Research Article
BibTex RIS Cite

Performance optimization of low-head vertical axis impulse turbine runners for nozzle angle, nozzle diameter, and nozzle standoff distance using response surface methodology

Year 2025, Volume: 11 Issue: 5, 1392 - 1419, 21.10.2025

Abstract

Pico-scale turbines, such as Turgo and Pelton, are site-specific and show variable performance under various operating and design parameters. Experimental investigation and response surface methodology were combined to optimize the geometrical parameters of Pelton and Turgo turbine runners in the present study. Low-cost, lightweight hybrid runners with 3D-printed buckets and aluminum runner discs with a vertical turbine axis were designed for low-head applications. Multivariate statistical evaluation and response surface methodology were con-ducted using Design Expert 13.0 software, with a central composite design applied to analyze results and optimize parameters through 80 test runs. Quadratic models describing the hydraulic efficiency characteristics of impulse turbine runners were developed via ANOVA. The study examined nozzle diameters (10-14 mm), angles (90°-95°), numbers (1 or 2), and standoff distances (40-60 mm). The optimized condition for the Turgo turbine runner was achieved with a 95° nozzle angle, 14 mm nozzle diameter, and a 40 mm standoff distance. The hydraulic efficiency of 66.19% is found, with significant model parameters having P-values below 0.0001. The findings indicated a maximum efficiency of 66.55% under optimized con-ditions, closely matching the proposed model with an error of 0.54%. Thus, the Turgo turbine is highly efficient and suitable for Pico hydro off-grid applications.

References

  • REFERENCES
  • [1] Gaiser K, Erickson P, Stroeve P, Delplanque JP. An experimental investigation of design parametcers for pico-hydro Turgo turbines using a response surface methodology. Renew Energy 2016;85:406–418. [CrossRef]
  • [2] McCarthy MJ, Molloy NA. Review of stability of liquid jets and the influence of nozzle design. Chem Eng J 1974;7:1–20. [CrossRef]
  • [3] Budiarso, Febriansyah D, Warjito, Adanta D. The effect of wheel and nozzle diameter ratio on the performance of a Turgo turbine with pico scale. Energy Rep 2020;:601–605. [CrossRef]
  • [4] Alomar OR, Abd HM, Salih MM, Ali FA. Performance analysis of Pelton turbine under different operating conditions: an experimental study. Ain Shams Eng J 2022;13:101684. [CrossRef]
  • [5] Kholifah N, Setyawan AC, Wijayanto DS, Widiastuti I, Saputro H. Performance of Pelton turbine for hydroelectric generation in varying design parameters. IOP Conf Ser Mater Sci Eng 2018;288:012108. [CrossRef]
  • [6] Huang F, Mi J, Li D, Wang R. Impinging performance of high-pressure water jets emitting from different nozzle orifice shapes. Geofluids 2020;2020:8831544. [CrossRef]
  • [7] Gupta V, Prasad V, Khare R. Effect of jet length on the performance of Pelton. Int J Mech Eng Technol 2016;11:11487–11494.
  • [8] Jung IH, Kim YS, Shin DH, Chung JT, Shin Y. Influence of spear needle eccentricity on jet quality in micro Pelton turbine for power generation. Energy 2019;175:58–65. [CrossRef]
  • [9] Zhang Z, Casey M. Experimental studies of the jet of a Pelton turbine. Proc Inst Mech Eng A J Power Energy 2007;221:1181–1192. [CrossRef]
  • [10] Cobb BR, Sharp KV. Impulse (Turgo and Pelton) turbine performance characteristics and their impact on pico-hydro installations. Renew Energy 2013;50:959–964. [CrossRef]
  • [11] Soe MM, War W, Swe M, Thu AM, Latt AK. Effect of jet angle on the performance of a Turgo turbine. Mandalay (Myanmar): Department of Mechanical Engineering, Mandalay Technological University; 2019.
  • [12] Catanase A, Barglazan M, Hora C. Numerical simulation of a free jet in Pelton turbine. Proc 6th Int Conf Hydraul Mach Hydrodyn 2004;:6.
  • [13] Benzon DS, Aggidis GA, Anagnostopoulos JS. Development of the Turgo impulse turbine: past and present. Appl Energy 2016;166:1–8. [CrossRef]
  • [14] Williamson SJ, Stark BH, Booker JD. Performance of a low-head pico-hydro Turgo turbine. Appl Energy 2013;102:1114–1126. [CrossRef]
  • [15] Williamson SJ, Stark BH, Booker JD. Low head pico hydro turbine selection using a multi-criteria analysis. Renew Energy 2014;61:43–50. [CrossRef]
  • [16] Uniyal V, Kanojia N, Pandey K. Design of 5 kW pico hydro power plant using Turgo turbine. Int J Sci Eng Res 2016;7:363–367.
  • [17] Obayes SA, Qasim MA. Effect of flow parameters on Pelton turbine performance by using different nozzles. Int J Model Optim 2017;7:128–133. [CrossRef]
  • [18] Safdar I, Sultan S, Raza HA, Umer M, Ali M. Empirical analysis of turbine and generator efficiency of a pico hydro system. Sustain Energy Technol Assess 2020;37:100605. [CrossRef]
  • [19] Gyanwali S, Kuikel K, Thapa A. Design and CFD analysis of pico hydro Turgo turbine. Proc Int Symp Curr Res Hydraul. Proceedings of the International Symposium on Current Research in Hydraulic Turbines, 2017.
  • [20] Syofii I, Hidayatullah AB, Adanta D, Sari DP, Burlian F, Saputra MAA. Pico scale Turgo turbine design for remote areas application using velocity triangle approach. J Adv Res Fluid Mech Therm Sci 2022;97:157–167. [CrossRef]
  • [21] Elgammi M, Hamad AA. A feasibility study of operating a low static pressure head micro Pelton turbine based on water hammer phenomenon. Renew Energy 2022;195:1–16. [CrossRef]
  • [22] Ishola FA, Kilanko OO, Inegbenebor AO, Sanni TF, Adelakun AA, Adegoke DD. Design and performance analysis of a model pico size Pelton wheel turbine. Int J Civ Eng Technol 2019;10:727–739.
  • [23] Nigussie T, Engeda A, Dribssa E. Design, modeling, and CFD analysis of a micro hydro Pelton turbine runner: for the case of selected site in Ethiopia. Int J Rotating Mach 2017;2017:3030217. [CrossRef]
  • [24] Tilahun S, Paramasivam V, Tufa M, Kerebih A, Selvaraj SK. Analytical investigation of Pelton turbine for mini hydro power: for the case of selected site in Ethiopia. Mater Today Proc 2021;:7364–7368. [CrossRef]
  • [25] Lin TY, Ko CY, Chen SJ, Tsai GC, Tsai HC. A novel total-flow geothermal power generator using Turgo turbine: design and field tests. Renew Energy 2022;186:562–572. [CrossRef]
  • [26] Oyebode OO. Optimization of the operational conditions for low-head Pelton wheel turbine developed for power generation. J Eng Res Rep 2020;:6–17. [CrossRef]
  • [27] Hlabanelo JM, Sob PB, Alugongo AA. A study to improve the efficiency and performance of a Pelton wheel using potential energy at low heads. Int J Eng Res Technol 2020;13:2915–2926. [CrossRef]
  • [28] Lajqi S, Bresa Q, Bresa A, Doçi I, Ðurin B. Design, implementation and analysis of the overall performance of a micro hydro Turgo turbine. J Therm Eng 2021;7:806–822. [CrossRef]
  • [29] Santolin A, Cavazzini G, Ardizzon G, Pavesi G. Numerical investigation of the interaction between jet and bucket in a Pelton turbine. Proc Inst Mech Eng A J Power Energy 2009;223:721–728. [CrossRef]
  • [30] Xiao Y, Wang Z, Zhang J, Zeng C, Yan Z. Numerical and experimental analysis of the hydraulic performance of a prototype Pelton turbine. Proc Inst Mech Eng A J Power Energy 2014;228:46–55. [CrossRef]
  • [31] Na S. Simulation of unsteady water film flow on Pelton bucket. Energy Power Eng 2013;5:51–55. [CrossRef]
  • [32] Xiao YX, Zeng CJ, Zhang J, Yan ZG, Wang ZW. Numerical analysis of the bucket surface roughness effects in Pelton turbine. IOP Conf Ser Mater Sci Eng 2013;52:052032. [CrossRef]
  • [33] Budiarso, Warjito, Adanta D, Puta NS, Vohra H. Cutout types analysis on pico hydro Pelton turbine. Int J Adv Sci Eng Inf Technol 2018;8:2024–2030. [CrossRef]
  • [34] Warjito, Budiarso, Siswantoro AI, Adanta D, Kamal M, Dianofitra R. Simple bucket curvature for designing a low-head Turgo turbine for pico hydro application. Int J Technol 2017;8:1239–1247. [CrossRef]
  • [35] Kim JW, Jo IC, Park JH, Shin Y, Chung JT. Theoretical method of selecting number of buckets for the design and verification of a Pelton turbine. J Hydraul Res 2017;55:695–705. [CrossRef]
  • [36] Anagnostopoulos JS, Koukouvinis PK, Stamatelos FG, Papantonis DE. Optimal design and experimental validation of a Turgo model hydro turbine. Proc ASME 11th Bienn Conf Eng Syst Des Anal 2012;:157–166. [CrossRef]
  • [37] Takagi M, Watanabe Y, Ikematsu S, Hayashi T, Fujimoto T, Shimatani Y. 3D-printed Pelton turbine: how to produce effective technology linked with global knowledge. Energy Procedia 2014;:1593–1596. [CrossRef]
  • [38] Adanta D, Warjito, Febriansyah D, Budiarso. Feasibility analysis of a pico-scale Turgo turbine bucket using coconut shell spoons for electricity generation in remote areas in Indonesia. J Adv Res Fluid Mech Therm Sci 2020;69:85–97. [CrossRef]
  • [39] Arun K, Kumar KM, Karthikeyan KMB, Mohanasutan S. Analysis on influence of bucket angle of Pelton wheel turbine for its structural integrity using aluminium alloy (A390), austenitic stainless steel (CF20), grey cast iron (325) and martensitic stainless steel (410). Mater Today Proc 2022;:1045–1053. [CrossRef]
  • [40] Gallego E, Rubio-Clemente A, Pineda J, Velásquez L, Chica E. Experimental analysis on the performance of a pico-hydro Turgo turbine. J King Saud Univ Eng Sci 2021;33:266–275. [CrossRef]
  • [41] Velásquez L, Posada A, Chica E. Optimization of the basin and inlet channel of a gravitational water vortex hydraulic turbine using the response surface methodology. Renew Energy 2022;187:508–521. [CrossRef]
  • [42] Betancour J, Romero-Menco F, Velásquez L, Rubio- Clemente A, Chica E. Design and optimization of a runner for a gravitational vortex turbine using the response surface methodology and experimental tests. Renew Energy 2023;210:306–320. [CrossRef]
  • [43] Guerra J, Velásquez L, Rubio-Clemente A, Jaramillo L, Chica E. Design and optimization of a siphon turbine using the response surface methodology. Results Eng 2024;22:102241. [CrossRef]
  • [44] Bouvant M, Betancour J, Velásquez L, Rubio-Clemente A, Chica E. Design optimization of an Archimedes screw turbine for hydrokinetic applications using the response surface methodology. Renew Energy 2021;172:941–954. [CrossRef]
  • [45] Singh U, Gupta NK. Thermal performance analysis of heat pipe using response surface methodology. J Therm Eng 2023;:411–423. [CrossRef]
  • [46] Gambhir D, Sherwani AF, Arora A, Ashwni. Parametric optimization of blowdown operated double-effect vapour absorption refrigeration system. J Therm Eng 2022;8:78–89. [CrossRef]
  • [47] Solanki A, Pal Y. Evaluation and optimization of single-effect vapour absorption system for the dairy industry using design of experiment approach. J Therm Eng 2022;8:619–631. [CrossRef]
  • [48] Ali OM. Spark ignition engine performance analysis with low octane gasoline and methyl tert-butyl ether additive for optimum operation. J Therm Eng 2024;10:911–923. [CrossRef]
  • [49] Thake J. The micro-hydro Pelton turbine manual. Rugby (UK): Practical Action Publishing; 2000. [CrossRef]
  • [50] Ebhota WS, Inambao F. Design basics of a small hydro turbine plant for capacity building in Sub-Saharan Africa. Afr J Sci Technol Innov Dev 2016;8:111–120. [CrossRef]
  • [51] Giosio DR, Henderson AD, Walker JM, Brandner PA, Sargison JE, Gautam P. Design and performance evaluation of a pump-as-turbine micro-hydro test facility with incorporated inlet flow control. Renew Energy 2015;78:1–6. [CrossRef]
  • [52] Box GEP, Hunter JS, Hunter WG. Statistics for experimenters: design, innovation, and discovery. 2nd ed. Hoboken (NJ): Wiley; 2005.
  • [53] Raymond MH, Douglas MC, Christine AC. Response surface methodology: process and product optimization using designed experiments. 4th ed. Hoboken (NJ): Wiley; 2016.
  • [54] Gunaraj V, Murugan N. Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes. J Mater Process Technol 1999;88:266–275. [CrossRef]

Year 2025, Volume: 11 Issue: 5, 1392 - 1419, 21.10.2025

Abstract

References

  • REFERENCES
  • [1] Gaiser K, Erickson P, Stroeve P, Delplanque JP. An experimental investigation of design parametcers for pico-hydro Turgo turbines using a response surface methodology. Renew Energy 2016;85:406–418. [CrossRef]
  • [2] McCarthy MJ, Molloy NA. Review of stability of liquid jets and the influence of nozzle design. Chem Eng J 1974;7:1–20. [CrossRef]
  • [3] Budiarso, Febriansyah D, Warjito, Adanta D. The effect of wheel and nozzle diameter ratio on the performance of a Turgo turbine with pico scale. Energy Rep 2020;:601–605. [CrossRef]
  • [4] Alomar OR, Abd HM, Salih MM, Ali FA. Performance analysis of Pelton turbine under different operating conditions: an experimental study. Ain Shams Eng J 2022;13:101684. [CrossRef]
  • [5] Kholifah N, Setyawan AC, Wijayanto DS, Widiastuti I, Saputro H. Performance of Pelton turbine for hydroelectric generation in varying design parameters. IOP Conf Ser Mater Sci Eng 2018;288:012108. [CrossRef]
  • [6] Huang F, Mi J, Li D, Wang R. Impinging performance of high-pressure water jets emitting from different nozzle orifice shapes. Geofluids 2020;2020:8831544. [CrossRef]
  • [7] Gupta V, Prasad V, Khare R. Effect of jet length on the performance of Pelton. Int J Mech Eng Technol 2016;11:11487–11494.
  • [8] Jung IH, Kim YS, Shin DH, Chung JT, Shin Y. Influence of spear needle eccentricity on jet quality in micro Pelton turbine for power generation. Energy 2019;175:58–65. [CrossRef]
  • [9] Zhang Z, Casey M. Experimental studies of the jet of a Pelton turbine. Proc Inst Mech Eng A J Power Energy 2007;221:1181–1192. [CrossRef]
  • [10] Cobb BR, Sharp KV. Impulse (Turgo and Pelton) turbine performance characteristics and their impact on pico-hydro installations. Renew Energy 2013;50:959–964. [CrossRef]
  • [11] Soe MM, War W, Swe M, Thu AM, Latt AK. Effect of jet angle on the performance of a Turgo turbine. Mandalay (Myanmar): Department of Mechanical Engineering, Mandalay Technological University; 2019.
  • [12] Catanase A, Barglazan M, Hora C. Numerical simulation of a free jet in Pelton turbine. Proc 6th Int Conf Hydraul Mach Hydrodyn 2004;:6.
  • [13] Benzon DS, Aggidis GA, Anagnostopoulos JS. Development of the Turgo impulse turbine: past and present. Appl Energy 2016;166:1–8. [CrossRef]
  • [14] Williamson SJ, Stark BH, Booker JD. Performance of a low-head pico-hydro Turgo turbine. Appl Energy 2013;102:1114–1126. [CrossRef]
  • [15] Williamson SJ, Stark BH, Booker JD. Low head pico hydro turbine selection using a multi-criteria analysis. Renew Energy 2014;61:43–50. [CrossRef]
  • [16] Uniyal V, Kanojia N, Pandey K. Design of 5 kW pico hydro power plant using Turgo turbine. Int J Sci Eng Res 2016;7:363–367.
  • [17] Obayes SA, Qasim MA. Effect of flow parameters on Pelton turbine performance by using different nozzles. Int J Model Optim 2017;7:128–133. [CrossRef]
  • [18] Safdar I, Sultan S, Raza HA, Umer M, Ali M. Empirical analysis of turbine and generator efficiency of a pico hydro system. Sustain Energy Technol Assess 2020;37:100605. [CrossRef]
  • [19] Gyanwali S, Kuikel K, Thapa A. Design and CFD analysis of pico hydro Turgo turbine. Proc Int Symp Curr Res Hydraul. Proceedings of the International Symposium on Current Research in Hydraulic Turbines, 2017.
  • [20] Syofii I, Hidayatullah AB, Adanta D, Sari DP, Burlian F, Saputra MAA. Pico scale Turgo turbine design for remote areas application using velocity triangle approach. J Adv Res Fluid Mech Therm Sci 2022;97:157–167. [CrossRef]
  • [21] Elgammi M, Hamad AA. A feasibility study of operating a low static pressure head micro Pelton turbine based on water hammer phenomenon. Renew Energy 2022;195:1–16. [CrossRef]
  • [22] Ishola FA, Kilanko OO, Inegbenebor AO, Sanni TF, Adelakun AA, Adegoke DD. Design and performance analysis of a model pico size Pelton wheel turbine. Int J Civ Eng Technol 2019;10:727–739.
  • [23] Nigussie T, Engeda A, Dribssa E. Design, modeling, and CFD analysis of a micro hydro Pelton turbine runner: for the case of selected site in Ethiopia. Int J Rotating Mach 2017;2017:3030217. [CrossRef]
  • [24] Tilahun S, Paramasivam V, Tufa M, Kerebih A, Selvaraj SK. Analytical investigation of Pelton turbine for mini hydro power: for the case of selected site in Ethiopia. Mater Today Proc 2021;:7364–7368. [CrossRef]
  • [25] Lin TY, Ko CY, Chen SJ, Tsai GC, Tsai HC. A novel total-flow geothermal power generator using Turgo turbine: design and field tests. Renew Energy 2022;186:562–572. [CrossRef]
  • [26] Oyebode OO. Optimization of the operational conditions for low-head Pelton wheel turbine developed for power generation. J Eng Res Rep 2020;:6–17. [CrossRef]
  • [27] Hlabanelo JM, Sob PB, Alugongo AA. A study to improve the efficiency and performance of a Pelton wheel using potential energy at low heads. Int J Eng Res Technol 2020;13:2915–2926. [CrossRef]
  • [28] Lajqi S, Bresa Q, Bresa A, Doçi I, Ðurin B. Design, implementation and analysis of the overall performance of a micro hydro Turgo turbine. J Therm Eng 2021;7:806–822. [CrossRef]
  • [29] Santolin A, Cavazzini G, Ardizzon G, Pavesi G. Numerical investigation of the interaction between jet and bucket in a Pelton turbine. Proc Inst Mech Eng A J Power Energy 2009;223:721–728. [CrossRef]
  • [30] Xiao Y, Wang Z, Zhang J, Zeng C, Yan Z. Numerical and experimental analysis of the hydraulic performance of a prototype Pelton turbine. Proc Inst Mech Eng A J Power Energy 2014;228:46–55. [CrossRef]
  • [31] Na S. Simulation of unsteady water film flow on Pelton bucket. Energy Power Eng 2013;5:51–55. [CrossRef]
  • [32] Xiao YX, Zeng CJ, Zhang J, Yan ZG, Wang ZW. Numerical analysis of the bucket surface roughness effects in Pelton turbine. IOP Conf Ser Mater Sci Eng 2013;52:052032. [CrossRef]
  • [33] Budiarso, Warjito, Adanta D, Puta NS, Vohra H. Cutout types analysis on pico hydro Pelton turbine. Int J Adv Sci Eng Inf Technol 2018;8:2024–2030. [CrossRef]
  • [34] Warjito, Budiarso, Siswantoro AI, Adanta D, Kamal M, Dianofitra R. Simple bucket curvature for designing a low-head Turgo turbine for pico hydro application. Int J Technol 2017;8:1239–1247. [CrossRef]
  • [35] Kim JW, Jo IC, Park JH, Shin Y, Chung JT. Theoretical method of selecting number of buckets for the design and verification of a Pelton turbine. J Hydraul Res 2017;55:695–705. [CrossRef]
  • [36] Anagnostopoulos JS, Koukouvinis PK, Stamatelos FG, Papantonis DE. Optimal design and experimental validation of a Turgo model hydro turbine. Proc ASME 11th Bienn Conf Eng Syst Des Anal 2012;:157–166. [CrossRef]
  • [37] Takagi M, Watanabe Y, Ikematsu S, Hayashi T, Fujimoto T, Shimatani Y. 3D-printed Pelton turbine: how to produce effective technology linked with global knowledge. Energy Procedia 2014;:1593–1596. [CrossRef]
  • [38] Adanta D, Warjito, Febriansyah D, Budiarso. Feasibility analysis of a pico-scale Turgo turbine bucket using coconut shell spoons for electricity generation in remote areas in Indonesia. J Adv Res Fluid Mech Therm Sci 2020;69:85–97. [CrossRef]
  • [39] Arun K, Kumar KM, Karthikeyan KMB, Mohanasutan S. Analysis on influence of bucket angle of Pelton wheel turbine for its structural integrity using aluminium alloy (A390), austenitic stainless steel (CF20), grey cast iron (325) and martensitic stainless steel (410). Mater Today Proc 2022;:1045–1053. [CrossRef]
  • [40] Gallego E, Rubio-Clemente A, Pineda J, Velásquez L, Chica E. Experimental analysis on the performance of a pico-hydro Turgo turbine. J King Saud Univ Eng Sci 2021;33:266–275. [CrossRef]
  • [41] Velásquez L, Posada A, Chica E. Optimization of the basin and inlet channel of a gravitational water vortex hydraulic turbine using the response surface methodology. Renew Energy 2022;187:508–521. [CrossRef]
  • [42] Betancour J, Romero-Menco F, Velásquez L, Rubio- Clemente A, Chica E. Design and optimization of a runner for a gravitational vortex turbine using the response surface methodology and experimental tests. Renew Energy 2023;210:306–320. [CrossRef]
  • [43] Guerra J, Velásquez L, Rubio-Clemente A, Jaramillo L, Chica E. Design and optimization of a siphon turbine using the response surface methodology. Results Eng 2024;22:102241. [CrossRef]
  • [44] Bouvant M, Betancour J, Velásquez L, Rubio-Clemente A, Chica E. Design optimization of an Archimedes screw turbine for hydrokinetic applications using the response surface methodology. Renew Energy 2021;172:941–954. [CrossRef]
  • [45] Singh U, Gupta NK. Thermal performance analysis of heat pipe using response surface methodology. J Therm Eng 2023;:411–423. [CrossRef]
  • [46] Gambhir D, Sherwani AF, Arora A, Ashwni. Parametric optimization of blowdown operated double-effect vapour absorption refrigeration system. J Therm Eng 2022;8:78–89. [CrossRef]
  • [47] Solanki A, Pal Y. Evaluation and optimization of single-effect vapour absorption system for the dairy industry using design of experiment approach. J Therm Eng 2022;8:619–631. [CrossRef]
  • [48] Ali OM. Spark ignition engine performance analysis with low octane gasoline and methyl tert-butyl ether additive for optimum operation. J Therm Eng 2024;10:911–923. [CrossRef]
  • [49] Thake J. The micro-hydro Pelton turbine manual. Rugby (UK): Practical Action Publishing; 2000. [CrossRef]
  • [50] Ebhota WS, Inambao F. Design basics of a small hydro turbine plant for capacity building in Sub-Saharan Africa. Afr J Sci Technol Innov Dev 2016;8:111–120. [CrossRef]
  • [51] Giosio DR, Henderson AD, Walker JM, Brandner PA, Sargison JE, Gautam P. Design and performance evaluation of a pump-as-turbine micro-hydro test facility with incorporated inlet flow control. Renew Energy 2015;78:1–6. [CrossRef]
  • [52] Box GEP, Hunter JS, Hunter WG. Statistics for experimenters: design, innovation, and discovery. 2nd ed. Hoboken (NJ): Wiley; 2005.
  • [53] Raymond MH, Douglas MC, Christine AC. Response surface methodology: process and product optimization using designed experiments. 4th ed. Hoboken (NJ): Wiley; 2016.
  • [54] Gunaraj V, Murugan N. Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes. J Mater Process Technol 1999;88:266–275. [CrossRef]
There are 55 citations in total.

Details

Primary Language English
Subjects Biomedical Fluid Mechanics
Journal Section Articles
Authors

H. N. Lakdawala This is me 0000-0003-0056-9005

V. K. Patel This is me 0000-0001-5748-3726

G. P. Bakhru This is me 0009-0002-9750-1882

D. N. Modi This is me

Publication Date October 21, 2025
Submission Date August 27, 2024
Acceptance Date December 25, 2024
Published in Issue Year 2025 Volume: 11 Issue: 5

Cite

APA Lakdawala, H. N., Patel, V. K., Bakhru, G. P., Modi, D. N. (2025). Performance optimization of low-head vertical axis impulse turbine runners for nozzle angle, nozzle diameter, and nozzle standoff distance using response surface methodology. Journal of Thermal Engineering, 11(5), 1392-1419. https://doi.org/10.14744/thermal.0000983
AMA Lakdawala HN, Patel VK, Bakhru GP, Modi DN. Performance optimization of low-head vertical axis impulse turbine runners for nozzle angle, nozzle diameter, and nozzle standoff distance using response surface methodology. Journal of Thermal Engineering. October 2025;11(5):1392-1419. doi:10.14744/thermal.0000983
Chicago Lakdawala, H. N., V. K. Patel, G. P. Bakhru, and D. N. Modi. “Performance Optimization of Low-Head Vertical Axis Impulse Turbine Runners for Nozzle Angle, Nozzle Diameter, and Nozzle Standoff Distance Using Response Surface Methodology”. Journal of Thermal Engineering 11, no. 5 (October 2025): 1392-1419. https://doi.org/10.14744/thermal.0000983.
EndNote Lakdawala HN, Patel VK, Bakhru GP, Modi DN (October 1, 2025) Performance optimization of low-head vertical axis impulse turbine runners for nozzle angle, nozzle diameter, and nozzle standoff distance using response surface methodology. Journal of Thermal Engineering 11 5 1392–1419.
IEEE H. N. Lakdawala, V. K. Patel, G. P. Bakhru, and D. N. Modi, “Performance optimization of low-head vertical axis impulse turbine runners for nozzle angle, nozzle diameter, and nozzle standoff distance using response surface methodology”, Journal of Thermal Engineering, vol. 11, no. 5, pp. 1392–1419, 2025, doi: 10.14744/thermal.0000983.
ISNAD Lakdawala, H. N. et al. “Performance Optimization of Low-Head Vertical Axis Impulse Turbine Runners for Nozzle Angle, Nozzle Diameter, and Nozzle Standoff Distance Using Response Surface Methodology”. Journal of Thermal Engineering 11/5 (October2025), 1392-1419. https://doi.org/10.14744/thermal.0000983.
JAMA Lakdawala HN, Patel VK, Bakhru GP, Modi DN. Performance optimization of low-head vertical axis impulse turbine runners for nozzle angle, nozzle diameter, and nozzle standoff distance using response surface methodology. Journal of Thermal Engineering. 2025;11:1392–1419.
MLA Lakdawala, H. N. et al. “Performance Optimization of Low-Head Vertical Axis Impulse Turbine Runners for Nozzle Angle, Nozzle Diameter, and Nozzle Standoff Distance Using Response Surface Methodology”. Journal of Thermal Engineering, vol. 11, no. 5, 2025, pp. 1392-19, doi:10.14744/thermal.0000983.
Vancouver Lakdawala HN, Patel VK, Bakhru GP, Modi DN. Performance optimization of low-head vertical axis impulse turbine runners for nozzle angle, nozzle diameter, and nozzle standoff distance using response surface methodology. Journal of Thermal Engineering. 2025;11(5):1392-419.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering