Research Article
BibTex RIS Cite

Analysis of energy and exergy of a thermal storage system using multiple phase change material

Year 2025, Volume: 11 Issue: 4, 1160 - 1175, 31.07.2025

Abstract

A practical method for balancing supply and demand in renewable energy is cascade latent thermal storage. Thermal energy storage (TES) systems with phase change material (PCM) store energy at different temperature levels. This study aims to present the comparative energy and exergy efficiency analysis of single PCM and multipletemperature PCM TES using different PCM in a temperature range of 100-200°C. The analysis is carried out in three configurations: 1) single PCM with Hydroquinone, 2) single PCM with Catechol, and 3) Multipletemperature PCMs with Hydroquinone and Catechol. In the first and second configurations, heat transfer fluid, i.e. therminol 66, flows in their respective individual PCM tanks and analysis is carried out. In the third configuration, i.e. multitemperature PCMs, heat transfer fluid (HTF) flows in descending order of respective melting point. Energy and exergy efficiency were analysed regarding temperature and time during the charging and discharging cycles. From the analysis, the overall exergy efficiency using Hydroquinone and Catechol as PCM in the TES system in cascading is 38.57%, which is relatively higher than the exergy values of the single PCM, which indicates that by providing multigrade thermal energies, multiple PCMs can increase thermal performance while also expanding the thermal energy’s application scope.

References

  • [1] Thomas DG, Babu SC, Gopi S. Performance analysis of a latent heat thermal energy storage system for solar energy applications. Procedia Technol 2016;24:469–476. [CrossRef]
  • [2] Hobold GM, da Silva AK. Critical phenomena and their effect on thermal energy storage in supercritical fluids. Appl Energy 2017;205:1447–1458. [CrossRef]
  • [3] Caron SA, Fourmigué JF, Marty P, Couturier R. Performance analysis of thermal energy storage systems using phase change material. Appl Therm Eng 2016;98:1286–1296. [CrossRef]
  • [4] Mosaffa AH, Farshi GL, Ferreira ICA, Rosen MA. Energy and exergy evaluation of a multiple-PCM thermal storage unit for free cooling applications. Renew Energy 2014;68:452–458. [CrossRef]
  • [5] Shamsi H, Boroushaki M, Geraei H. Performance evaluation and optimization of encapsulated cascade PCM thermal storage. J Energy Storage 2017;11:64–75. [CrossRef]
  • [6] Gong ZX, Mujumdar AS. Thermodynamic optimization of the thermal process in energy storage using multiple phase change materials. Appl Therm Eng 1997;17:1067–1083. [CrossRef]
  • [7] Raja AG, Natarajan R, Gaikwad PR, Basil E, Borse SD, Sundararaj M. Heat enhancement in solar flat plate collectors – A review. J Therm Eng 2024;10:773–789. [CrossRef]
  • [8] Nwosu EC, Nsofor K, Nwaji GN, Ononogbo C, Ofong I, Ogueke NV, et al. Extended experimental investigation of a double-effect active solar still with a paraffin wax, in Owerri, Nigeria. J Therm Eng 2023;9:1189–1207. [CrossRef]
  • [9] Solomon L, Oztekin A. Exergy analysis of cascaded encapsulated phase change material—High-temperature thermal energy storage systems. J Energy Storage 2016;8:12–26. [CrossRef]
  • [10] Bellan S, Aguilar GJ, Romero M, Rahman MM, Goswami DY, Stefanakos EK. Numerical investigation of pcm-based thermal energy storage system. Energy Procedia 2015;69:758–768. [CrossRef]
  • [11] Alva G, Liu L, Huang X, Fang G. Thermal energy storage materials and systems for solar energy applications. Renew Sustain Energy Rev 2017;68:693–706. [CrossRef]
  • [12] Kant K, Shukla A, Sharma A. Advancement in phase change materials for thermal energy storage applications. Sol Energy Mater Sol Cells 2017;172:82–92. [CrossRef]
  • [13] Pelay U, Luo L, Fan Y, Stitou D, Rood M. Thermal energy storage systems for concentrated solar power plants. Renew Sustain Energy Rev 2017;79:82–100. [CrossRef]
  • [14] Tyagi V, Pandey DA, Buddhi D, Tyagi S. Exergy and energy analyses of two different types of PCM based thermal management systems for space air conditioning applications. Energy Convers Manag 2013;69:1–8. [CrossRef]
  • [15] Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 2009;13:318–345. [CrossRef]
  • [16] Malik MS, Iftikhar N, Wadood A, Khan MO, Asghar MU, Khan S, et al. Design and fabrication of solar thermal energy storage system using potash alum as a PCM. Energies 2020;13:6169. [CrossRef]
  • [17] Mahfuz MH, Kamyar A, Afshar O, Sarraf M, Anisur MR, Kibria MA, et al. Exergetic analysis of a solar thermal power system with PCM storage. Energy Convers Manag 2014;78:486–492. [CrossRef]
  • [18] Aldoss TK, Rahman MM. Comparison between the single-PCM and multi-PCM thermal energy storage design. Energy Convers Manag 2014;83:79–87. [CrossRef]
  • [19] Xu HJ, Zhao CY. Thermal performance of cascaded thermal storage with phase-change materials (PCMs). Part I: Steady cases. Int J Heat Mass Transf 2017;106:932–944. [CrossRef]
  • [20] Gharde PR, Havaldar SN. Numerical investigation of an amalgamation of two phase change materials thermal energy storage system. J Therm Eng 2022;10:263–272. [CrossRef]
  • [21] Zohra MB, Riad A, Alhamany A, Sennoune M, Mansouri M. Improvement of thermal energy storage by integrating pcm into solar system. J Therm Eng 2020;6:816–828. [CrossRef]
  • [22] Beemkumar N, Karthikeyan A, Yuvarajan D, Lakshmi Sankar S. Experimental investigation on improving the heat transfer of cascaded thermal storage system using different fins. Arab J Sci Eng 2017;42:2055–2065. [CrossRef]
  • [23] Arulprakasajothi M, Beemkumar N, Parthipan J, Battu N raju. Investigating the physio-chemical properties of densified biomass pellet fuels from fruit and vegetable market waste. Arab J Sci Eng 2020;45:563–574. [CrossRef]
  • [24] Sansaniwal S, Sharma V, Mathur J. Energy and exergy analyses of various typical solar energy applications: A comprehensive review. Renew Sustain Energy Rev 2017;82:1576–1601. [CrossRef]
  • [25] Xu Y, He YL, Li YQ, Song HJ. Exergy analysis and optimization of charging–discharging processes of latent heat thermal energy storage system with three phase change materials. Sol Energy 2016;123:206–216. [CrossRef]
  • [26] Li YQ, He YL, Wang ZF, Xu C, Wang W. Exergy analysis of two phase change materials storage system for solar thermal power with finite-time thermodynamics. Renew Energy 2012;39:447–454. [CrossRef]
  • [27] Gil A, Oró E, Miró L, Peiró G, Ruiz Á, Salmerón JM, et al. Experimental analysis of hydroquinone used as phase change material (PCM) to be applied in solar cooling refrigeration. Int J Refrig 2014;39:95–103. [CrossRef]
  • [28] Jayathunga DS, Karunathilake HP, Narayana M, Witharana S. Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review. Renew Sustain Energy Rev 2024;189:113904. [CrossRef]
  • [29] Nagappan B, Alagu K, Devarajan Y, Munuswamy DB. Energy and exergy analysis of multi-temperature pcms employed in a latent heat storage system and parabolic trough collector. J Non-Equilibrium Thermodyn 2018;43:211–220. [CrossRef]
  • [30] Sheik MA, Aravindan MK, Beemkumar N, Chaurasiya PK, Dhanraj JA. Enhancement of heat transfer in PEG 1000 using nano-phase change material for thermal energy storage. Arab J Sci Eng 2022;47:15899–15913. [CrossRef]
  • [31] Jegadheeswaran S, Pohekar SD, Kousksou T. Exergy based performance evaluation of latent heat thermal storage system: A review. Renew Sustain Energy Rev 2010;14:2580–2595. [CrossRef]
There are 31 citations in total.

Details

Primary Language English
Subjects Aerodynamics (Excl. Hypersonic Aerodynamics)
Journal Section Articles
Authors

Jayaprakash V This is me 0000-0003-1273-2981

Ganesan S 0000-0003-4989-9080

Beemkumar N This is me

Sunil Kumar M This is me 0000-0001-9054-4279

Publication Date July 31, 2025
Submission Date May 7, 204
Published in Issue Year 2025 Volume: 11 Issue: 4

Cite

APA V, J., S, G., N, B., M, S. K. (2025). Analysis of energy and exergy of a thermal storage system using multiple phase change material. Journal of Thermal Engineering, 11(4), 1160-1175. https://doi.org/10.14744/thermal.0000958
AMA V J, S G, N B, M SK. Analysis of energy and exergy of a thermal storage system using multiple phase change material. Journal of Thermal Engineering. July 2025;11(4):1160-1175. doi:10.14744/thermal.0000958
Chicago V, Jayaprakash, Ganesan S, Beemkumar N, and Sunil Kumar M. “Analysis of Energy and Exergy of a Thermal Storage System Using Multiple Phase Change Material”. Journal of Thermal Engineering 11, no. 4 (July 2025): 1160-75. https://doi.org/10.14744/thermal.0000958.
EndNote V J, S G, N B, M SK (July 1, 2025) Analysis of energy and exergy of a thermal storage system using multiple phase change material. Journal of Thermal Engineering 11 4 1160–1175.
IEEE J. V, G. S, B. N, and S. K. M, “Analysis of energy and exergy of a thermal storage system using multiple phase change material”, Journal of Thermal Engineering, vol. 11, no. 4, pp. 1160–1175, 2025, doi: 10.14744/thermal.0000958.
ISNAD V, Jayaprakash et al. “Analysis of Energy and Exergy of a Thermal Storage System Using Multiple Phase Change Material”. Journal of Thermal Engineering 11/4 (July2025), 1160-1175. https://doi.org/10.14744/thermal.0000958.
JAMA V J, S G, N B, M SK. Analysis of energy and exergy of a thermal storage system using multiple phase change material. Journal of Thermal Engineering. 2025;11:1160–1175.
MLA V, Jayaprakash et al. “Analysis of Energy and Exergy of a Thermal Storage System Using Multiple Phase Change Material”. Journal of Thermal Engineering, vol. 11, no. 4, 2025, pp. 1160-75, doi:10.14744/thermal.0000958.
Vancouver V J, S G, N B, M SK. Analysis of energy and exergy of a thermal storage system using multiple phase change material. Journal of Thermal Engineering. 2025;11(4):1160-75.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering