Research Article
BibTex RIS Cite

Parametric study and performance evaluation of a multi-layered twin pcmbased vertical thermal energy storage system

Year 2025, Volume: 11 Issue: 5, 1520 - 1539, 21.10.2025

Abstract

This study illustrates an ingenious approach to thermal energy storage using multilayer twin-phase change materials (PCMs) alternately arranged inside a vertical shell and tube energy storage system. A complex conjugate heat transfer and fluid flow problem is numerically solved, and the effects of different parameters on energy storage performance are evaluated. This study highlights the impact of the number of layers, radius ratio, and flow Reynolds number in the melting and solidification process of PCMs. It also includes the comparison between multi-layer twin PCMs over single-layer individual PCM. The melting and solidification rate improves approximately by 44.3% and 19%, respectively, as the number of layers (n) increases from 2 to 8. Additionally, an 8-layer twin PCM-based system accelerates energy storage and retrieval efficacy, attaining a 33.2% enhancement in stored energy and a 5.3% increase in re-trieved energy at a fixed time compared to a 2-layer configuration. It is also observed that in the 8-layer-PCM-1&2 alternating arrangement, the melting rate improved by about 33.65% and 55.84% compared to the 1-layer-PCM-1 and 1-layer-PCM-2 respectively. Similarly, the solidification rate is also promoted in the multi-layer system as compared to the single-layer system. Moreover, it is evident that a lower R/r ratio (R/r = 2) significantly decreases both melting and solidification times by about 78.6% and 89%, respectively, compared to a higher ratio (R/r = 4). Similarly, an increase in the HTF flow Reynolds number correlates with reductions in melting and solidification times by approximately 5.8% and 1%, respectively. This study also facilitates the expedited advancement of both the melting and solidification processes of PCMs with distinct physical justifications that can enable a clear understanding of the improvement of thermal energy storage systems.

References

  • REFERENCES
  • [1] Korti AIN. Numerical simulation on the effect of latent heat thermal energy storage unit. J Therm Eng 2016;2:599-607. [Crossref]
  • [2] Benbrika M, Teggar M, Benbelhout M. Effect of orientation of elliptic tube on the total melting time of latent thermal energy storage systems. J Therm Eng 2021;7:1479-1488. [Crossref]
  • [3] Patil R, Desai A. Performance of phase changing material in an artificially created cold region to promote latent heat thermal energy storage. J Therm Eng 2021;7:1694-1703. [Crossref]
  • [4] Aljabair S, Alesbe I, Ibrahim SH. Review on latent thermal energy storage using phase change material. J Therm Eng 2023;9:247-256. [Crossref]
  • [5] Elfeky KE, Ahmed N, Wang Q. Numerical comparison between single PCM and multi-stage PCM based high temperature thermal energy storage for CSP tower plants. Appl Therm Eng 2018;139:609-622. [Crossref]
  • [6] Prieto C, Cabeza LF. Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance. Appl Energy 2019;254:113646. [Crossref]
  • [7] Gurupatham SK, Manikandan GK, Fahad F. Harnessing and storing solar thermal energy using phase change material (pcm) in a small flat plate collector. J Therm Eng 2020;6:511-520. [Crossref]
  • [8] Ben Zohra M, Riad A, Alhamany A, Sennoune M, Mansouri M. Improvement of thermal energy storage by integrating pcm into solar system. J Therm Eng 2020;6:816-828. [Crossref]
  • [9] Kumar AR, Ramakrishnan M. A scoping review on recent advancements in domestic applications of solar thermal systems. J Therm Eng 2022;8:426-444. [Crossref]
  • [10] Azeez K, Ahmed Ri, Obaid Za, Azzawi Idj. Heat transfer enhancement and applications of thermal energy storage techniques on solar air collectors: A review. J Therm Eng 2023;9:1356-1371. [Crossref]
  • [11] Nwosu Ec, Nsofor K, Nwaji Gn, Ononogbo C, Ofong I, Ogueke N V., et al. Extended experimental investigation of a double-effect active solar still with a paraffin wax, in Owerri, Nigeria. J Therm Eng 2023;9:1189-1207. [Crossref]
  • [12] Rastogi M, Chauhan A, Vaish R, Kishan A. Selection and performance assessment of Phase Change Materials for heating, ventilation and air-conditioning applications. Energy Convers Manag 2015;89:260-269. [Crossref]
  • [13] Ljungdahl V, Taha K, Dallaire J, Kieseritzky E, Pawelz F, Jradi M, et al. Phase change material based ventilation module-Numerical study and experimental validation of serial design. Energy 2021;234:121209. [Crossref]
  • [14] Ismail M, Zahra WK, Ookawara S, Hassan H. Enhancing the Air Conditioning Unit Performance via Energy Storage of Different Inorganic Phase Change Materials with Hybrid Nanoparticles. JOM 2023:1-15. [Crossref]
  • [15] Bahrami L, Kasaeian A, Pourfayaz F, Ghafarian S. Modeling of the effect of nano-enhanced phase change material on the performance of a large-scale wallboard. J Therm Eng 2021;7:1857-1871. [Crossref]
  • [16] Kladisios P, Stegou-Sagia A. Using phase change materials in photovoltaic systems for cell temperature reduction: A finite difference simulation method. J Therm Eng 2016;2:897-906. [Crossref]
  • [17] Ali HM, Arshad A, Jabbal M, Verdin PG. Thermal management of electronics devices with PCMs filled pin-fin heat sinks: A comparison. Int J Heat Mass Transf 2018;117:1199-1204. [Crossref]
  • [18] Bondareva NS, Sheremet MA. Numerical simulation of natural convection melting in 2D and 3D enclosures. J Therm Eng 2019;5:51-61. [Crossref]
  • [19] Ren Q, Guo P, Zhu J. Thermal management of electronic devices using pin-fin based cascade microencapsulated PCM/expanded graphite composite. Int J Heat Mass Transf 2020;149:1-16. [Crossref]
  • [20] Ramesh KN, Sharma TK. Thermal analysis of PCMbased hybrid micro-channel heat sinks: A numerical study. J Therm Eng 2023;9:1015-1025. [Crossref]
  • [21] Merlin K, Soto J, Delaunay D, Traonvouez L. Industrial waste heat recovery using an enhanced conductivity latent heat thermal energy storage. Appl Energy 2016;183:491-503. [Crossref]
  • [22] Yazdani MR, Laitinen A, Helaakoski V, Farnas LK, Kukko K, Saari K, et al. Efficient storage and recovery of waste heat by phase change material embedded within additively manufactured grid heat exchangers. Int J Heat Mass Transf 2021;181:121846. [Crossref]
  • [23] Yadav C, Sahoo RR. Thermal analysis comparison of nano-additive PCM-based engine waste heat recovery thermal storage systems: an experimental study. J Therm Anal Calorim 2022;147:2785-802. [Crossref]
  • [24] Humphries WR. Performance of finned thermal capacitors. 1974.
  • [25] Swanson TD, Birur GC. NASA thermal control technologies for robotic spacecraft. Appl Therm Eng 2003;23:1055-1065. [Crossref]
  • [26] Agyenim F, Hewitt N, Eames P, Smyth M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 2010;14:615-628. [Crossref]
  • [27] Baghaei Oskouei S, Bayer Ö. Performance improvement in a vertical latent thermal energy storage tank with crossing heat transfer tubes. J Energy Storage 2024;88. [Crossref]
  • [28] Chaabane M, Mhiri H, Bournot P. Thermal performance of an integrated collector storage solar water heater (ICSSWH) with phase change materials (PCM). Energy Convers Manag 2014;78:897-903. [Crossref]
  • [29] Cano D, Funéz C, Rodriguez L, Valverde JL, Sanchez-Silva L. Experimental investigation of a thermal storage system using phase change materials. Appl Therm Eng 2016;107:264-270. [Crossref]
  • [30] Elbahjaoui R, El Qarnia H. Thermal performance of a solar latent heat storage unit using rectangular slabs of phase change material for domestic water heating purposes. Energy Build 2019;182:111-130. [Crossref]
  • [31] Şimşek F, Demirci H. Investigation of the use of new fin on the melting time of the phase change material stored in the heat exchanger by computational fluid dynamics analysis. J Build Eng 2024;91:109505. [Crossref]
  • [32] Trp A. An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Sol Energy 2005;79:648-660. [Crossref]
  • [33] Zhang S, Pu L, Xu L, Liu R, Li Y. Melting performance analysis of phase change materials in different finned thermal energy storage. Appl Therm Eng 2020;176. [Crossref]
  • [34] Feng L, Liu J, Lu H, Chen Y, Wu S. A parametric study on the efficiency of a solar evacuated tube collector using phase change materials: A transient simulation. Renew Energy 2022;199:745-758. [Crossref]
  • [35] Alshihmani H, Maghrebi MJ, Sardarabadi M. Thermal performance prediction of a phase change material based heat-sink cooling system for a printed circuit board, using response surface method. J Energy Storage 2022;55:105499. [Crossref]
  • [36] Refaey HA, Abdo S, Saidani-Scott H, El-Shekeil YA, Bendoukha S, Barhoumi N, et al. Thermal regulation of photovoltaic panels using PCM with multiple fins configuration: Experimental study with analysis. Therm Sci Eng Prog 2024:102457. [Crossref]
  • [37] Xu H, Wang N, Zhang C, Qu Z, Cao M. Optimization on the melting performance of triplex-layer PCMs in a horizontal finned shell and tube thermal energy storage unit. Appl Therm Eng 2020;176:115409. [Crossref]
  • [38] Mebarek-Oudina F, Chabani I. Review on Nano Enhanced PCMs: Insight on nePCM Application in Thermal Management/Storage Systems. Energies 2023;16:1066. [Crossref]
  • [39] Li Z-R, Hu N, Fan L-W. Nanocomposite phase change materials for high-performance thermal energy storage: A critical review. Energy Storage Mater 2023;55:727-753. [Crossref]
  • [40] Sathishkumar A, Sundaram P, Cheralathan M, Kumar PG. Effect of nano-enhanced phase change materials on performance of cool thermal energy storage system: A review. J Energy Storage 2024;78:110079. [Crossref]
  • [41] Wang Q, Yang L, Song J. Preparation, thermal conductivity, and applications of nano-enhanced phase change materials (NEPCMs) in solar heat collection: A review. J Energy Storage 2023;63:107047. [Crossref]
  • [42] Maghrabie HM, Elsaid K, Sayed ET, Radwan A, Abo-Khalil AG, Rezk H, et al. Phase change materials based on nanoparticles for enhancing the performance of solar photovoltaic panels: A review. J Energy Storage 2022;48:103937. [Crossref]
  • [43] Bhutto YA, Pandey AK, Saidur R, Sharma K, Tyagi V V. Critical insights and recent updates on passive battery thermal management system integrated with nano-enhanced phase change materials. Mater Today Sustain 2023;23:100443. [Crossref]
  • [44] Algarni S, Mellouli S, Alqahtani T, Almutairi K, Khan A, Anqi A. Experimental investigation of an evacuated tube solar collector incorporating nano-enhanced PCM as a thermal booster. Appl Therm Eng 2020;180:115831. [Crossref]
  • [45] Bashirpour-Bonab H. Investigation and optimization of PCM melting with nanoparticle in a multitube thermal energy storage system. Case Stud Therm Eng 2021;28:101643. [Crossref]
  • [46] Elarem R, Alqahtani T, Mellouli S, Aich W, Ben Khedher N, Kolsi L, et al. Numerical study of an Evacuated Tube Solar Collector incorporating a Nano-PCM as a latent heat storage system. Case Stud Therm Eng 2021;24:100859. [Crossref]
  • [47] Rothan YA. Freezing process modeling within a cold storage tank with implement of nanoparticles. J Energy Storage 2024;88:111501. [Crossref]
  • [48] Zahid I, Farhan M, Farooq M, Asim M, Imran M. Experimental investigation for thermal performance enhancement of various heat sinks using Al2O3NePCM for cooling of electronic devices. Case Stud Therm Eng 2023;41:102553. [Crossref]
  • [49] Swamy KA, Verma S, Bhattacharyya S. Experimental and numerical investigation of nanoparticle assisted PCM-based battery thermal management system. J Therm Anal Calorim 2024. [Crossref]
  • [50] Cao Y, Faghri A. Performance characteristics of a thermal energy storage module: a transient PCM/forced convection conjugate analysis. Int J Heat Mass Transf 1991;34:93-101. [Crossref]
  • [51] Ismail KAR, Melo CA. Convection-based model for a PCM vertical storage unit. Int J Energy Res 1998;22:1249-1265. [Crossref]
  • [52] Trp A, Lenic K, Frankovic B. Analysis of the influence of operating conditions and geometric parameters on heat transfer in water-paraffin shell-and-tube latent thermal energy storage unit. Appl Therm Eng 2006;26:1830-1839. [Crossref]
  • [53] Tao Y-B, Li M-J, He Y-L, Tao W-Q. Effects of parameters on performance of high temperature molten salt latent heat storage unit. Appl Therm Eng 2014;72:48-55. [Crossref]
  • [54] Zheng Z-J, Xu Y, Li M-J. Eccentricity optimization of a horizontal shell-and-tube latent-heat thermal energy storage unit based on melting and melting-solidifying performance. Appl Energy 2018;220:447-454. [Crossref]
  • [55] Shen G, Wang X, Chan A, Cao F, Yin X. Investigation on optimal shell-to-tube radius ratio of a vertical shell-and-tube latent heat energy storage system. Sol Energy 2020;211:732-743. [Crossref]
  • [56] Vyshak NR, Jilani G. Numerical analysis of latent heat thermal energy storage system. Energy Convers Manag 2007;48:2161-2168. [Crossref]
  • [57] Akgün M, Ayd\in O, Kaygusuz K. Thermal energy storage performance of paraffin in a novel tube-in-shell system. Appl Therm Eng 2008;28:405-413. [Crossref]
  • [58] Seddegh S, Tehrani SSM, Wang X, Cao F, Taylor RA. Comparison of heat transfer between cylindrical and conical vertical shell-and-tube latent heat thermal energy storage systems. Appl Therm Eng 2018;130:1349-1362. [Crossref]
  • [59] Alaraji A, Alhussein H, Asadi Z, Ganji DD. Investigation of heat energy storage of RT26 organic materials in circular and elliptical heat exchangers in melting and solidification process. Case Stud Therm Eng 2021;28:101432. [Crossref]
  • [60] Dukhan WA, Dhaidan NS, Al-Hattab TA, Al-Mousawi FN. Phase-change of paraffin inside heat exchangers: an experimental study. Int J Environ Sci Technol 2022;19:3155-164. [Crossref]
  • [61] Zauglanmics E, Demircan T, Gemiciouglu B. Thermal analysis of phase changing material in heat exchanger. Arab J Sci Eng 2022:1-15.
  • [62] Paria S, Baradaran S, Amiri A, Sarhan AAD, Kazi SN. Performance evaluation of latent heat energy storage in horizontal shell-and-finned tube for solar application. J Therm Anal Calorim 2016;123:1371-1381. [Crossref]
  • [63] Joshi V, Rathod MK. Constructal enhancement of thermal transport in latent heat storage systems assisted with fins. Int J Therm Sci 2019;145:105984. [Crossref]
  • [64] Nakhchi ME, Esfahani JA. Improving the melting performance of PCM thermal energy storage with novel stepped fins. J Energy Storage 2020;30:101424. [Crossref]
  • [65] Nie C, Deng S, Liu J. Effects of fins arrangement and parameters on the consecutive melting and solidification of PCM in a latent heat storage unit. J Energy Storage 2020;29:101319. [Crossref]
  • [66] Nóbrega CRES, Ismail KAR, Lino FAM. Solidification around axial finned tube submersed in PCM: Modeling and experiments. J Energy Storage 2020;29:101438. [Crossref]
  • [67] Tiari S, Hockins A, Mahdavi M. Numerical study of a latent heat thermal energy storage system enhanced by varying fin configurations. Case Stud Therm Eng 2021;25:100999. [Crossref]
  • [68] Brousseau P, Lacroix M. Study of the thermal performance of a multi-layer PCM storage unit. Energy Convers Manag 1996;37:599-609. [Crossref]
  • [69] Li YQ, He YL, Song HJ, Xu C, Wang WW. Numerical analysis and parameters optimization of shell-andtube heat storage unit using three phase change materials. Renew Energy 2013;59:92-99. [Crossref]
  • [70] Ezra M, Kozak Y, Dubovsky V, Ziskind G. Analysis and optimization of melting temperature span for a multiple-PCM latent heat thermal energy storage unit. Appl Therm Eng 2016;93:315-329. [Crossref]
  • [71] Beemkumar N, Karthikeyan A, Yuvarajan D, Lakshmi Sankar S. Experimental Investigation on Improving the Heat Transfer of Cascaded Thermal Storage System Using Different Fins. Arab J Sci Eng (Springer Sci Bus Media BV) 2017;42. [Crossref]
  • [72] Sunku Prasad J, Muthukumar P, Anandalakshmi R, Niyas H. Comparative study of phase change phenomenon in high temperature cascade latent heat energy storage system using conduction and conduction-convection models. Sol Energy 2018;176:627-637. [Crossref]
  • [73] Kareem BE, Adham AM, Yaqob BN. Design and Optimization of Air to PCM Heat Exchanger Using CFD. Arab J Sci Eng 2022:1-15. [Crossref]
  • [74] Rubitherm Technologies GmbH. RT- LINE Data Sheet 2020.
  • [75] Brent AD, Voller VR, Reid KJ. Enthalpy-Porosity Technique For Modeling Convection-Diffusion Phase Change: Application To The Melting Of A Pure Metal. Numer Heat Transf 1988;13:297-318. [Crossref]
  • [76] Zhang D, Zhang F, Tang S, Guo C, Qin X. Performance evaluation of cascaded storage system with multiple phase change materials. Appl Therm Eng 2021;185:116384. [Crossref]

Year 2025, Volume: 11 Issue: 5, 1520 - 1539, 21.10.2025

Abstract

References

  • REFERENCES
  • [1] Korti AIN. Numerical simulation on the effect of latent heat thermal energy storage unit. J Therm Eng 2016;2:599-607. [Crossref]
  • [2] Benbrika M, Teggar M, Benbelhout M. Effect of orientation of elliptic tube on the total melting time of latent thermal energy storage systems. J Therm Eng 2021;7:1479-1488. [Crossref]
  • [3] Patil R, Desai A. Performance of phase changing material in an artificially created cold region to promote latent heat thermal energy storage. J Therm Eng 2021;7:1694-1703. [Crossref]
  • [4] Aljabair S, Alesbe I, Ibrahim SH. Review on latent thermal energy storage using phase change material. J Therm Eng 2023;9:247-256. [Crossref]
  • [5] Elfeky KE, Ahmed N, Wang Q. Numerical comparison between single PCM and multi-stage PCM based high temperature thermal energy storage for CSP tower plants. Appl Therm Eng 2018;139:609-622. [Crossref]
  • [6] Prieto C, Cabeza LF. Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance. Appl Energy 2019;254:113646. [Crossref]
  • [7] Gurupatham SK, Manikandan GK, Fahad F. Harnessing and storing solar thermal energy using phase change material (pcm) in a small flat plate collector. J Therm Eng 2020;6:511-520. [Crossref]
  • [8] Ben Zohra M, Riad A, Alhamany A, Sennoune M, Mansouri M. Improvement of thermal energy storage by integrating pcm into solar system. J Therm Eng 2020;6:816-828. [Crossref]
  • [9] Kumar AR, Ramakrishnan M. A scoping review on recent advancements in domestic applications of solar thermal systems. J Therm Eng 2022;8:426-444. [Crossref]
  • [10] Azeez K, Ahmed Ri, Obaid Za, Azzawi Idj. Heat transfer enhancement and applications of thermal energy storage techniques on solar air collectors: A review. J Therm Eng 2023;9:1356-1371. [Crossref]
  • [11] Nwosu Ec, Nsofor K, Nwaji Gn, Ononogbo C, Ofong I, Ogueke N V., et al. Extended experimental investigation of a double-effect active solar still with a paraffin wax, in Owerri, Nigeria. J Therm Eng 2023;9:1189-1207. [Crossref]
  • [12] Rastogi M, Chauhan A, Vaish R, Kishan A. Selection and performance assessment of Phase Change Materials for heating, ventilation and air-conditioning applications. Energy Convers Manag 2015;89:260-269. [Crossref]
  • [13] Ljungdahl V, Taha K, Dallaire J, Kieseritzky E, Pawelz F, Jradi M, et al. Phase change material based ventilation module-Numerical study and experimental validation of serial design. Energy 2021;234:121209. [Crossref]
  • [14] Ismail M, Zahra WK, Ookawara S, Hassan H. Enhancing the Air Conditioning Unit Performance via Energy Storage of Different Inorganic Phase Change Materials with Hybrid Nanoparticles. JOM 2023:1-15. [Crossref]
  • [15] Bahrami L, Kasaeian A, Pourfayaz F, Ghafarian S. Modeling of the effect of nano-enhanced phase change material on the performance of a large-scale wallboard. J Therm Eng 2021;7:1857-1871. [Crossref]
  • [16] Kladisios P, Stegou-Sagia A. Using phase change materials in photovoltaic systems for cell temperature reduction: A finite difference simulation method. J Therm Eng 2016;2:897-906. [Crossref]
  • [17] Ali HM, Arshad A, Jabbal M, Verdin PG. Thermal management of electronics devices with PCMs filled pin-fin heat sinks: A comparison. Int J Heat Mass Transf 2018;117:1199-1204. [Crossref]
  • [18] Bondareva NS, Sheremet MA. Numerical simulation of natural convection melting in 2D and 3D enclosures. J Therm Eng 2019;5:51-61. [Crossref]
  • [19] Ren Q, Guo P, Zhu J. Thermal management of electronic devices using pin-fin based cascade microencapsulated PCM/expanded graphite composite. Int J Heat Mass Transf 2020;149:1-16. [Crossref]
  • [20] Ramesh KN, Sharma TK. Thermal analysis of PCMbased hybrid micro-channel heat sinks: A numerical study. J Therm Eng 2023;9:1015-1025. [Crossref]
  • [21] Merlin K, Soto J, Delaunay D, Traonvouez L. Industrial waste heat recovery using an enhanced conductivity latent heat thermal energy storage. Appl Energy 2016;183:491-503. [Crossref]
  • [22] Yazdani MR, Laitinen A, Helaakoski V, Farnas LK, Kukko K, Saari K, et al. Efficient storage and recovery of waste heat by phase change material embedded within additively manufactured grid heat exchangers. Int J Heat Mass Transf 2021;181:121846. [Crossref]
  • [23] Yadav C, Sahoo RR. Thermal analysis comparison of nano-additive PCM-based engine waste heat recovery thermal storage systems: an experimental study. J Therm Anal Calorim 2022;147:2785-802. [Crossref]
  • [24] Humphries WR. Performance of finned thermal capacitors. 1974.
  • [25] Swanson TD, Birur GC. NASA thermal control technologies for robotic spacecraft. Appl Therm Eng 2003;23:1055-1065. [Crossref]
  • [26] Agyenim F, Hewitt N, Eames P, Smyth M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 2010;14:615-628. [Crossref]
  • [27] Baghaei Oskouei S, Bayer Ö. Performance improvement in a vertical latent thermal energy storage tank with crossing heat transfer tubes. J Energy Storage 2024;88. [Crossref]
  • [28] Chaabane M, Mhiri H, Bournot P. Thermal performance of an integrated collector storage solar water heater (ICSSWH) with phase change materials (PCM). Energy Convers Manag 2014;78:897-903. [Crossref]
  • [29] Cano D, Funéz C, Rodriguez L, Valverde JL, Sanchez-Silva L. Experimental investigation of a thermal storage system using phase change materials. Appl Therm Eng 2016;107:264-270. [Crossref]
  • [30] Elbahjaoui R, El Qarnia H. Thermal performance of a solar latent heat storage unit using rectangular slabs of phase change material for domestic water heating purposes. Energy Build 2019;182:111-130. [Crossref]
  • [31] Şimşek F, Demirci H. Investigation of the use of new fin on the melting time of the phase change material stored in the heat exchanger by computational fluid dynamics analysis. J Build Eng 2024;91:109505. [Crossref]
  • [32] Trp A. An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Sol Energy 2005;79:648-660. [Crossref]
  • [33] Zhang S, Pu L, Xu L, Liu R, Li Y. Melting performance analysis of phase change materials in different finned thermal energy storage. Appl Therm Eng 2020;176. [Crossref]
  • [34] Feng L, Liu J, Lu H, Chen Y, Wu S. A parametric study on the efficiency of a solar evacuated tube collector using phase change materials: A transient simulation. Renew Energy 2022;199:745-758. [Crossref]
  • [35] Alshihmani H, Maghrebi MJ, Sardarabadi M. Thermal performance prediction of a phase change material based heat-sink cooling system for a printed circuit board, using response surface method. J Energy Storage 2022;55:105499. [Crossref]
  • [36] Refaey HA, Abdo S, Saidani-Scott H, El-Shekeil YA, Bendoukha S, Barhoumi N, et al. Thermal regulation of photovoltaic panels using PCM with multiple fins configuration: Experimental study with analysis. Therm Sci Eng Prog 2024:102457. [Crossref]
  • [37] Xu H, Wang N, Zhang C, Qu Z, Cao M. Optimization on the melting performance of triplex-layer PCMs in a horizontal finned shell and tube thermal energy storage unit. Appl Therm Eng 2020;176:115409. [Crossref]
  • [38] Mebarek-Oudina F, Chabani I. Review on Nano Enhanced PCMs: Insight on nePCM Application in Thermal Management/Storage Systems. Energies 2023;16:1066. [Crossref]
  • [39] Li Z-R, Hu N, Fan L-W. Nanocomposite phase change materials for high-performance thermal energy storage: A critical review. Energy Storage Mater 2023;55:727-753. [Crossref]
  • [40] Sathishkumar A, Sundaram P, Cheralathan M, Kumar PG. Effect of nano-enhanced phase change materials on performance of cool thermal energy storage system: A review. J Energy Storage 2024;78:110079. [Crossref]
  • [41] Wang Q, Yang L, Song J. Preparation, thermal conductivity, and applications of nano-enhanced phase change materials (NEPCMs) in solar heat collection: A review. J Energy Storage 2023;63:107047. [Crossref]
  • [42] Maghrabie HM, Elsaid K, Sayed ET, Radwan A, Abo-Khalil AG, Rezk H, et al. Phase change materials based on nanoparticles for enhancing the performance of solar photovoltaic panels: A review. J Energy Storage 2022;48:103937. [Crossref]
  • [43] Bhutto YA, Pandey AK, Saidur R, Sharma K, Tyagi V V. Critical insights and recent updates on passive battery thermal management system integrated with nano-enhanced phase change materials. Mater Today Sustain 2023;23:100443. [Crossref]
  • [44] Algarni S, Mellouli S, Alqahtani T, Almutairi K, Khan A, Anqi A. Experimental investigation of an evacuated tube solar collector incorporating nano-enhanced PCM as a thermal booster. Appl Therm Eng 2020;180:115831. [Crossref]
  • [45] Bashirpour-Bonab H. Investigation and optimization of PCM melting with nanoparticle in a multitube thermal energy storage system. Case Stud Therm Eng 2021;28:101643. [Crossref]
  • [46] Elarem R, Alqahtani T, Mellouli S, Aich W, Ben Khedher N, Kolsi L, et al. Numerical study of an Evacuated Tube Solar Collector incorporating a Nano-PCM as a latent heat storage system. Case Stud Therm Eng 2021;24:100859. [Crossref]
  • [47] Rothan YA. Freezing process modeling within a cold storage tank with implement of nanoparticles. J Energy Storage 2024;88:111501. [Crossref]
  • [48] Zahid I, Farhan M, Farooq M, Asim M, Imran M. Experimental investigation for thermal performance enhancement of various heat sinks using Al2O3NePCM for cooling of electronic devices. Case Stud Therm Eng 2023;41:102553. [Crossref]
  • [49] Swamy KA, Verma S, Bhattacharyya S. Experimental and numerical investigation of nanoparticle assisted PCM-based battery thermal management system. J Therm Anal Calorim 2024. [Crossref]
  • [50] Cao Y, Faghri A. Performance characteristics of a thermal energy storage module: a transient PCM/forced convection conjugate analysis. Int J Heat Mass Transf 1991;34:93-101. [Crossref]
  • [51] Ismail KAR, Melo CA. Convection-based model for a PCM vertical storage unit. Int J Energy Res 1998;22:1249-1265. [Crossref]
  • [52] Trp A, Lenic K, Frankovic B. Analysis of the influence of operating conditions and geometric parameters on heat transfer in water-paraffin shell-and-tube latent thermal energy storage unit. Appl Therm Eng 2006;26:1830-1839. [Crossref]
  • [53] Tao Y-B, Li M-J, He Y-L, Tao W-Q. Effects of parameters on performance of high temperature molten salt latent heat storage unit. Appl Therm Eng 2014;72:48-55. [Crossref]
  • [54] Zheng Z-J, Xu Y, Li M-J. Eccentricity optimization of a horizontal shell-and-tube latent-heat thermal energy storage unit based on melting and melting-solidifying performance. Appl Energy 2018;220:447-454. [Crossref]
  • [55] Shen G, Wang X, Chan A, Cao F, Yin X. Investigation on optimal shell-to-tube radius ratio of a vertical shell-and-tube latent heat energy storage system. Sol Energy 2020;211:732-743. [Crossref]
  • [56] Vyshak NR, Jilani G. Numerical analysis of latent heat thermal energy storage system. Energy Convers Manag 2007;48:2161-2168. [Crossref]
  • [57] Akgün M, Ayd\in O, Kaygusuz K. Thermal energy storage performance of paraffin in a novel tube-in-shell system. Appl Therm Eng 2008;28:405-413. [Crossref]
  • [58] Seddegh S, Tehrani SSM, Wang X, Cao F, Taylor RA. Comparison of heat transfer between cylindrical and conical vertical shell-and-tube latent heat thermal energy storage systems. Appl Therm Eng 2018;130:1349-1362. [Crossref]
  • [59] Alaraji A, Alhussein H, Asadi Z, Ganji DD. Investigation of heat energy storage of RT26 organic materials in circular and elliptical heat exchangers in melting and solidification process. Case Stud Therm Eng 2021;28:101432. [Crossref]
  • [60] Dukhan WA, Dhaidan NS, Al-Hattab TA, Al-Mousawi FN. Phase-change of paraffin inside heat exchangers: an experimental study. Int J Environ Sci Technol 2022;19:3155-164. [Crossref]
  • [61] Zauglanmics E, Demircan T, Gemiciouglu B. Thermal analysis of phase changing material in heat exchanger. Arab J Sci Eng 2022:1-15.
  • [62] Paria S, Baradaran S, Amiri A, Sarhan AAD, Kazi SN. Performance evaluation of latent heat energy storage in horizontal shell-and-finned tube for solar application. J Therm Anal Calorim 2016;123:1371-1381. [Crossref]
  • [63] Joshi V, Rathod MK. Constructal enhancement of thermal transport in latent heat storage systems assisted with fins. Int J Therm Sci 2019;145:105984. [Crossref]
  • [64] Nakhchi ME, Esfahani JA. Improving the melting performance of PCM thermal energy storage with novel stepped fins. J Energy Storage 2020;30:101424. [Crossref]
  • [65] Nie C, Deng S, Liu J. Effects of fins arrangement and parameters on the consecutive melting and solidification of PCM in a latent heat storage unit. J Energy Storage 2020;29:101319. [Crossref]
  • [66] Nóbrega CRES, Ismail KAR, Lino FAM. Solidification around axial finned tube submersed in PCM: Modeling and experiments. J Energy Storage 2020;29:101438. [Crossref]
  • [67] Tiari S, Hockins A, Mahdavi M. Numerical study of a latent heat thermal energy storage system enhanced by varying fin configurations. Case Stud Therm Eng 2021;25:100999. [Crossref]
  • [68] Brousseau P, Lacroix M. Study of the thermal performance of a multi-layer PCM storage unit. Energy Convers Manag 1996;37:599-609. [Crossref]
  • [69] Li YQ, He YL, Song HJ, Xu C, Wang WW. Numerical analysis and parameters optimization of shell-andtube heat storage unit using three phase change materials. Renew Energy 2013;59:92-99. [Crossref]
  • [70] Ezra M, Kozak Y, Dubovsky V, Ziskind G. Analysis and optimization of melting temperature span for a multiple-PCM latent heat thermal energy storage unit. Appl Therm Eng 2016;93:315-329. [Crossref]
  • [71] Beemkumar N, Karthikeyan A, Yuvarajan D, Lakshmi Sankar S. Experimental Investigation on Improving the Heat Transfer of Cascaded Thermal Storage System Using Different Fins. Arab J Sci Eng (Springer Sci Bus Media BV) 2017;42. [Crossref]
  • [72] Sunku Prasad J, Muthukumar P, Anandalakshmi R, Niyas H. Comparative study of phase change phenomenon in high temperature cascade latent heat energy storage system using conduction and conduction-convection models. Sol Energy 2018;176:627-637. [Crossref]
  • [73] Kareem BE, Adham AM, Yaqob BN. Design and Optimization of Air to PCM Heat Exchanger Using CFD. Arab J Sci Eng 2022:1-15. [Crossref]
  • [74] Rubitherm Technologies GmbH. RT- LINE Data Sheet 2020.
  • [75] Brent AD, Voller VR, Reid KJ. Enthalpy-Porosity Technique For Modeling Convection-Diffusion Phase Change: Application To The Melting Of A Pure Metal. Numer Heat Transf 1988;13:297-318. [Crossref]
  • [76] Zhang D, Zhang F, Tang S, Guo C, Qin X. Performance evaluation of cascaded storage system with multiple phase change materials. Appl Therm Eng 2021;185:116384. [Crossref]
There are 77 citations in total.

Details

Primary Language English
Subjects Computational Methods in Fluid Flow, Heat and Mass Transfer (Incl. Computational Fluid Dynamics)
Journal Section Articles
Authors

Amit Kumar Ghosh1 This is me 0000-0001-9129-5112

Pabitra Halder This is me 0000-0002-3994-432X

Publication Date October 21, 2025
Submission Date March 7, 2024
Acceptance Date July 1, 2024
Published in Issue Year 2025 Volume: 11 Issue: 5

Cite

APA Ghosh1, A. K., & Halder, P. (2025). Parametric study and performance evaluation of a multi-layered twin pcmbased vertical thermal energy storage system. Journal of Thermal Engineering, 11(5), 1520-1539. https://doi.org/10.14744/thermal.0000991
AMA Ghosh1 AK, Halder P. Parametric study and performance evaluation of a multi-layered twin pcmbased vertical thermal energy storage system. Journal of Thermal Engineering. October 2025;11(5):1520-1539. doi:10.14744/thermal.0000991
Chicago Ghosh1, Amit Kumar, and Pabitra Halder. “Parametric Study and Performance Evaluation of a Multi-Layered Twin Pcmbased Vertical Thermal Energy Storage System”. Journal of Thermal Engineering 11, no. 5 (October 2025): 1520-39. https://doi.org/10.14744/thermal.0000991.
EndNote Ghosh1 AK, Halder P (October 1, 2025) Parametric study and performance evaluation of a multi-layered twin pcmbased vertical thermal energy storage system. Journal of Thermal Engineering 11 5 1520–1539.
IEEE A. K. Ghosh1 and P. Halder, “Parametric study and performance evaluation of a multi-layered twin pcmbased vertical thermal energy storage system”, Journal of Thermal Engineering, vol. 11, no. 5, pp. 1520–1539, 2025, doi: 10.14744/thermal.0000991.
ISNAD Ghosh1, Amit Kumar - Halder, Pabitra. “Parametric Study and Performance Evaluation of a Multi-Layered Twin Pcmbased Vertical Thermal Energy Storage System”. Journal of Thermal Engineering 11/5 (October2025), 1520-1539. https://doi.org/10.14744/thermal.0000991.
JAMA Ghosh1 AK, Halder P. Parametric study and performance evaluation of a multi-layered twin pcmbased vertical thermal energy storage system. Journal of Thermal Engineering. 2025;11:1520–1539.
MLA Ghosh1, Amit Kumar and Pabitra Halder. “Parametric Study and Performance Evaluation of a Multi-Layered Twin Pcmbased Vertical Thermal Energy Storage System”. Journal of Thermal Engineering, vol. 11, no. 5, 2025, pp. 1520-39, doi:10.14744/thermal.0000991.
Vancouver Ghosh1 AK, Halder P. Parametric study and performance evaluation of a multi-layered twin pcmbased vertical thermal energy storage system. Journal of Thermal Engineering. 2025;11(5):1520-39.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering