Research Article
BibTex RIS Cite

Performance of Mylar and Teflon as compound parabolic concentrators in solar desalination system

Year 2025, Volume: 11 Issue: 5, 1327 - 1338, 21.10.2025

Abstract

The water-energy nexus is an important and difficult issue and must be resolved for present and also for the future. The process of producing freshwater requires a lot of energy, therefore a workable solution to this issue is crucial. In the current situation, solar energy is one of the best options for desalination as it is inexpensive, environment friendly, and widely accessible. In general, flat plate collectors and evacuated tube collectors have been used as solar collector for desalination. In this study, a single-stage hybrid groundwater solar desalination system has been used for experimental investigation. Compound parabolic concentrator is positioned to gather solar radiations and transfer heat to evacuated tubes, for improving the performance under various weather conditions in Pune, India. The ideal distance between evacuated tube collector and compound parabolic concentrator was 20 mm. The current study primarily fo-cuses on the performance of two polymeric materials, Teflon and Mylar, as reflector, on the rate of soft water production. It was observed that when mylar was used reflecting material the rate of soft water production amounts to be 3.5 litres per day whereas teflon was used as reflecting material the rate of soft water prodcution amounts to be 3.0 litres respectively. As per the validation of results for hybrid solar desalination system gives better results than solar-wind hybrid energy system. Thus Mylar shows more promising result than Teflon for production of soft water. It shows 20 % increase soft water production using mylar material on compound parabolic concentrator as comparied to the teflon.

References

  • [1] Ghorbani B, Mehrpooya M, Sadeghzadeh M. Developing a tri-generation system of power, heating, and freshwater (for an industrial town) by using solar flat plate collectors, multi-stage desalination unit, and Kalina power generation cycle. Energy Convers Manag 2018;165:113–126. [CrossRef]
  • [2] Baci AB, Salmi M, Menni Y, Ghafourian S, Sadeghzadeh M, Ghalandari M. A new configuration of vertically connecting solar cells: solar tree. Int J Photoenergy 2020;2020:8817440. [CrossRef]
  • [3] Ahmadi MH, Sayyaadi H, Mohammadi AH, Barranco-Jimenez MA. Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm. Energy Convers Manag 2013;73:370–380. [CrossRef]
  • [4] Kalogirou SA. Seawater desalination using renewable energy sources. Prog Energy Combust Sci 2005;31:242–281. [CrossRef]
  • [5] Ali MT, Fath HES, Armstrong PR. A comprehensive techno-economical review of indirect solar desalination. Renew Sustain Energy Rev 2011;15:4187–4199. [CrossRef]
  • [6] Kedar SA, Bewoor AK, Murali G, Kumar R, Sadeghzadeh M, Issakhov A. Effect of reflecting material on CPC to improve the performance of hybrid groundwater solar desalination system. Int J Photoenergy 2021;2021:6675236. [CrossRef]
  • [7] Moungar H, Ahmed A, Youcef S, Aabdelkrim H. Immersed fins influence on the double slope solar still production in south Algeria climatic condition. Int J Heat Technol 2017;35:1065–1071. [CrossRef]
  • [8] Sathyamurthy R, Nagarajan P, Edwin M, et al. Experimental investigations on conventional solar still with sand heat energy storage. Int J Heat Technol 2016;34:597–603. [CrossRef]
  • [9] Morad MM, El-Maghawry HAM, Wasfy KI. Improving the double slope solar still performance by using flat-plate solar collector and cooling glass cover. Desalination 2015;373:1–9. [CrossRef]
  • [10] Bhambare PS, Majumder MC, Sudhir CV. Solar thermal desalination: a sustainable alternative for Sultanate of Oman. Int J Renew Energy Resour 2018;8:733–751.
  • [11] Al-Nimr MA, Kiwan SM, Talafha S. Hybrid solar wind water desalination system. Desalination 2016;395:33–40. [CrossRef]
  • [12] Trieb F, Müller-Steinhagen H. Concentrating solar power for seawater desalination in the Middle East and North Africa. Desalination 2008;220:165–183. [CrossRef]
  • [13] Sayed ET, Olabi AG, Elsaid K, Al Radi M, Alqadi R, Abdelkareem MA. Recent progress in renewable energy based-desalination in the Middle East and North Africa (MENA) region. J Adv Res 2023;48:125–156. [CrossRef]
  • [14] Grosu L, Mathieu A, Rochelle P, Feidt M, Ahmadi MH, Sadeghzadeh M. Steady state operation exergy-based optimization for solar thermal collectors. Environ Prog Sustain Energy 2020;39. [CrossRef]
  • [15] Sadeghzadeh M, Ahmadi MH, Kahani M, Sakhaeinia H, Chaji H, Chen L. Smart modeling by using artificial intelligent techniques on thermal performance of flat-plate solar collector using nanofluid. Energy Sci Eng 2019;7:1649–1658. [CrossRef]
  • [16] Olia H, Torabi M, Bahiraei M, Ahmadi MH, Goodarzi M, Safaei MR. Application of nanofluids in thermal performance enhancement of parabolic trough solar collector: state-of-the-art. Appl Sci 2019;9:463. [CrossRef]
  • [17] Loni R, Kasaeian A, Shahverdi K, Askari Asli-Ardeh E, Ghobadian B, Ahmadi MH. ANN model to predict the performance of parabolic dish collector with tubular cavity receiver. Mech Ind 2017;18:408. [CrossRef]
  • [18] Jilte R, Ahmadi MH, Kalamkar V, Kumar R. Solar flux distribution study in heat pipe cavity receiver integrated with biomass gasifier. Int J Energy Res 2020;44:7698–7712.
  • [19] Rafiei R, Loni R, Ahmadi MH, Najafi G, Bellos E, Rajaee F, et al. Sensitivity analysis of a parabolic trough concentrator with linear V-shape cavity. Energy Sci Eng 2020;8:3544–3560. [CrossRef]
  • [20] Sampathkumar K, Arjunan TV, Pitchandi P, Senthilkumar P. Active solar distillation – a detailed review. Renew Sustain Energy Rev 2010;14:1503–1526. [CrossRef]
  • [21] Siddiqui FR, Elminshawy NAS, Addas MF. Design and performance improvement of a solar desalination system by using solar air heater: experimental and theoretical approach. Desalination 2016;399:78–87. [CrossRef]
  • [22] Kabeel E, El-Said EMS. A hybrid solar desalination system of air humidification, dehumidification and water flashing evaporation: part II. Experimental investigation. Desalination 2014;341:50–60. [CrossRef]
  • [23] Sapre M, Auti A, Singh T. Design and manufacturing of absorber for solar desalination system. Appl Mech Mater 2013;446–447:716–720. [CrossRef]
  • [24] Zheng H, Chang Z, Chen Z, Xie G, Wang H. Experimental investigation and performance analysis on a group of multi-effect tubular solar desalination devices. Desalination 2013;311:62–68. [CrossRef]
  • [25] Khalil S, El-Agouz SA, El-Samadony YAF, Abdo A. Solar water desalination using an air bubble column humidifier. Desalination 2015;372:7–16. [CrossRef]
  • [26] Ahmed MI, Hrairi M, Ismail AF. On the characteristics of multistage evacuated solar distillation. Renew Energy 2009;34:1471–1478. [CrossRef]
  • [27] Wu C, Li Z, Zhang J, Jia Y, Gao Q, Lu X. Study on the heat and mass transfer in air-bubbling enhanced vacuum membrane distillation. Desalination 2015;373:16–26. [CrossRef]
  • [28] Jahangiri Mamouri S, Gholami Derami H, Ghiasi M, Shafii MB, Shiee Z. Experimental investigation of the effect of using thermosyphon heat pipes and vacuum glass on the performance of solar still. Energy 2014;75:501–507. [CrossRef]
  • [29] Dwivedi VK, Tiwari GN. Comparison of internal heat transfer coefficients in passive solar stills by different thermal models: an experimental validation. Desalination 2009;246:304–318. [CrossRef]
  • [30] Rahbar N, Esfahani J. Experimental study of a novel portable solar still by utilizing the heat pipe and thermoelectric module. Desalination 2012;284:55–61. [CrossRef]
  • [31] Kargar Sharif Abad H, Ghiasi M, Jahangiri Mamouri S, Shafii MB. A novel integrated solar desalination system with a pulsating heat pipe. Desalination 2013;311:206–210. [CrossRef]
  • [32] Hunashikatti PT, Suresh KR, Prathima B. Development of desalination unit using solar still coupled with evacuated tubes for domestic use in rural areas. Curr Sci 2014;107:1683–1693. [CrossRef]
  • [33] Kalogirou SA. Seawater desalination using renewable energy sources. Prog Energy Combust Sci 2005;31:242–281. [CrossRef]
  • [34] Rajput AK. Utility-based estimated solar radiation at destination Pune, Maharashtra, India. Int J Pure Appl Sci Technol 2012;13:19–26. [CrossRef]
  • [35] Liu XH. Thermal and economic analyses of solar desalination system with evacuate tube collector. Sol Energy 2013;93:144–150. [CrossRef]
  • [36] Ouali HAL, Soomro MI, Touili S, Merrouni AA. Assessment of direct contact membrane distillation system driven by parabolic trough collector plant technology for electricity and freshwater production: feasibility and benchmark under different Moroccan climates. Sustain Mater Technol 2024;39:e00818. [CrossRef]
  • [37] Kalista B, Shin H, Cho J, Jang A. Current development and future prospect review of freeze desalination. Desalination 2018;447:167–181. [CrossRef]
  • [38] Sun Q, Mao Y, Wu L. Research progress on the integration and optimal design of desalination process. Sep Purif Technol 2024;337:126423. [CrossRef]
  • [39] Panagopoulos A. A comparative study on minimum and actual energy consumption for the treatment of desalination brine. Energy 2020;212:118733. [CrossRef]
  • [40] Zhao D, Deng S, Shao Y, Zhao L, Lu P, Su W. A new energy analysis model of seawater desalination based on thermodynamics. Energy Procedia 2019;158:5472–5478. [CrossRef]
  • [41] Kedar S, Kumaravel AR, Bewoor AK. Experimental investigation of solar desalination system using evacuated tube collector. Int J Heat Technol 2019;37:527–532. [CrossRef]
  • [42] Kedar SA, Bewoor AK, Raj K. Design and analysis of solar desalination system using compound parabolic concentrator. IOP Conf Ser Mater Sci Eng 2018;455:012063. [CrossRef]
  • [43] Kedar SA, Bewoor AK, Madhusudan S. Solar desalination system using evacuated tube collector and compound parabolic concentrator – theoretical approach. In: Natl Conf Adv Electr Eng Energy Sci; 2016. p. 60–62.
  • [44] Kedar SA, Murali G, Bewoor AK. Mathematical modelling and analysis of hybrid solar desalination system using evacuated tube collector (ETC) and compound parabolic concentrator (CPC). Math Model Eng Probl 2021;8:45–51. [CrossRef]
  • [45] Kedar SA, Raj KA, Bewoor AK. Performance analysis of hybrid solar desalination system using ETC and CPC. SN Appl Sci 2019;1:1–17. [CrossRef]
  • [46] Kedar SA, Murali G, Bewoor AK. Effective hybrid solar groundwater desalination in rural areas. Int Trans J Eng Manag Appl Sci Technol 2021;12:1–10. [CrossRef]
  • [47] Kedar SA, Raj KA, Bewoor AK. Thermal analysis of solar desalination system using evacuated tube collector. AIP Conf Proc 2018;2039:020061. [CrossRef]
  • [48] Kedar S, Bewoor A, Murali G, More GV, Roy A. Thermal analysis of sea water hybrid solar desalination system – an experimental approach. Int J Heat Technol 2024;42:1349–1358. [CrossRef]
  • [49] Tony MA, Nabwey HA. Recent advances in solar still technology for solar water desalination. Appl Water Sci 2024;14:147. [CrossRef]
  • [50] Elfaqih AK, Elbaz A, Akash YM. A review of solar photovoltaic-powered water desalination technologies. Sustain Water Resour Manag 2024;10:123. [CrossRef]

Year 2025, Volume: 11 Issue: 5, 1327 - 1338, 21.10.2025

Abstract

References

  • [1] Ghorbani B, Mehrpooya M, Sadeghzadeh M. Developing a tri-generation system of power, heating, and freshwater (for an industrial town) by using solar flat plate collectors, multi-stage desalination unit, and Kalina power generation cycle. Energy Convers Manag 2018;165:113–126. [CrossRef]
  • [2] Baci AB, Salmi M, Menni Y, Ghafourian S, Sadeghzadeh M, Ghalandari M. A new configuration of vertically connecting solar cells: solar tree. Int J Photoenergy 2020;2020:8817440. [CrossRef]
  • [3] Ahmadi MH, Sayyaadi H, Mohammadi AH, Barranco-Jimenez MA. Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm. Energy Convers Manag 2013;73:370–380. [CrossRef]
  • [4] Kalogirou SA. Seawater desalination using renewable energy sources. Prog Energy Combust Sci 2005;31:242–281. [CrossRef]
  • [5] Ali MT, Fath HES, Armstrong PR. A comprehensive techno-economical review of indirect solar desalination. Renew Sustain Energy Rev 2011;15:4187–4199. [CrossRef]
  • [6] Kedar SA, Bewoor AK, Murali G, Kumar R, Sadeghzadeh M, Issakhov A. Effect of reflecting material on CPC to improve the performance of hybrid groundwater solar desalination system. Int J Photoenergy 2021;2021:6675236. [CrossRef]
  • [7] Moungar H, Ahmed A, Youcef S, Aabdelkrim H. Immersed fins influence on the double slope solar still production in south Algeria climatic condition. Int J Heat Technol 2017;35:1065–1071. [CrossRef]
  • [8] Sathyamurthy R, Nagarajan P, Edwin M, et al. Experimental investigations on conventional solar still with sand heat energy storage. Int J Heat Technol 2016;34:597–603. [CrossRef]
  • [9] Morad MM, El-Maghawry HAM, Wasfy KI. Improving the double slope solar still performance by using flat-plate solar collector and cooling glass cover. Desalination 2015;373:1–9. [CrossRef]
  • [10] Bhambare PS, Majumder MC, Sudhir CV. Solar thermal desalination: a sustainable alternative for Sultanate of Oman. Int J Renew Energy Resour 2018;8:733–751.
  • [11] Al-Nimr MA, Kiwan SM, Talafha S. Hybrid solar wind water desalination system. Desalination 2016;395:33–40. [CrossRef]
  • [12] Trieb F, Müller-Steinhagen H. Concentrating solar power for seawater desalination in the Middle East and North Africa. Desalination 2008;220:165–183. [CrossRef]
  • [13] Sayed ET, Olabi AG, Elsaid K, Al Radi M, Alqadi R, Abdelkareem MA. Recent progress in renewable energy based-desalination in the Middle East and North Africa (MENA) region. J Adv Res 2023;48:125–156. [CrossRef]
  • [14] Grosu L, Mathieu A, Rochelle P, Feidt M, Ahmadi MH, Sadeghzadeh M. Steady state operation exergy-based optimization for solar thermal collectors. Environ Prog Sustain Energy 2020;39. [CrossRef]
  • [15] Sadeghzadeh M, Ahmadi MH, Kahani M, Sakhaeinia H, Chaji H, Chen L. Smart modeling by using artificial intelligent techniques on thermal performance of flat-plate solar collector using nanofluid. Energy Sci Eng 2019;7:1649–1658. [CrossRef]
  • [16] Olia H, Torabi M, Bahiraei M, Ahmadi MH, Goodarzi M, Safaei MR. Application of nanofluids in thermal performance enhancement of parabolic trough solar collector: state-of-the-art. Appl Sci 2019;9:463. [CrossRef]
  • [17] Loni R, Kasaeian A, Shahverdi K, Askari Asli-Ardeh E, Ghobadian B, Ahmadi MH. ANN model to predict the performance of parabolic dish collector with tubular cavity receiver. Mech Ind 2017;18:408. [CrossRef]
  • [18] Jilte R, Ahmadi MH, Kalamkar V, Kumar R. Solar flux distribution study in heat pipe cavity receiver integrated with biomass gasifier. Int J Energy Res 2020;44:7698–7712.
  • [19] Rafiei R, Loni R, Ahmadi MH, Najafi G, Bellos E, Rajaee F, et al. Sensitivity analysis of a parabolic trough concentrator with linear V-shape cavity. Energy Sci Eng 2020;8:3544–3560. [CrossRef]
  • [20] Sampathkumar K, Arjunan TV, Pitchandi P, Senthilkumar P. Active solar distillation – a detailed review. Renew Sustain Energy Rev 2010;14:1503–1526. [CrossRef]
  • [21] Siddiqui FR, Elminshawy NAS, Addas MF. Design and performance improvement of a solar desalination system by using solar air heater: experimental and theoretical approach. Desalination 2016;399:78–87. [CrossRef]
  • [22] Kabeel E, El-Said EMS. A hybrid solar desalination system of air humidification, dehumidification and water flashing evaporation: part II. Experimental investigation. Desalination 2014;341:50–60. [CrossRef]
  • [23] Sapre M, Auti A, Singh T. Design and manufacturing of absorber for solar desalination system. Appl Mech Mater 2013;446–447:716–720. [CrossRef]
  • [24] Zheng H, Chang Z, Chen Z, Xie G, Wang H. Experimental investigation and performance analysis on a group of multi-effect tubular solar desalination devices. Desalination 2013;311:62–68. [CrossRef]
  • [25] Khalil S, El-Agouz SA, El-Samadony YAF, Abdo A. Solar water desalination using an air bubble column humidifier. Desalination 2015;372:7–16. [CrossRef]
  • [26] Ahmed MI, Hrairi M, Ismail AF. On the characteristics of multistage evacuated solar distillation. Renew Energy 2009;34:1471–1478. [CrossRef]
  • [27] Wu C, Li Z, Zhang J, Jia Y, Gao Q, Lu X. Study on the heat and mass transfer in air-bubbling enhanced vacuum membrane distillation. Desalination 2015;373:16–26. [CrossRef]
  • [28] Jahangiri Mamouri S, Gholami Derami H, Ghiasi M, Shafii MB, Shiee Z. Experimental investigation of the effect of using thermosyphon heat pipes and vacuum glass on the performance of solar still. Energy 2014;75:501–507. [CrossRef]
  • [29] Dwivedi VK, Tiwari GN. Comparison of internal heat transfer coefficients in passive solar stills by different thermal models: an experimental validation. Desalination 2009;246:304–318. [CrossRef]
  • [30] Rahbar N, Esfahani J. Experimental study of a novel portable solar still by utilizing the heat pipe and thermoelectric module. Desalination 2012;284:55–61. [CrossRef]
  • [31] Kargar Sharif Abad H, Ghiasi M, Jahangiri Mamouri S, Shafii MB. A novel integrated solar desalination system with a pulsating heat pipe. Desalination 2013;311:206–210. [CrossRef]
  • [32] Hunashikatti PT, Suresh KR, Prathima B. Development of desalination unit using solar still coupled with evacuated tubes for domestic use in rural areas. Curr Sci 2014;107:1683–1693. [CrossRef]
  • [33] Kalogirou SA. Seawater desalination using renewable energy sources. Prog Energy Combust Sci 2005;31:242–281. [CrossRef]
  • [34] Rajput AK. Utility-based estimated solar radiation at destination Pune, Maharashtra, India. Int J Pure Appl Sci Technol 2012;13:19–26. [CrossRef]
  • [35] Liu XH. Thermal and economic analyses of solar desalination system with evacuate tube collector. Sol Energy 2013;93:144–150. [CrossRef]
  • [36] Ouali HAL, Soomro MI, Touili S, Merrouni AA. Assessment of direct contact membrane distillation system driven by parabolic trough collector plant technology for electricity and freshwater production: feasibility and benchmark under different Moroccan climates. Sustain Mater Technol 2024;39:e00818. [CrossRef]
  • [37] Kalista B, Shin H, Cho J, Jang A. Current development and future prospect review of freeze desalination. Desalination 2018;447:167–181. [CrossRef]
  • [38] Sun Q, Mao Y, Wu L. Research progress on the integration and optimal design of desalination process. Sep Purif Technol 2024;337:126423. [CrossRef]
  • [39] Panagopoulos A. A comparative study on minimum and actual energy consumption for the treatment of desalination brine. Energy 2020;212:118733. [CrossRef]
  • [40] Zhao D, Deng S, Shao Y, Zhao L, Lu P, Su W. A new energy analysis model of seawater desalination based on thermodynamics. Energy Procedia 2019;158:5472–5478. [CrossRef]
  • [41] Kedar S, Kumaravel AR, Bewoor AK. Experimental investigation of solar desalination system using evacuated tube collector. Int J Heat Technol 2019;37:527–532. [CrossRef]
  • [42] Kedar SA, Bewoor AK, Raj K. Design and analysis of solar desalination system using compound parabolic concentrator. IOP Conf Ser Mater Sci Eng 2018;455:012063. [CrossRef]
  • [43] Kedar SA, Bewoor AK, Madhusudan S. Solar desalination system using evacuated tube collector and compound parabolic concentrator – theoretical approach. In: Natl Conf Adv Electr Eng Energy Sci; 2016. p. 60–62.
  • [44] Kedar SA, Murali G, Bewoor AK. Mathematical modelling and analysis of hybrid solar desalination system using evacuated tube collector (ETC) and compound parabolic concentrator (CPC). Math Model Eng Probl 2021;8:45–51. [CrossRef]
  • [45] Kedar SA, Raj KA, Bewoor AK. Performance analysis of hybrid solar desalination system using ETC and CPC. SN Appl Sci 2019;1:1–17. [CrossRef]
  • [46] Kedar SA, Murali G, Bewoor AK. Effective hybrid solar groundwater desalination in rural areas. Int Trans J Eng Manag Appl Sci Technol 2021;12:1–10. [CrossRef]
  • [47] Kedar SA, Raj KA, Bewoor AK. Thermal analysis of solar desalination system using evacuated tube collector. AIP Conf Proc 2018;2039:020061. [CrossRef]
  • [48] Kedar S, Bewoor A, Murali G, More GV, Roy A. Thermal analysis of sea water hybrid solar desalination system – an experimental approach. Int J Heat Technol 2024;42:1349–1358. [CrossRef]
  • [49] Tony MA, Nabwey HA. Recent advances in solar still technology for solar water desalination. Appl Water Sci 2024;14:147. [CrossRef]
  • [50] Elfaqih AK, Elbaz A, Akash YM. A review of solar photovoltaic-powered water desalination technologies. Sustain Water Resour Manag 2024;10:123. [CrossRef]
There are 50 citations in total.

Details

Primary Language English
Subjects Aerodynamics (Excl. Hypersonic Aerodynamics)
Journal Section Articles
Authors

Shridhar Kedar This is me 0000-0001-9920-9450

Deepak Watvisave This is me 0000-0001-7263-115X

Prerna Mishra This is me 0000-0003-4518-1469

Ganesh Vijay More This is me 0000-0001-7873-6489

Adarsh Abi Mathew This is me 0000-0002-5580-5717

Neeta Mandhare This is me 0000-0002-4315-0207

Sumedh Ingle This is me 0000-0001-5297-4403

Publication Date October 21, 2025
Submission Date July 15, 2024
Acceptance Date December 18, 2024
Published in Issue Year 2025 Volume: 11 Issue: 5

Cite

APA Kedar, S., Watvisave, D., Mishra, P., … Vijay More, G. (2025). Performance of Mylar and Teflon as compound parabolic concentrators in solar desalination system. Journal of Thermal Engineering, 11(5), 1327-1338. https://doi.org/10.14744/thermal.0000979
AMA Kedar S, Watvisave D, Mishra P, et al. Performance of Mylar and Teflon as compound parabolic concentrators in solar desalination system. Journal of Thermal Engineering. October 2025;11(5):1327-1338. doi:10.14744/thermal.0000979
Chicago Kedar, Shridhar, Deepak Watvisave, Prerna Mishra, Ganesh Vijay More, Adarsh Abi Mathew, Neeta Mandhare, and Sumedh Ingle. “Performance of Mylar and Teflon As Compound Parabolic Concentrators in Solar Desalination System”. Journal of Thermal Engineering 11, no. 5 (October 2025): 1327-38. https://doi.org/10.14744/thermal.0000979.
EndNote Kedar S, Watvisave D, Mishra P, Vijay More G, Mathew AA, Mandhare N, Ingle S (October 1, 2025) Performance of Mylar and Teflon as compound parabolic concentrators in solar desalination system. Journal of Thermal Engineering 11 5 1327–1338.
IEEE S. Kedar, D. Watvisave, P. Mishra, G. Vijay More, A. A. Mathew, N. Mandhare, and S. Ingle, “Performance of Mylar and Teflon as compound parabolic concentrators in solar desalination system”, Journal of Thermal Engineering, vol. 11, no. 5, pp. 1327–1338, 2025, doi: 10.14744/thermal.0000979.
ISNAD Kedar, Shridhar et al. “Performance of Mylar and Teflon As Compound Parabolic Concentrators in Solar Desalination System”. Journal of Thermal Engineering 11/5 (October2025), 1327-1338. https://doi.org/10.14744/thermal.0000979.
JAMA Kedar S, Watvisave D, Mishra P, Vijay More G, Mathew AA, Mandhare N, Ingle S. Performance of Mylar and Teflon as compound parabolic concentrators in solar desalination system. Journal of Thermal Engineering. 2025;11:1327–1338.
MLA Kedar, Shridhar et al. “Performance of Mylar and Teflon As Compound Parabolic Concentrators in Solar Desalination System”. Journal of Thermal Engineering, vol. 11, no. 5, 2025, pp. 1327-38, doi:10.14744/thermal.0000979.
Vancouver Kedar S, Watvisave D, Mishra P, Vijay More G, Mathew AA, Mandhare N, et al. Performance of Mylar and Teflon as compound parabolic concentrators in solar desalination system. Journal of Thermal Engineering. 2025;11(5):1327-38.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering