. Estimation of coda wave attenuation in the east Anatolia fault zone, Turkey, Pure and applied Geophysics 169(7), 1189-1204
  • Stanko D., Markusic S., 2020. An empirical relationship between resonance frequency, bedrock depth and VS30 for Croatia based on HVSR forward modelling, Natural Hazards 103(3), 3715-3743
  • Subasi O., Hasal M.E., Ozaslan B., Iyisan R., 2019. Yamanaka, H., Chimoto, K., Bir Boyutlu Dinamik Analiz ve Mikrotremor Ölçüm Sonuçlarının Karşılaştırılması, Teknik Dergi 30(5), 9459-9481
  • Şahin Ş., Öksüm E., 2021. The Relation of Seismic Velocity and Attenuation Pattern in the East Anatolian Fault Zone with Earthquake Occurrence: Example of January 24, 2020 Sivrice Earthquake, Maden Tetkik ve Arama Dergisi 164, 1-26
  • Şaroglu F., Emre O., Kusçu I., 1992. The East Anatolian fault zone of Turkey, Annales Tectonicae 99-125 (Special Issue-Supplement to Volume VI)
  • TADAS, 2020. Türkiye İvme Veritabanı ve Analiz Sistemi, AFAD. Erişim adresi: https://tadas.afad.gov.tr
  • Taymaz T., Ganas A., Yolsal-Cevikbilen S., Vera F., Eken T., Erman C., Keles D., Kapetanidis V., Valkaniotis S., Karasante I., Tsironi V., Gaebler P., Melgar D., Ocalan T., 2021. Source Mechanism and Rupture Process of the 24 January 2020 Mw 6.7 Doganyol-Sivrice Earthquake obtained from Seismological Waveform Analysis and Space Geodetic Observations on the East Anatolian Fault Zone (Turkey), Tectonophysics 804, 228745
  • TBDY, 2018. Türkiye Bina Deprem Yönetmeliği, Afet ve Acil Durum Yönetimi Başkanlığı, Ankara.
  • TDTH, 2018. Türkiye Deprem Tehlike Haritaları İnteraktif Web Uygulaması. Erişim adresi: tdth.afad.gov.tr
  • Wathelet M., Chatelain J.L., Cornou C., Di Giulio G., Guillier B., Ohrnberger M., Savvaidis A., 2020. Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing, Seismological Research Letters 91(3), 1878-1889
  • Xu J., Liu C., Xiong X., 2020. Source Process of the 24 January 2020 Mw 6.7 East Anatolian Fault Zone, Turkey, Earthquake, Seismological Society of America 91(6), 3120-3128
  • Yalcinkaya E., Alptekin O., 2005. Site effect and its relationship to the intensity and damage observed in the June 27, 1998 Adana-Ceyhan earthquake, Pure and Applied Geophysics 162(5), 913-930
  • Zülfikar A.C., 2020. 24 Ocak 2020. Elazığ Depreminin Kuvvetli Yer Hareketi Verilerinin Değerlendirilmesi, Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35(3), 821-834
There are 68 citations in total.

Details

Primary Language Turkish
Subjects Engineering, Geological Sciences and Engineering (Other), Geology (Other)
Journal Section Articles
Authors

Erdem Bayrak 0000-0001-9907-1463

Çağlar Özer 0000-0001-5401-2013

Hamit Çakıcı 0000-0003-1743-676X

Mustafa Engin Kocadağistan 0000-0001-6298-0348

Publication Date December 20, 2021
Submission Date September 30, 2021
Published in Issue Year 2021

Cite

APA Bayrak, E., Özer, Ç., Çakıcı, H., Kocadağistan, M. E. (2021). 24 Ocak 2020 Sivrice (Türkiye) Depremi (Mw 6.8): Yer Hareketi Tahmin Denklemlerinin Değerlendirilmesi ve Mikrotremor Çalışmaları. Türk Deprem Araştırma Dergisi, 3(2), 125-148. https://doi.org/10.46464/tdad.1003057
AMA Bayrak E, Özer Ç, Çakıcı H, Kocadağistan ME. 24 Ocak 2020 Sivrice (Türkiye) Depremi (Mw 6.8): Yer Hareketi Tahmin Denklemlerinin Değerlendirilmesi ve Mikrotremor Çalışmaları. TDAD. December 2021;3(2):125-148. doi:10.46464/tdad.1003057
Chicago Bayrak, Erdem, Çağlar Özer, Hamit Çakıcı, and Mustafa Engin Kocadağistan. “24 Ocak 2020 Sivrice (Türkiye) Depremi (Mw 6.8): Yer Hareketi Tahmin Denklemlerinin Değerlendirilmesi Ve Mikrotremor Çalışmaları”. Türk Deprem Araştırma Dergisi 3, no. 2 (December 2021): 125-48. https://doi.org/10.46464/tdad.1003057.
EndNote Bayrak E, Özer Ç, Çakıcı H, Kocadağistan ME (December 1, 2021) 24 Ocak 2020 Sivrice (Türkiye) Depremi (Mw 6.8): Yer Hareketi Tahmin Denklemlerinin Değerlendirilmesi ve Mikrotremor Çalışmaları. Türk Deprem Araştırma Dergisi 3 2 125–148.
IEEE E. Bayrak, Ç. Özer, H. Çakıcı, and M. E. Kocadağistan, “24 Ocak 2020 Sivrice (Türkiye) Depremi (Mw 6.8): Yer Hareketi Tahmin Denklemlerinin Değerlendirilmesi ve Mikrotremor Çalışmaları”, TDAD, vol. 3, no. 2, pp. 125–148, 2021, doi: 10.46464/tdad.1003057.
ISNAD Bayrak, Erdem et al. “24 Ocak 2020 Sivrice (Türkiye) Depremi (Mw 6.8): Yer Hareketi Tahmin Denklemlerinin Değerlendirilmesi Ve Mikrotremor Çalışmaları”. Türk Deprem Araştırma Dergisi 3/2 (December 2021), 125-148. https://doi.org/10.46464/tdad.1003057.
JAMA Bayrak E, Özer Ç, Çakıcı H, Kocadağistan ME. 24 Ocak 2020 Sivrice (Türkiye) Depremi (Mw 6.8): Yer Hareketi Tahmin Denklemlerinin Değerlendirilmesi ve Mikrotremor Çalışmaları. TDAD. 2021;3:125–148.
MLA Bayrak, Erdem et al. “24 Ocak 2020 Sivrice (Türkiye) Depremi (Mw 6.8): Yer Hareketi Tahmin Denklemlerinin Değerlendirilmesi Ve Mikrotremor Çalışmaları”. Türk Deprem Araştırma Dergisi, vol. 3, no. 2, 2021, pp. 125-48, doi:10.46464/tdad.1003057.
Vancouver Bayrak E, Özer Ç, Çakıcı H, Kocadağistan ME. 24 Ocak 2020 Sivrice (Türkiye) Depremi (Mw 6.8): Yer Hareketi Tahmin Denklemlerinin Değerlendirilmesi ve Mikrotremor Çalışmaları. TDAD. 2021;3(2):125-48.

AÇIK ERİŞİM ve LİSANS


Bu derginin içeriği Creative Commons Attribution 4.0 International Non-Commercial License'a tabidir.




Flag Counter