Review
BibTex RIS Cite

Novel approaches to zeolite deactivation mitigation and regeneration in biomass gasification

Year 2025, Volume: 11 Issue: 5, 1552 - 1584, 21.10.2025
https://doi.org/10.14744/thermal.0000993

Abstract

The comprehensive study delves into the intricate realm of zeolite catalyst deactivation within the context of biomass gasification, aiming to provide a thorough understanding of deactivation mechanisms, innovative strategies for mitigation and regeneration, and potential applications for deactivated zeolites. Key findings reveal reversible and irreversible deactivation processes, heavily influenced by physical and chemical interactions with contaminants such as nitrogen, sulfur, and heavy metals. Empirical data-driven mitigation strategies showcase the effectiveness of metal modifiers like nickel and cobalt in reducing coke yield, alongside novel approaches such as core-shell zeolite structures and the integration of redox metal oxides to maintain catalyst basicity and stability. Moreover, successful regeneration methods including thermal regeneration, chemical washing, and steaming demonstrate the restoration of catalytic activity post-deactivation. Despite reduced efficiency, deactivated zeolites exhibit promises in environmental remediation, achieving heavy metal removal efficiencies surpassing 90%, and enhancing durability while reducing permeability in construction materials and concrete additives. Furthermore, the review emphasizes the necessity for refined strategies adaptable to diverse conditions, promoting sustainable catalyst utilization in biomass gasification and beyond. Key contributions highlighted include the identification of deactivation processes, recognition of pivotal factors affecting zeolite catalysts, validation of data-driven mitigation strategies, demonstration of novel approaches, successful application of regeneration methods, and exploration of potential applications for deactivated zeolites. These findings signify significant progress in addressing zeolite catalyst deactivation mitigation and regeneration challenges and enhancing efficiency and sustainability in biomass gasification technologies.

References

  • REFERENCES
  • [1] He M, Zhang K, Guan Y, Sun Y, Han B. Green carbon science: fundamental aspects. Natl Sci Rev 2023:nwad046. [Crossref]
  • [2] Laidler KJ. A glossary of terms used in chemical kinetics, including reaction dynamics (IUPAC Recommendations 1996). Pure Appl Chem 1996;68:149–92. [Crossref]
  • [3] Ranade V V., Joshi SS. Catalysis and Catalytic Processes. Elsevier Inc.; 2016. [Crossref]
  • [4] Yan P, Wang H, Liao Y, Wang C. Zeolite catalysts for the valorization of biomass into platform compounds and biochemicals/biofuels: A review. Renew Sustain Energy Rev 2023;178:113219. [Crossref]
  • [5] Zhang W, Taheri-Ledari R, Saeidirad M, Qazi FS, Kashtiaray A, Ganjali F, et al. Regulation of porosity in MOFs: A review on tunable scaffolds and related effects and advances in different applications. J Environ Chem Eng 2022:108836. [Crossref]
  • [6] Kouser S, Hezam A, Khadri MJN, Khanum SA. A review on zeolite imidazole frameworks: Synthesis, properties, and applications. J Porous Mater 2022;29:663–81. [Crossref]
  • [7] Qu H, Ma Y, Li B, Wang L. Hierarchical zeolites: Synthesis, structural control, and catalytic applications. Emergent Mater 2020;3:225–45. [Crossref]
  • [8] Mashuri SIS, Ibrahim ML, Kasim MF, Mastuli MS, Rashid U, Abdullah AH, et al. Photocatalysis for organic wastewater treatment: From the basis to current challenges for society. Catalysts 2020;10:1–29. [Crossref]
  • [9] Zhang H, bin Samsudin I, Jaenicke S, Chuah G-K (2022) Zeolites in catalysis: sustainable synthesis and its impact on properties and applications. Catal Sci Technol 12, 6024–39. [Crossref]
  • [10] Verdoliva V, Saviano M, De Luca S. Zeolites as acid/basic solid catalysts: Recent synthetic developments. Catalysts 2019;9. [Crossref]
  • [11] Nurliati G, Krisnandi YK, Sihombing R, Salimin Z. Studies of modification of zeolite by tandem acidbase treatments and its adsorptions performance towards thorium. Atom Indones 2015;41:87–95. [Crossref]
  • [12] Ates A, Akgül G. Modification of natural zeolite with NaOH for removal of manganese in drinking water. Powder Technol 2016;287:285–91. [Crossref]
  • [13] Fang Y, Yang F, He X, Zhu X (2019) Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization. Front Chem Sci Eng 13, 543–53. [Crossref]
  • [14] Yang S, Yu C, Yu L, Miao S, Zou M, Jin C, et al. Bridging dealumination and desilication for the synthesis of hierarchical MFI zeolites. Angew Chemie - Int Ed 2017;56:12553–6. [Crossref]
  • [15] Ates A. Role of modification of natural zeolite in removal of manganese from aqueous solutions. Powder Technol 2014;264:86–95. [Crossref]
  • [16] Soltanian S, Lee CL, Lam SS (2020) A review on the role of hierarchical zeolites in the production of transportation fuels through catalytic fast pyrolysis of biomass. Biofuel Res J 7, 1217–34. [Crossref]
  • [17] Lin F, Xu M, Ramasamy KK, Li Z, Klinger JL, Schaidle JA, et al. Catalyst deactivation and its mitigation during catalytic conversions of biomass. ACS Catal 2022;12:13555–99. [Crossref]
  • [18] Asadullah M, Tomishige K, Fujimoto K. A novel catalytic process for cellulose gasification to synthesis gas. Catal Commun 2001;2:63–8. [Crossref]
  • [19] Tavares F, Mohamed HO, Kulkarni SR, Morlanés N, Castaño P. Decreasing the coking and deactivation of a reforming Ni-Ce/Al₂O₃ catalyst with intraparticle SiC in hydrogen production routes. Fuel 2023;337:127058. [Crossref]
  • [20] Srinakruang J, Sato K, Vitidsant T, Fujimoto K. Highly efficient sulfur and coking resistance catalysts for tar gasification with steam. Fuel 2006;85:2419–26. [Crossref]
  • [21] Puig-Gamero M, Lara-Díaz J, Valverde JL, Sanchez-Silva L, Sánchez P. Dolomite effect on steam co-gasification of olive pomace, coal and petcoke: TGA-MS analysis, reactivity and synergistic effect. Fuel 2018;234:142–50. [Crossref]
  • [22] Sun Z, Toan S, Chen S, Xiang W, Fan M, Zhu M, et al. Biomass pyrolysis-gasification over Zr promoted CaO-HZSM-5 catalysts for hydrogen and bio-oil co-production with CO₂ capture. Int J Hydrogen Energy 2017;42:16031–44. [Crossref]
  • [23] Yuan N, Tan K, Zhang X, Zhao A, Guo R. Synthesis and adsorption performance of ultra-low silica- to-alumina ratio and hierarchical porous ZSM-5 zeolites prepared from coal gasification fine slag. Chemosphere 2022;303:134839. [Crossref]
  • [24] Valizadeh S, Jang SH, Hoon Rhee G, Lee J, Loke Show P, Ali Khan M, et al. Biohydrogen production from furniture waste via catalytic gasification in air over Ni-loaded Ultra-stable Y-type zeolite. Chem Eng J 2022;433:133793. [Crossref]
  • [25] Yu L, Zhang R, Cao C, Liu L, Fang J, Jin H (2022) Hydrogen production from supercritical water gasification of lignin catalyzed by Ni supported on various zeolites. Fuel 319, 123744. [Crossref]
  • [26] Mei Y, Zhang Q, Gao S, Xue Y, Wang Z. Zeolite preparation coupled with alkali recovery from catalytic gasification ash by one-step hydrothermal treatment. Energy and Fuels 2023;37:7911–8. [Crossref]
  • [27] Porawati H, Kurniawan A, Yuliwati E. Effect of temperature on gasification of biomass using zeolit. J. Phys. Conf. Ser., vol. 1845, 2021. [Crossref]
  • [28] State RN, Volceanov A, Muley P, Boldor D. A review of catalysts used in microwave assisted pyrolysis and gasification. Bioresour Technol 2019;277:179–94. [Crossref]
  • [29] Zhang Z, Liu L, Shen B, Wu C. Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification. Renew Sustain Energy Rev 2018;94:1086–109. [Crossref]
  • [30] Kolodeznikov KY, Stepanov V V. Zeolites of Yakutia. Stud. Surf. Sci. Catal., vol. 28, Elsevier; 1986, p. 93–100. [Crossref]
  • [31] Weller MT, Dann SE. Hydrothermal synthesis of zeolites. Curr Opin Solid State Mater Sci 1998;3:137–43. [Crossref]
  • [32] Jumaeri J, Santosa SJ, Sutarno, Kunarti ES. Synthesis of zeolite A from coal fly ash by alkali fusion and hydrothermal. Adv Mater Res 2014;1043:198–203. [Crossref]
  • [33] Keith TEC, Staples LW. Zeolites in Eocene basaltic pillow lavas of the Siletz River volcanics, central Coast Range, Oregon. Clays Clay Miner 1985;33:135–44. [Crossref]
  • [34] Lee Y Il. Chemistry and origin of zeolites in sandstones at DSDP Sites 445 and 446, Daito Ridge and Basin Province, northwest Pacific. Chem Geol 1988;67:261–73. [Crossref]
  • [35] Caruso C, Nastro A. Synthesis of ZSM-5 and A zeolites on porous alumina substrates. Stud. Surf. Sci. Catal., vol. 125, Elsevier; 1999, p. 93–100. [Crossref]
  • [36] Zhu D, Wang L, Fan D, Yan N, Huang S, Xu S, et al. A bottom‐up strategy for the synthesis of highly siliceous faujasite‐type zeolite. Adv Mater 2020;32:2000272. [Crossref]
  • [37] Król M, Florek P. Zeolites. MDPI, Basel; 2022.
  • [38] Suyitno, Gravitiani E, Arifin Z, Muqoffa M, Hadi S. Feasibility of electric generation from municipal solid wastes by incineration and gasification. Proc. 6th Int. Conf. Exhib. Sustain. Energy Adv. Mater. ICE-SEAM 2019, 16—17 Oct. 2019, Surakarta, Indones., Springer; 2020, p. 485–91. [Crossref]
  • [39] Imron R, Suyitno S, Ilyas AX, Faishal A, Budiono A, Yusuf M, et al. Producing hydrogen-rich syngas via microwave heating and co-gasification: a systematic review. Biofuel Res J 2022;9:1573–91. [Crossref]
  • [40] Cortazar M, Santamaria L, Lopez G, Alvarez J, Zhang L, Wang R, et al. A comprehensive review of primary strategies for tar removal in biomass gasification. Energy Convers Manag 2023;276. [Crossref]
  • [41] Susastriawan AAP, Purwanto Y, Sidharta BW, Siolimbona N. Thermal performance of cocoa pod cook stove. J Therm Eng 2021;10:188–95. [Crossref]
  • [42] Rauch R, Hrbek J, Hofbauer H. Biomass gasification for synthesis gas production and applications of the syngas. Adv Bioenergy Sustain Chall 2016:73–91. [Crossref]
  • [43] Mardiana S, Azhari NJ, Ilmi T, Kadja GTM. Hierarchical zeolite for biomass conversion to biofuel: A review. Fuel 2022;309:122119. [Crossref]
  • [44] Antıl S, Sachdeva G, Sharma A. Advancements and challenges in the fluidized bed gasification system: A comprehensive review. J Therm Eng 2023;9:233–46. [Crossref]
  • [45] El-Rub ZA, Halawa D, Alqudah I, Nasr A, Naqvi M, Abu El-Rub Z, et al. Natural zeolite catalyst for tar removal in biomass gasification Systems: Kinetics and effectiveness evaluation. Fuel 2023;346:128393. [Crossref]
  • [46] Inglezakis VJ, Zorpas AA. Handbook of natural zeolites. Bentham Science Publishers; 2012. [Crossref]
  • [47] Waluyo J, Ruya PM, Hantoko D, Rizkiana J, Makertihartha I, Yan M, et al. Utilization of modified zeolite as catalyst for steam gasification of palm kernel shell. Bull Chem React Eng Catal 2021;16:623–31. [Crossref]
  • [48] Hauserman WB. High-yield hydrogen production by catalytic gasification of coal or biomass. Int J Hydrogen Energy 1994;19:413–9. [Crossref]
  • [49] Asadullah M, Ito SI, Kunimori K, Yamada M, Tomishige K.Energy efficient production of hydrogen and syngas from biomass: Development of low-temperature catalytic process for cellulose gasification. Environ Sci Technol 2022;36:4476–81. [Crossref]
  • [50] Liu YL, Huang X, Ren J, Zhao X-Y, Cao J-P.Low-Temperature Reforming of Biomass Tar over Ni/ ZSM-5 Catalysts: Unraveling the H2-Rich Gas Production Pathways Using in Situ and Ex Situ Techniques. Ind Eng Chem Res 2022;61:5734–46. [Crossref]
  • [51] Pan X, Jiao F, Miao D, Bao X.Oxide–zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer–Tropsch synthesis. Chem Rev 2021;121:6588–609. [Crossref]
  • [52] Wang M, Kang J, Xiong X, Zhang F, Cheng K, Zhang Q, et al. Effect of zeolite topology on the hydrocarbon distribution over bifunctional ZnAlO/ SAPO catalysts in syngas conversion. Catal Today 2021;371:85–92. [Crossref]
  • [53] Gao N, Milandile MH, Quan C, Rundong L.Critical assessment of plasma tar reforming during biomass gasification: A review on advancement in plasma technology. J Hazard Mater 2022;421:126764. [Crossref]
  • [54] Ren J, Cao J-P, Zhao X-Y, Yang F-L, Wei X-Y. Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renew Sustain Energy Rev 2019:116;109426. [Crossref]
  • [55] Ngo TNLT, Chiang K-Y, Liu C-F, Chang Y-H, Wan H-P.Hydrogen production enhancement using hot gas cleaning system combined with prepared Ni-based catalyst in biomass gasification. Int J Hydrogen Energy 2021;46:11269–83. [Crossref]
  • [56] Waluyo J, Ruya PM, Hantoko D, Rizkiana J, Makertihartha I, Yan M, Susanto H (2021) Utilization of Modified Zeolite as Catalyst for Steam Gasification of Palm Kernel Shell. Bull Chem React Eng Catal 16, 623–31. [Crossref]
  • [57] Maryudi M, Aktawan A, Amelia S. Water scrubber and zeolite catalyst for clean syngas production on biomass gasification of bagasse in a downdraft system. J Bahan Alam Terbarukan 2022;11:92–9. [Crossref]
  • [58] Liu P, Chen Z, Li X, Chen W, Li Y, Sun T, et al. Enhanced degradation of VOCs from biomass gasification catalyzed by Ni/HZSM-5 series catalyst. J Environ Manage 2023;345. [Crossref]
  • [59] Singh A, Shivapuji AM, Dasappa S. VPSA process characterization for ISO quality green hydrogen generation using two practical multi-component biomass gasification feeds. Sep Purif Technol 2023;315:123667. [Crossref]
  • [60] Zsinka V, Miskolczi N, Juzsakova T, Jakab M. Pyrolysis-gasification of biomass using nickel modified catalysts: The effect of the catalyst regeneration on the product properties. J Energy Inst 2022;105:16–24. [Crossref]
  • [61] Dastyar W, Raheem A, Zhao M, Yuan W, Li H, Ting ZJ. Effects of ionic liquid-assisted pretreatment of heavy metal-contaminated biomass on the yield and composition of syngas production using noncatalytic and catalytic pyrolysis and gasification processes. ACS Sustain Chem Eng 2019;7:18303–12. [Crossref]
  • [62] Kislov VM, Salganskii EA, Tsvetkov M V, Tsvetkova YY. Effect of catalysts on the yield of products formed in biomass gasification. Russ J Appl Chem 2017;90:716–20. [Crossref]
  • [63] Laksmono N, Paraschiv M, Loubar K, Tazerout M. Biodiesel production from biomass gasification tar via thermal/catalytic cracking. Fuel Process Technol 2013;106:776–83. [Crossref]
  • [64] Phillips SD, Tarud JK, Biddy MJ, Dutta A. Gasoline from woody biomass via thermochemical gasification, methanol synthesis, and methanol-to-gasoline technologies: A technoeconomic analysis. Ind Eng Chem Res 2011;50:11734–45. [Crossref]
  • [65] Buchireddy PR, Bricka RM, Rodriguez J, Holmes W. Biomass gasification: catalytic removal of tars over zeolites and nickel supported zeolites. Energy & Fuels 2010;24:2707–15. [Crossref]
  • [66] Thao Ngo TNL, Chiang KY. Hydrogen sulfide removal from simulated synthesis gas using a hot gas cleaning system. J Environ Chem Eng 2023;11:109592. [Crossref]
  • [67] Hus J. Experimental verification of a pilot pyrolysis/ split product gasification (PSPG ) unit. Energy 2022;244:1–9. [Crossref]
  • [68] Kim I-T, Ahn K-H, Jung J, Jeong Y, Shin D-C, Lee Y-E. Removal of tar contents derived from lignocellulosic biomass gasification facilities using MgAl- LDH@clinoptilolite. Catalysts 2021;11:1111. [Crossref]
  • [69] Chipera SJ, Bish DL. Thermodynamic modeling of natural zeolite stability. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); 1997.
  • [70] H. Abbasi, F. Rahimpour, F. Pourfayaz AK. Evaluating integration of biomass gasification process with solid oxide fuel cell and torrefaction process. J Therm Eng 2019;5:230–9. [Crossref]
  • [71] Güney OF, Koyun A. Experimental analysis and kinetic modelling for steam gasification of the Turkish Lignites. J Therm Eng 2020;6:204–13. [Crossref]
  • [72] Acevedo-Paez JC, Arenas-Castiblanco E, Posso F, Alarcón E, Villa AL, Jahromi H, et al. Effect of calcium and potassium on activity of mordenite-supported nickel catalyst for hydrogen production from biomass gasification. Int J Hydrogen Energy 2023. [Crossref]
  • [73] Huang X, Ma M, Li M, Shen W. Regulating the location of framework aluminium in mordenite for the carbonylation of dimethyl ether. Catal Sci Technol 2020;10:7280–90. [Crossref]
  • [74] Woolcock PJ, Brown RC. A review of cleaning technologies for biomass-derived syngas. Biomass and Bioenergy 2013;52:54–84. [Crossref]
  • [75] Mohamed DKB, Veksha A, Ha QLM, Chan WP, Lim T-T, Lisak G. Advanced Ni tar reforming catalysts resistant to syngas impurities: Current knowledge, research gaps and future prospects. Fuel 2022;318:123602. [Crossref]
  • [76] Torres W, Pansare SS, Goodwin Jr JG. Hot gas removal of tars, ammonia, and hydrogen sulfide from biomass gasification gas. Catal Rev 2007;49:407–56. [Crossref]
  • [77] Jae J, Tompsett GA, Foster AJ, Hammond KD, Auerbach SM, Lobo RF, et al. Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J Catal 2011;279:257–68. [Crossref]
  • [78] Mertens G, Snellings R, Balen K Van, Bicer-Simsir B, Verlooy P, Elsen J. Pozzolanic reactions of common natural zeolites with lime and parameters affecting their reactivity. Cem Concr Res 2009;39:233–40. [Crossref]
  • [79] Saramok M, Inger M, Antoniak-Jurak K, Szymaszek- Wawryca A, Samojeden B, Motak M. physicochemical features and NH₃-SCR catalytic performance of natural zeolite modified with iron—the effect of Fe loading. Catalysts 2022;12. [Crossref]
  • [80] Lari GM, Dapsens PY, Scholz D, Mitchell S, Mondelli C, Pérez-Ramírez J. Deactivation mechanisms of tin-zeolites in biomass conversions. Green Chem 2016;18:1249–60. [Crossref]
  • [81] Cadar O, Dinca Z, Senila M, Becze A, Todor F. Studies on the modification of some natural zeolite from NW Romania after acid and basic treatments. Int Multidiscip Sci GeoConference SGEM 2020;20:309–16. [Crossref]
  • [82] Petranovskii V, Chaves-Rivas F, Espinoza MAH, Pestryakov A, Kolobova E. Potential uses of natural zeolites for the development of new materials: short review. MATEC Web Conf., vol. 85, EDP Sciences; 2016, p. 1014. [Crossref]
  • [83] Santi LP, Prakoso HT, Kalbuadi DN. Preliminary study of molecular sieve materials to alleviate problems faced by tropical peatland. IOP Conf. Ser. Earth Environ. Sci., vol. 1025, IOP Publishing; 2022, p. 12027. [Crossref]
  • [84] Froment GF (2008) Kinetic modeling of hydrocarbon processing and the effect of catalyst deactivation by coke formation. Catal Rev 50, 1–18. [Crossref]
  • [85] Van Kooten WEJ, Krijnsen HC, Van Den Bleek CM, Calis HPA. Deactivation of zeolite catalysts used for NOx removal. Appl Catal B Environ 2000;25:125–35. [Crossref]
  • [86] Guan G, Kaewpanha M, Hao X, Abudula A. Catalytic steam reforming of biomass tar: Prospects and challenges. Renew Sustain energy Rev 2016;58:450–61. [Crossref]
  • [87] Silaghi MC, Chizallet C, Raybaud P. Challenges on molecular aspects of dealumination and desilication of zeolites. Microporous Mesoporous Mater 2014;191:82–96. [Crossref]
  • [88] Cruciani G. Zeolites upon heating: Factors governing their thermal stability and structural changes. J Phys Chem Solids 2006;67:1973–94. [Crossref]
  • [89] Al-Shawabkeh AF, Al-Najdawi N, Olimat AN. High purity oxygen production by pressure vacuum swing adsorption using natural zeolite. Results Eng 2023;18:101119. [Crossref]
  • [90] Chikati R. Iron Supported on Clinoptilolite (Natural Zeolites) as a Low-Temperature Fischer-Tropsch Synthesis Catalyst, University of the Witwatersrand, Faculty of Engineering and the Built.
  • [91] Guisnet M, Magnoux P, Martin D. Roles of acidity and pore structure in the deactivation of zeolites by carbonaceous deposits. In: Studies in Surface Science and Catalysis, vol 111, Elsevier, pp 1–19.
  • [92] Ates A, Hardacre C (2012) The effect of various treatment conditions on natural zeolites: Ion exchange, acidic, thermal and steam treatments. J Colloid Interface Sci 1997;372:130–40. [Crossref]
  • [93] Hulea V, Huguet E, Cammarano C, Lacarriere A, Durand R, Leroi C, et al. Conversion of methyl mercaptan and methanol to hydrocarbons over solid acid catalysts – A comparative study. Appl Catal B Environ 2014;144:547–53. [Crossref]
  • [94] Zhao X, Li J, Tian P, Wang L, Li X, Lin S, et al. Achieving a superlong lifetime in the zeolite-catalyzed MTO reaction under high pressure: synergistic effect of hydrogen and water. ACS Catal 2019;9:3017–25. [Crossref]
  • [95] Bai J, Liu S, Xie S, Xu L, Lin L. Shape selectivity in methane dehydroaromatization over Mo/MCM-22 catalysts during a lifetime experiment. Catal Letters 2003;90:123–30. [Crossref]
  • [96] Milina M, Mitchell S, Crivelli P, Cooke D, Pérez- Ramírez J. Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts. Nat Commun 2014;5:3922. [Crossref]
  • [97] Mitchell S, Boltz M, Liu J, Pérez-Ramírez J. Engineering of ZSM-5 zeolite crystals for enhanced lifetime in the production of light olefins via 2-methyl-2-butene cracking. Catal Sci Technol 2017;7:64–74. [Crossref]
  • [98] Hwang A, Kumar M, Rimer JD, Bhan A. Implications of methanol disproportionation on catalyst lifetime for methanol-to-olefins conversion by HSSZ-13. J Catal 2017;346:154–60. [Crossref]
  • [99] Zhou J, Gao M, Zhang J, Liu W, Zhang T, Li H, et al. Directed transforming of coke to active intermediates in methanol-to-olefins catalyst to boost light olefins selectivity. Nat Commun 2021;12:17. [Crossref]
  • [100] Li Z. New micro and mesoporous materials for the reaction of methanol to olefins 2014.
  • [101] Martínez A, Lopez C. The influence of ZSM-5 zeolite composition and crystal size on the in situ conversion of Fischer–Tropsch products over hybrid catalysts. Appl Catal A Gen 2005;294:251–9. [Crossref]
  • [102] Martín AJ, Mitchell S, Mondelli C, Jaydev S, Pérez- Ramírez J (2022) Unifying views on catalyst deactivation. Nat Catal 5, 854–66. [Crossref]
  • [103] Morales–Leal FJ, Ancheyta J, Torres–Mancera P, Alonso F. Experimental methodologies to perform accelerated deactivation studies of hydrotreating catalysts. Fuel 2023;332:126074. [Crossref]
  • [104] Adanenche DE, Aliyu A, Atta AY, El-Yakubu BJ. Residue fluid catalytic cracking: A review on the mitigation strategies of metal poisoning of RFCC catalyst using metal passivators/traps. Fuel 2023;343:127894. [Crossref]
  • [105] Bai P, Etim UJ, Yan Z, Mintova S, Zhang Z, Zhong Z, et al. Fluid catalytic cracking technology: current status and recent discoveries on catalyst contamination. Catal Rev 2019;61:333–405. [Crossref]
  • [106] Li N, Chen C, Wang B, Li S, Yang C, Chen X. Retardation effect of nitrogen compounds and condensed aromatics on shale oil catalytic cracking processing and their characterization. Appl Petrochemical Res 2015;5:285–95. [Crossref]
  • [107] Skorupska M, Ilnicka A, Lukaszewicz JP. The effect of nitrogen species on the catalytic properties of N-doped graphene. Sci Rep 2021;11:1–11. [Crossref]
  • [108] Bobkova T V., Doronin VP, Potapenko O V., Sorokina TP, Ostrovskii NM. Poisoning effect of nitrogen compounds on the transformation of model hydrocarbons and real feed under catalytic cracking conditions. Catal Ind 2014;6:218–22. [Crossref]
  • [109] Kordala N, Wyszkowski M. Zeolite properties, methods of synthesis, and selected applications. Molecules 2024;29. [Crossref]
  • [110] Ruiz-Martínez J, Buurmans ILC, Knowles W V, Van Der Beek D, Bergwerff JA, Vogt ETC, Weckhuysen BM (2012) Microspectroscopic insight into the deactivation process of individual cracking catalyst particles with basic sulfur components. Appl Catal A Gen 419–420, 84–94. [Crossref]
  • [111] Leflaive P, Lemberton JL, Pérot G, Mirgain C, Carriat JY, Colin JM (2002) On the origin of sulfur impurities in fluid catalytic cracking gasoline - Reactivity of thiophene derivatives and of their possible precursors under FCC conditions. Appl Catal A Gen 227, 201–15. [Crossref]
  • [112] Arevalo RL, Aspera SM, Nakanishi H (2019) Sulfation of a PdO(101) methane oxidation catalyst: Mechanism revealed by first principles calculations. Catal Sci Technol 9, 232–40. [Crossref]
  • [113] Li Y, Guo Q, Dai Z, Dong Y, Yu G, Wang F. Study of oxidation for gas mixture of H₂S and CH₄ in a non-premixed flame under oxygen deficient condition. Appl Therm Eng 2017;117:659–67. [Crossref]
  • [114] Yang Z, Liu J, Zhang L, Zheng S, Guo M, Yan Y. Catalytic combustion of low-concentration coal bed methane over CuO/γ-Al₂O₃ catalyst: Effect of SO₂. RSC Adv 2014;4:39394–9. [Crossref]
  • [115] Honkanen M, Wang J, Kärkkäinen M, Huuhtanen M, Jiang H, Kallinen K, et al. Regeneration of sulfur- poisoned Pd-based catalyst for natural gas oxidation. J Catal 2018;358:253–65. [Crossref]
  • [116] Zhang Y, Glarborg P, Andersson MP, Johansen K, Torp TK, Jensen AD, et al. Influence of the support on rhodium speciation and catalytic activity of rhodium- based catalysts for total oxidation of methane. Catal Sci Technol 2020;10:6035–44. [Crossref]
  • [117] Wallenstein D, Farmer D, Knoell J, Fougret CM, Brandt S. Progress in the deactivation of metals contaminated FCC catalysts by a novel catalyst metallation method. Appl Catal A Gen 2013;462:91–9. [Crossref]
  • [118] Li D, Zhu Q, Bao Z, Jin L, Hu H. New insight and countermeasure for sulfur poisoning on nickel- based catalysts during dry reforming of methane. Fuel 2024;363:131045. [Crossref]
  • [119] Lisi L, Cimino S. Poisoning of SCR catalysts by alkali and alkaline earth metals. Catalysts 2020;10:1475. [Crossref]
  • [120] Belviso C. Zeolite for potential toxic metal uptake from contaminated soil: A brief review. Processes 2020;8:820. [Crossref]
  • [121] Zhang Y, Dong J, Guo F, Shao Z, Wu J. Zeolite synthesized from coal fly ash produced by a gasification process for Ni2+ removal from water. Minerals 2018;8:116. [Crossref]
  • [122] Xu M, Mukarakate C, Robichaud DJ, Nimlos MR, Richards RM, Trewyn BG. Elucidating zeolite deactivation mechanisms during biomass catalytic fast pyrolysis from model reactions and zeolite syntheses. Top Catal 2016;59:73–85. [Crossref]
  • [123] Ihli J, Jacob RR, Holler M, Guizar-Sicairos M, Diaz A, Da Silva JC, et al. A three-dimensional view of structural changes caused by deactivation of fluid catalytic cracking catalysts. Nat Commun 2017;8:809. [Crossref]
  • [124] Hunston C, Baudouin D, Tarik M, Kröcher O, Vogel F. Investigating active phase loss from supported ruthenium catalysts during supercritical water gasification. Catal Sci Technol 2021;11:7431–44. [Crossref]
  • [125] Magyarová Z, Králik M, Soták T. Utilization of zeolite catalysts in biomass exploitation: a minireview. Monatshefte Für Chemie - Chem Mon 2023;154:815–35. [Crossref]
  • [126] Bingre R, Louis B, Nguyen P. An overview on zeolite shaping technology and solutions to overcome diffusion limitations. Catalysts 2018;8. [Crossref]
  • [127] Xie Y, Zhang Y, He L, Jia CQ, Yao Q, Sun M, et al. Anti-deactivation of zeolite catalysts for residue fluid catalytic cracking. Appl Catal A Gen 2023;657:119159. [Crossref]
  • [128] Sun Y, Wei L, Zhang Z, Zhang H, Li Y. Coke formation over zeolite catalysts in light alkanes aromatization and anti-carbon-deposition strategies and perspectives: a review. Energy & Fuels 2023;37:1657–77. [Crossref]
  • [129] Nazarova GY, Ivashkina EN, Ivanchina ED, Mezhova MY. A model of catalytic cracking: catalyst deactivation induced by feedstock and process variables. Catalysts 2022;12:98. [Crossref]
  • [130] Hambali HU, Jalil AA, Abdulrasheed AA, Siang TJ, Gambo Y, Umar AA. Zeolite and clay based catalysts for CO₂ reforming of methane to syngas: a review. Int J Hydrogen Energy 2022;47:30759–87. [Crossref]
  • [131] Samoilov NA. Mechanism of catalytic deactivation of zeolites in multicycle processes. React Kinet Catal Lett 1982;19:5–9. [Crossref]
  • [132] Arcoya A, Seoane XL, Soria J. Effect of iron on the deactivation of Ni/clinoptilolite catalysts by thiophene poisoning. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 1997;68:171–6. [Crossref]
  • [133] Arcoya A, Seoane XL, Soria J. Sulfur resistance of nickel catalysts supported on K-clinoptilolite containing iron in ethylbenzene hydrogenation. Stud Surf Sci Catal 1993;75:2341–4. [Crossref]
  • [134] Yaşyerli S, Ar İ, Dogu G, Dogu T. Removal of hydrogen sulfide by clinoptilolite in a fixed bed adsorber. Chem Eng Process 2002;41:785–92. [Crossref]
  • [135] Daneshvar M, Falamaki C. Fixed-bed catalytic oxidative removal of dissolved iron by manganese oxide-coated clinoptilolite: enhanced activity in the presence of aqueous Mn2+ cations. Environ Process 2018;5:65–79. [Crossref]
  • [136] Lee C-Y, Ha B-H. Deactivation of CuO/mordenite by the breakage of mordenite crystal through the H₂/O₂ cycle treatment. Stud. Surf. Sci. Catal., vol. 126, Elsevier; 1999, p. 203–10. [Crossref]
  • [137] Stöcker M, Holm KM. Improved deactivation profile observed for Pt/H-chabazites and Pt/H-Y zeolite. React Kinet Catal Lett 1990;41:271–5. [Crossref]
  • [138] Yuan Y, Lee JS, Lobo RF. Ga+-chabazite zeolite: A highly selective catalyst for nonoxidative propane dehydrogenation. J Am Chem Soc 2022. [Crossref]
  • [139] Cui Y, Xu Y, Lu J, Suzuki Y, Zhang Z-G. The effect of zeolite particle size on the activity of Mo/HZSM-5 in non-oxidative methane dehydroaromatization. Appl Catal A Gen 2011;393:348–58. [Crossref]
  • [140] Gao X, Wen Y, Tan R, Huang H, Kawi S. A review of catalyst modifications for a highly active and stable hydrogen production from methane. Int J Hydrogen Energy 2023;48:6204–32. [Crossref]
  • [141] Hutchings GJ, Themistocleous T, Copperthwaite RG. Methanol conversion to hydrocarbons using modified clinoptilolite catalysts: Investigation of catalyst lifetime and reactivation. Appl Catal 1988;43:133–40. [Crossref]
  • [142] Miro EE, Costa L, Dereppe J-M, Petunchi JO. H-mordenite deactivation during the SCR of NOx. Adsorption and diffusion of probe molecules on fresh and deactivated catalysts. Stud. Surf. Sci. Catal., vol. 111, Elsevier; 1997, p. 231–8. [Crossref]
  • [143] Ribotta A, Lezcano M, Kurgansky M V, Miroè E, Lombardo EA, Petunchi JO, et al. Kinetics, acid sites and deactivation of H-mordenite during the SCR of NOx with CH₄. Catal Letters 1997;49:77–85. [Crossref]
  • [144] Kunal P, Toops TJ, Kidder MK, Lance MJ. Deactivation trends of Pd/SSZ-13 under the simultaneous presence of NO, CO, hydrocarbons and water for passive NOx adsorption. Appl Catal B-Environmental 2021;299:120591. [Crossref]
  • [145] Aziz MAA, Jalil AA, Wongsakulphasatch S, Vo D-VN. Understanding the role of surface basic sites of catalysts in CO₂ activation in dry reforming of methane: a short review. Catal Sci Technol 2020;10:35–45. [Crossref]
  • [146] Orlyk S, Kyriienko P, Kapran A, Chedryk V, Balakin D, Gurgul J, et al. CO₂-assisted dehydrogenation of propane to propene over Zn-BEA zeolites: Impact of acid–base characteristics on catalytic performance. Catalysts 2023;13:681. [Crossref]
  • [147] Orlyk SM, Kapran AY, Chedryk VI, Nychiporuk YM, Kyriienko PI, Dzwigaj S. Effect of surface acidity/ basicity of Cr/Zn− BEA zeolite catalysts on performance in CO₂‐PDH process. ChemistrySelect 2024;9:e202304801. [Crossref]
  • [148] Yuan B, Zhu T, Han Y, Zhang X, Wang M, Li C. Deactivation mechanism and anti-deactivation measures of metal catalyst in the dry reforming of methane: A review. Atmosphere (Basel) 2023;14:770. [Crossref]
  • [149] Xing S, Turner S, Fu D, van Vreeswijk S, Liu Y, Xiao J, et al. Silicalite-1 layer secures the bifunctional nature of a CO₂ hydrogenation catalyst. JACS Au 2023;3:1029–38. [Crossref]
  • [150] Ivanov DP, Kharitonov AS, Piryutko L V. Phenol oxidation by nitrous oxide: The role of zeolite catalyst acidity. Catal Ind 2015;7:275–81. [Crossref]
  • [151] Graca I, Comparot J-D, Laforge S, Magnoux P, Lopes JM, Ribeiro MF, et al. Influence of phenol addition on the H-ZSM-5 zeolite catalytic properties during methylcyclohexane transformation. Energy & Fuels 2009;23:4224–30. [Crossref]
  • [152] Xu X, Zhang Y, Li X, Xia X, Jiang H, Toghan A. Comparative study on the catalytic behaviors of zeolites with different diffusion limitation in ethane aromatization. Microporous Mesoporous Mater 2021;315:110926. [Crossref]
  • [153] Cheng Y, Hoard J, Lambert C, Kwak JH, Peden CHF. NMR studies of Cu/zeolite SCR catalysts hydrothermally aged with urea. Catal Today 2008;136:34–9. [Crossref]
  • [154] Bach-Oller A, Furusjö E, Umeki K. On the role of potassium as a tar and soot inhibitor in biomass gasification. Appl Energy 2019;254:113488. [Crossref]
  • [155] Barrientos J, Montes V, Boutonnet M, Järås S. Further insights into the effect of sulfur on the activity and selectivity of cobalt-based Fischer–Tropsch catalysts. Catal Today 2016;275:119–26. [Crossref]
  • [156] Querini CA, Roa E. Deactivation of solid acid catalysts during isobutane alkylation with C4 olefins. Appl Catal A Gen 1997;163:199–215. [Crossref]
  • [157] Wang L, Li D, Koike M, Watanabe H, Xu Y, Nakagawa Y, et al. Catalytic performance and characterization of Ni–Co catalysts for the steam reforming of biomasstar to synthesis gas. Fuel 2013;112:654–61. [Crossref]
  • [158] Huang H, Tang X, Haas M. In-situ continuous coke deposit removal by catalytic steam gasification for fuel-cooled thermal management. J Eng Gas Turbines Power-Transactions Asme 2012;134:101502. [Crossref]
  • [159] Hui L. Function of fluidized bed reactor in reforming of methane with CO₂ to syngas in the presence of oxygen. Ind Catal 2008.
  • [160] Beltramini JN, Datta R. Gasification of Carbon Deposited on Mono and Bi-metallic Reforming Catalysts. Chemeca 88 Aust. Bicenten. Int. Conf. Process Ind. Prepr. Pap., Australia: Barton, ACT: Institution of Engineers; 1988.
  • [161] Lachén J, Herguido J, Peña JÁ. High purity hydrogen from biogas via steam iron process: Preventing reactor clogging by interspersed coke combustions. Renew Energy 2020;151:619–26. [Crossref]
  • [162] Das S, Pérez-Ramírez J, Gong J, Dewangan N, Hidajat K, Gates BC, et al. Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO₂. Chem Soc Rev 2020;49:2937–3004. [Crossref]
  • [163] Kawi S, Ashok J, Dewangan N, Pati S, Junmei C. Recent advances in catalyst technology for biomass tar model reforming: Thermal, plasma, and membrane reactors. Waste and Biomass Valorization 2022;13:1–30. [Crossref]
  • [164] Doronin VP, Sorokina TP, Lipin P V, Potapenko O V, Korotkova N V, Gordenko VI. Development and introduction of zeolite containing catalysts for cracking with controlled contents of rare earth elements. Catal Ind 2015;7:12–6. [Crossref]
  • [165] Hosseinpour M, Ahmadi SJ, Fatemi S. Successive co-operation of supercritical water and silica-supported iron oxide nanoparticles in upgrading of heavy petroleum residue: Suppression of coke deposition over catalyst. J Supercrit Fluids 2015;100:70–8. [Crossref]
  • [166] Anggoro DD, Buchori L, Putra MF, Le Monde BU. Regeneration method for spent FCC catalysts: Brief. J Res Chem 2023;4:49–53. [Crossref]
  • [167] Valle B, Aramburu B, Olazar M, Bilbao J, Gayubo AG. Steam reforming of raw bio-oil over Ni/La₂O₃- ΑAl₂O₃: Influence of temperature on product yields and catalyst deactivation. Fuel 2018;216:463–74. [Crossref]
  • [168] Barbera K, Sørensen S, Bordiga S, Skibsted J, Fordsmand H, Beato P, et al. Role of internal coke for deactivation of ZSM-5 catalysts after low temperature removal of coke with NO₂. Catal Sci Technol 2012;2:1196–206. [Crossref]
  • [169] Cao E, Zheng Y, Zhang H, Wang J, Li Y, Zhu T, et al. In-situ regenerable Cu/Zeolite adsorbent with excellent H₂S adsorption capacity for blast furnace gas. Sep Purif Technol 2024;336:126305. [Crossref]
  • [170] Daligaux V, Richard R, Manero MH (2021) Deactivation and regeneration of zeolite catalysts used in pyrolysis of plastic wastes—a process and analytical review. Catalysts 11. doi:10.3390/ catal11070770. [Crossref] [171] Galadima A, Muraza O. Stability improvement of
  • zeolite catalysts under hydrothermal conditions for their potential applications in biomass valorization and crude oil upgrading. Microporous Mesoporous Mater 2017;249:42–54. [Crossref]
  • [172] Sun P, Chen J, Zai S, Gao S, Weng X, Wu Z. Regeneration mechanism of a deactivated zeolite- supported catalyst for the combustion of chlorinated volatile organic compounds. Catal Sci Technol 2021;11:923–33. [Crossref]
  • [173] Horne PA, Nugranad N, Williams PT. The influence of steam on the zeolite catalytic upgrading of biomass pyrolysis oils. Dev Thermochem Biomass Convers Vol 1/Volume 2 1997:648–56. [Crossref]
  • [174] Díaz M, Epelde E, Valecillos J, Izaddoust S, Aguayo AT, Bilbao J (2021) Coke deactivation and regeneration of HZSM-5 zeolite catalysts in the oligomerization of 1-butene. Appl Catal B Environ 291. [Crossref]
  • [175] Cao E, Zheng Y, Zhang H, Wang J, Li Y, Zhu T, Zhang Z, Xu G, Cui Y (2024) In-situ regenerable Cu/Zeolite adsorbent with excellent H2S adsorption capacity for blast furnace gas. Sep Purif Technol 336, 126305. [Crossref]
  • [176] Leardini L, Martucci A, Braschi I, Blasioli S, Quartieri S. Regeneration of high-silica zeolites after sulfamethoxazole antibiotic adsorption: A combined in situ high-temperature synchrotron X-ray powder diffraction and thermal degradation study. Mineral Mag 2014;78:1141–59. [Crossref]
  • [177] Zhang Y, Williams PT. Carbon nanotubes and hydrogen production from the pyrolysis catalysis or catalytic-steam reforming of waste tyres. J Anal Appl Pyrolysis 2016;122:490–501. [Crossref]
  • [178] Lee D-G, Kim J-H, Lee C-H. Adsorption and thermal regeneration of acetone and toluene vapors in dealuminated Y-zeolite bed. Sep Purif Technol 2011;77:312–24. [Crossref]
  • [179] Hussain I, Jalil AA, Alhooshani K, Alasiri H, Malaibari Z, Hassan NS, et al. CO methanation over highly active and coke-resistant ruthenium- doped fibrous mordenite zeolite catalyst for synthetic natural gas (SNG) production. J Energy Inst 2023;108:101230. [Crossref]
  • [180] Zhang Q, Zhao X, Zheng Y, Xiao Y, Li J, Liu F, et al. Facile synthesis of regenerable NaY zeolite adsorbent relying on alcohol-terminated compounds for efficient trace sulfur dioxide capture. Chem Eng J 2023;475:146265. [Crossref]
  • [181] Zhang W, Zhou Z, An Y, Du S, Ruan D, Zhao C, et al. Optimization for zeolite regeneration and nitrogen removal performance of a hypochlorite-chloride regenerant. Chemosphere 2017;178:565–72. [Crossref]
  • [182] Wu SL, Kuo JH, Wey MY. Hydrogen promotion by Co/SiO₂@HZSM-5 core-shell catalyst for syngas from plastic waste gasification: The combination of functional materials. Int J Hydrogen Energy 2019;44:13480–9. [Crossref]
  • [183] Kim S, Sasmaz E, Lauterbach J. Effect of Pt and Gd on coke formation and regeneration during JP-8 cracking over ZSM-5 catalysts. Appl Catal B Environ 2015;168–169:212–9. [Crossref]
  • [184] Kumar R, Ohtani S, Tsunoji N. Direct air capture on amine-impregnated FAU zeolites: Exploring for high adsorption capacity and low-temperature regeneration. Microporous Mesoporous Mater 2023;360:112714. [Crossref]
  • [185] Andrunik M, Skalny M, Gajewska M, Marzec M, Bajda T. Comparison of pesticide adsorption efficiencies of zeolites and zeolite-carbon composites and their regeneration possibilities. Heliyon 2023;9:e20572. [Crossref]
  • [186] Küntzel J, Ham R, Melin T. Regeneration of hydrophobic zeolites with steam. Chem Eng Technol 1999;22:991–4. [Crossref]
  • [187] Schulz H, Wei M. Deactivation and thermal regeneration of zeolite HZSM-5 for methanol conversion at low temperature (260-290°C). Microporous Mesoporous Mater 1999;29:205–18. [Crossref]
  • [188] Rodeghero E, Martucci A, Cruciani G, Sarti E, Cavazzini A, Costa V, et al. Detailed investigation of thermal regeneration of high-silica ZSM-5 zeolite through in situ synchrotron X-ray powder diffraction and adsorption studies. J Phys Chem C 2017;121:17958–68. [Crossref]
  • [189] Santiago-Colón ÁN, Gounder R. Structural changes to molybdenum and Brønsted acid sites in MFI zeolites during methane dehydroaromatization reaction-regeneration cycles. J Catal 2024;430. [Crossref]
  • [190] Kariim I, Swai H, Kivevele T. Bio-oil upgrading over ZSM-5 catalyst: A review of catalyst performance and deactivation. Int J Energy Res 2023;2023. [Crossref]
  • [191] Lutz W. Zeolite Y: Synthesis, modification, and properties—a case revisited. Adv Mater Sci Eng 2014;2014:724248. [Crossref]
  • [192] Hita I, Mohamed HO, Attada Y, Zambrano N, Zhang W, Ramírez A, et al. Direct analysis at temporal and molecular level of deactivating coke species formed on zeolite catalysts with diverse pore topologies. Catal Sci Technol 2023;13:1288–300. [Crossref]
  • [193] Muhammad I, Makwashi N, Ahmed TG, Manos G, Zhao D. A mechanistic model on catalyst deactivation by coke formation in a CSTR reactor. Processes 2023;11. [Crossref]
  • [194] Bukhtiyarova M V, Echevskii G V. Coke formation on zeolites Y and their deactivation model. Pet Chem 2020;60:532–9. [Crossref]
  • [195] Liu D, Slocombe M, AlKinany H, AlMegren J, Wang J, Arden A, et al. Advances in the study of coke formation over zeolite catalysts in the methanol- to-hydrocarbon process. Appl Petrochemical Res 2016;6:209–15. [Crossref]
  • [196] Gu Y, Zhu Q, Liu Z, Fu C, Wu J, Zhu Q, et al. Nitrogen reduction reaction energy and pathways in metal-zeolites: deep learning and explainable machine learning with local acidity and hydrogen bonding features. J Mater Chem A 2022;10:14976–88. [Crossref]
  • [197] Liu M, Miao C, Wu Z. Recent advances in the synthesis, characterization, and catalytic consequence of metal species confined within zeolite for hydrogen- related reactions. Ind Chem Mater 2024. [Crossref]
  • [198] Luo HY, Lewis JD, Román-Leshkov Y. Lewis acid zeolites for biomass conversion: Perspectives and challenges on reactivity, synthesis, and stability. Annu Rev Chem Biomol Eng 2016;7:663–92. [Crossref]
  • [199] Shan J, Li Z, Zhu S, Liu H, Li J, Wang J, et al. Nanosheet MFI Zeolites for gas phase glycerol dehydration to acrolein. Catalysts 2019;9:13–27. [Crossref]
  • [200] Bartholomew CH, Argyle MD. Advances in catalyst deactivation and regeneration. Catalysts 2015;5:949–54. [Crossref]
  • [201] Ammendola P, Chirone R, Ruoppolo G, Russo G. Regeneration strategies of deactivated catalysts for thermo-catalytic decomposition process in a fluidized bed reactor. Combust Sci Technol 2008;180:869–82. [Crossref]
  • [202] Baier S, Damsgaard CD, Klumpp M, Reinhardt J, Sheppard T, Balogh Z, et al. Stability of a bifunctional Cu-based core@zeolite shell catalyst for dimethyl ether synthesis under redox conditions studied by environmental transmission electron microscopy and in situ X-ray ptychography. Microsc Microanal 2017;23:501–12. [Crossref]
  • [203] Gorshkov AS, Sineva L V, Gryaznov KO, Asalieva EY, Mordkovich VZ. Deactivation and regeneration of a zeolite-containing cobalt catalyst in a Fischer- Tropsch synthesis reactor. Catal Ind 2023;15:152–64. [Crossref]
  • [204] Padovan D, Nakajima K, Hensen EJM. Metal oxide catalysts for the valorization of biomass-derived sugars BT - Crystalline metal oxide catalysts. In: Ueda W, editor., Singapore: Springer Nature Singapore; 2022, p. 325–47. [Crossref]
  • [205] Costa P, Pinto F, André RN, Marques P. Integration of gasification and solid oxide fuel cells (SOFCs) for combined heat and power (CHP). Processes 2021;9. [Crossref]
  • [206] Botti L, Padovan D, Navar R, Tolborg S, Martinez- Espin JS, Hammond C. Thermal regeneration of Sn-containing silicates and consequences for biomass upgrading: From regeneration to preactivation. ACS Catal 2020;10:11545–55. [Crossref]
  • [207] Ruoppolo G, Landi G. Towards biomass gasification enhanced by structured iron-based catalysts. Fuels 2021;2:546–55. [Crossref]
  • [208] Rubinsin NJ, Timmiati SN, Lim KL, Isahak WNRW, Karim NA. Gasification reaction on CeO₂(111) and effects on the structural and electronic properties of adsorption molecules. Chem Eng Technol 2024..
  • [209] Huo J, Pham HN, Cheng Y, Lin H-H, Roling LT, Datye AK, Shanks BH. Deactivation and regeneration of carbon supported Pt and Ru catalysts in aqueous phase hydrogenation of 2-pentanone. Catal Sci Technol 2020;10:3047–3056. [Crossref]
  • [210] Lu F, Wang Q, Zhu M, Dai B (2023) Deactivation and Regeneration of Nitrogen Doped Carbon Catalyst for Acetylene Hydrochlorination. Molecules 28. doi:10.3390/molecules28030956. [Crossref]
  • [211] Yung MM, Starace AK, Mukarakate C, Crow AM, Leshnov MA, Magrini KA. Biomass catalytic pyrolysis on Ni/ZSM-5: effects of nickel pretreatment and loading. Energy & Fuels 2016;30:5259–68. [Crossref]
  • [212] Xu Z, Park ED. Recent advances in coke management for dry reforming of methane over Ni-based catalysts. Catalysts 2024;14. [Crossref]
  • [213] Luan H, Wu Q, Zhang J, Wang Y, Meng X, Xiao F-S. Sustainable synthesis of core-shell structured ZSM-5@silicalite-1 zeolite. Chem Res Chinese Univ 2022;38:136–40. [Crossref]
  • [214] Xu H, Wu P. New progress in zeolite synthesis and catalysis. Natl Sci Rev 2022;9:nwac045. [Crossref]
  • [215] Dyer AC, Nahil MA, Williams PT. Biomass:polystyrene co-pyrolysis coupled with metal-modified zeolite catalysis for liquid fuel and chemical production. J Mater Cycles Waste Manag 2022;24:477–90. [Crossref]
  • [216] Najimi M, Sobhani J, Ahmadi B, Shekarchi M. An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan. Constr Build Mater 2012;35:1023–33. [Crossref]
  • [217] Khoshroo M, Javid AAS, Katebi A. Effect of chloride treatment curing condition on the mechanical properties and durability of concrete containing zeolite and micro-nano-bubble water. Constr Build Mater 2018;177:417–27. [Crossref]
  • [218] Colombani N, Di Giuseppe D, Faccini B, Ferretti G, Mastrocicco M, Coltorti M. Estimated water savings in an agricultural field amended with natural zeolites. Environ Process 2016;3:617–28. [Crossref]
  • [219] de Campos Bernardi AC, Oliviera PPA, de Melo Monte MB, Souza-Barros F. Brazilian sedimentary zeolite use in agriculture. Microporous Mesoporous Mater 2013;167:16–21. [Crossref]
  • [220] Ramesh V, Jyothi JS, Shibli SMA. Effect of zeolites on soil quality, plant growth and nutrient uptake efficiency in sweet potato (Ipomoea batatas L.). J Root Crop 2015;41:25–31.
  • [221] Borchardt L, Michels N-L, Nowak T, Mitchell S, Perez-Ramirez J. Structuring zeolite bodies for enhanced heat-transfer properties. Microporous Mesoporous Mater 2015;208:196–202. [Crossref]

Year 2025, Volume: 11 Issue: 5, 1552 - 1584, 21.10.2025
https://doi.org/10.14744/thermal.0000993

Abstract

References

  • REFERENCES
  • [1] He M, Zhang K, Guan Y, Sun Y, Han B. Green carbon science: fundamental aspects. Natl Sci Rev 2023:nwad046. [Crossref]
  • [2] Laidler KJ. A glossary of terms used in chemical kinetics, including reaction dynamics (IUPAC Recommendations 1996). Pure Appl Chem 1996;68:149–92. [Crossref]
  • [3] Ranade V V., Joshi SS. Catalysis and Catalytic Processes. Elsevier Inc.; 2016. [Crossref]
  • [4] Yan P, Wang H, Liao Y, Wang C. Zeolite catalysts for the valorization of biomass into platform compounds and biochemicals/biofuels: A review. Renew Sustain Energy Rev 2023;178:113219. [Crossref]
  • [5] Zhang W, Taheri-Ledari R, Saeidirad M, Qazi FS, Kashtiaray A, Ganjali F, et al. Regulation of porosity in MOFs: A review on tunable scaffolds and related effects and advances in different applications. J Environ Chem Eng 2022:108836. [Crossref]
  • [6] Kouser S, Hezam A, Khadri MJN, Khanum SA. A review on zeolite imidazole frameworks: Synthesis, properties, and applications. J Porous Mater 2022;29:663–81. [Crossref]
  • [7] Qu H, Ma Y, Li B, Wang L. Hierarchical zeolites: Synthesis, structural control, and catalytic applications. Emergent Mater 2020;3:225–45. [Crossref]
  • [8] Mashuri SIS, Ibrahim ML, Kasim MF, Mastuli MS, Rashid U, Abdullah AH, et al. Photocatalysis for organic wastewater treatment: From the basis to current challenges for society. Catalysts 2020;10:1–29. [Crossref]
  • [9] Zhang H, bin Samsudin I, Jaenicke S, Chuah G-K (2022) Zeolites in catalysis: sustainable synthesis and its impact on properties and applications. Catal Sci Technol 12, 6024–39. [Crossref]
  • [10] Verdoliva V, Saviano M, De Luca S. Zeolites as acid/basic solid catalysts: Recent synthetic developments. Catalysts 2019;9. [Crossref]
  • [11] Nurliati G, Krisnandi YK, Sihombing R, Salimin Z. Studies of modification of zeolite by tandem acidbase treatments and its adsorptions performance towards thorium. Atom Indones 2015;41:87–95. [Crossref]
  • [12] Ates A, Akgül G. Modification of natural zeolite with NaOH for removal of manganese in drinking water. Powder Technol 2016;287:285–91. [Crossref]
  • [13] Fang Y, Yang F, He X, Zhu X (2019) Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization. Front Chem Sci Eng 13, 543–53. [Crossref]
  • [14] Yang S, Yu C, Yu L, Miao S, Zou M, Jin C, et al. Bridging dealumination and desilication for the synthesis of hierarchical MFI zeolites. Angew Chemie - Int Ed 2017;56:12553–6. [Crossref]
  • [15] Ates A. Role of modification of natural zeolite in removal of manganese from aqueous solutions. Powder Technol 2014;264:86–95. [Crossref]
  • [16] Soltanian S, Lee CL, Lam SS (2020) A review on the role of hierarchical zeolites in the production of transportation fuels through catalytic fast pyrolysis of biomass. Biofuel Res J 7, 1217–34. [Crossref]
  • [17] Lin F, Xu M, Ramasamy KK, Li Z, Klinger JL, Schaidle JA, et al. Catalyst deactivation and its mitigation during catalytic conversions of biomass. ACS Catal 2022;12:13555–99. [Crossref]
  • [18] Asadullah M, Tomishige K, Fujimoto K. A novel catalytic process for cellulose gasification to synthesis gas. Catal Commun 2001;2:63–8. [Crossref]
  • [19] Tavares F, Mohamed HO, Kulkarni SR, Morlanés N, Castaño P. Decreasing the coking and deactivation of a reforming Ni-Ce/Al₂O₃ catalyst with intraparticle SiC in hydrogen production routes. Fuel 2023;337:127058. [Crossref]
  • [20] Srinakruang J, Sato K, Vitidsant T, Fujimoto K. Highly efficient sulfur and coking resistance catalysts for tar gasification with steam. Fuel 2006;85:2419–26. [Crossref]
  • [21] Puig-Gamero M, Lara-Díaz J, Valverde JL, Sanchez-Silva L, Sánchez P. Dolomite effect on steam co-gasification of olive pomace, coal and petcoke: TGA-MS analysis, reactivity and synergistic effect. Fuel 2018;234:142–50. [Crossref]
  • [22] Sun Z, Toan S, Chen S, Xiang W, Fan M, Zhu M, et al. Biomass pyrolysis-gasification over Zr promoted CaO-HZSM-5 catalysts for hydrogen and bio-oil co-production with CO₂ capture. Int J Hydrogen Energy 2017;42:16031–44. [Crossref]
  • [23] Yuan N, Tan K, Zhang X, Zhao A, Guo R. Synthesis and adsorption performance of ultra-low silica- to-alumina ratio and hierarchical porous ZSM-5 zeolites prepared from coal gasification fine slag. Chemosphere 2022;303:134839. [Crossref]
  • [24] Valizadeh S, Jang SH, Hoon Rhee G, Lee J, Loke Show P, Ali Khan M, et al. Biohydrogen production from furniture waste via catalytic gasification in air over Ni-loaded Ultra-stable Y-type zeolite. Chem Eng J 2022;433:133793. [Crossref]
  • [25] Yu L, Zhang R, Cao C, Liu L, Fang J, Jin H (2022) Hydrogen production from supercritical water gasification of lignin catalyzed by Ni supported on various zeolites. Fuel 319, 123744. [Crossref]
  • [26] Mei Y, Zhang Q, Gao S, Xue Y, Wang Z. Zeolite preparation coupled with alkali recovery from catalytic gasification ash by one-step hydrothermal treatment. Energy and Fuels 2023;37:7911–8. [Crossref]
  • [27] Porawati H, Kurniawan A, Yuliwati E. Effect of temperature on gasification of biomass using zeolit. J. Phys. Conf. Ser., vol. 1845, 2021. [Crossref]
  • [28] State RN, Volceanov A, Muley P, Boldor D. A review of catalysts used in microwave assisted pyrolysis and gasification. Bioresour Technol 2019;277:179–94. [Crossref]
  • [29] Zhang Z, Liu L, Shen B, Wu C. Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification. Renew Sustain Energy Rev 2018;94:1086–109. [Crossref]
  • [30] Kolodeznikov KY, Stepanov V V. Zeolites of Yakutia. Stud. Surf. Sci. Catal., vol. 28, Elsevier; 1986, p. 93–100. [Crossref]
  • [31] Weller MT, Dann SE. Hydrothermal synthesis of zeolites. Curr Opin Solid State Mater Sci 1998;3:137–43. [Crossref]
  • [32] Jumaeri J, Santosa SJ, Sutarno, Kunarti ES. Synthesis of zeolite A from coal fly ash by alkali fusion and hydrothermal. Adv Mater Res 2014;1043:198–203. [Crossref]
  • [33] Keith TEC, Staples LW. Zeolites in Eocene basaltic pillow lavas of the Siletz River volcanics, central Coast Range, Oregon. Clays Clay Miner 1985;33:135–44. [Crossref]
  • [34] Lee Y Il. Chemistry and origin of zeolites in sandstones at DSDP Sites 445 and 446, Daito Ridge and Basin Province, northwest Pacific. Chem Geol 1988;67:261–73. [Crossref]
  • [35] Caruso C, Nastro A. Synthesis of ZSM-5 and A zeolites on porous alumina substrates. Stud. Surf. Sci. Catal., vol. 125, Elsevier; 1999, p. 93–100. [Crossref]
  • [36] Zhu D, Wang L, Fan D, Yan N, Huang S, Xu S, et al. A bottom‐up strategy for the synthesis of highly siliceous faujasite‐type zeolite. Adv Mater 2020;32:2000272. [Crossref]
  • [37] Król M, Florek P. Zeolites. MDPI, Basel; 2022.
  • [38] Suyitno, Gravitiani E, Arifin Z, Muqoffa M, Hadi S. Feasibility of electric generation from municipal solid wastes by incineration and gasification. Proc. 6th Int. Conf. Exhib. Sustain. Energy Adv. Mater. ICE-SEAM 2019, 16—17 Oct. 2019, Surakarta, Indones., Springer; 2020, p. 485–91. [Crossref]
  • [39] Imron R, Suyitno S, Ilyas AX, Faishal A, Budiono A, Yusuf M, et al. Producing hydrogen-rich syngas via microwave heating and co-gasification: a systematic review. Biofuel Res J 2022;9:1573–91. [Crossref]
  • [40] Cortazar M, Santamaria L, Lopez G, Alvarez J, Zhang L, Wang R, et al. A comprehensive review of primary strategies for tar removal in biomass gasification. Energy Convers Manag 2023;276. [Crossref]
  • [41] Susastriawan AAP, Purwanto Y, Sidharta BW, Siolimbona N. Thermal performance of cocoa pod cook stove. J Therm Eng 2021;10:188–95. [Crossref]
  • [42] Rauch R, Hrbek J, Hofbauer H. Biomass gasification for synthesis gas production and applications of the syngas. Adv Bioenergy Sustain Chall 2016:73–91. [Crossref]
  • [43] Mardiana S, Azhari NJ, Ilmi T, Kadja GTM. Hierarchical zeolite for biomass conversion to biofuel: A review. Fuel 2022;309:122119. [Crossref]
  • [44] Antıl S, Sachdeva G, Sharma A. Advancements and challenges in the fluidized bed gasification system: A comprehensive review. J Therm Eng 2023;9:233–46. [Crossref]
  • [45] El-Rub ZA, Halawa D, Alqudah I, Nasr A, Naqvi M, Abu El-Rub Z, et al. Natural zeolite catalyst for tar removal in biomass gasification Systems: Kinetics and effectiveness evaluation. Fuel 2023;346:128393. [Crossref]
  • [46] Inglezakis VJ, Zorpas AA. Handbook of natural zeolites. Bentham Science Publishers; 2012. [Crossref]
  • [47] Waluyo J, Ruya PM, Hantoko D, Rizkiana J, Makertihartha I, Yan M, et al. Utilization of modified zeolite as catalyst for steam gasification of palm kernel shell. Bull Chem React Eng Catal 2021;16:623–31. [Crossref]
  • [48] Hauserman WB. High-yield hydrogen production by catalytic gasification of coal or biomass. Int J Hydrogen Energy 1994;19:413–9. [Crossref]
  • [49] Asadullah M, Ito SI, Kunimori K, Yamada M, Tomishige K.Energy efficient production of hydrogen and syngas from biomass: Development of low-temperature catalytic process for cellulose gasification. Environ Sci Technol 2022;36:4476–81. [Crossref]
  • [50] Liu YL, Huang X, Ren J, Zhao X-Y, Cao J-P.Low-Temperature Reforming of Biomass Tar over Ni/ ZSM-5 Catalysts: Unraveling the H2-Rich Gas Production Pathways Using in Situ and Ex Situ Techniques. Ind Eng Chem Res 2022;61:5734–46. [Crossref]
  • [51] Pan X, Jiao F, Miao D, Bao X.Oxide–zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer–Tropsch synthesis. Chem Rev 2021;121:6588–609. [Crossref]
  • [52] Wang M, Kang J, Xiong X, Zhang F, Cheng K, Zhang Q, et al. Effect of zeolite topology on the hydrocarbon distribution over bifunctional ZnAlO/ SAPO catalysts in syngas conversion. Catal Today 2021;371:85–92. [Crossref]
  • [53] Gao N, Milandile MH, Quan C, Rundong L.Critical assessment of plasma tar reforming during biomass gasification: A review on advancement in plasma technology. J Hazard Mater 2022;421:126764. [Crossref]
  • [54] Ren J, Cao J-P, Zhao X-Y, Yang F-L, Wei X-Y. Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renew Sustain Energy Rev 2019:116;109426. [Crossref]
  • [55] Ngo TNLT, Chiang K-Y, Liu C-F, Chang Y-H, Wan H-P.Hydrogen production enhancement using hot gas cleaning system combined with prepared Ni-based catalyst in biomass gasification. Int J Hydrogen Energy 2021;46:11269–83. [Crossref]
  • [56] Waluyo J, Ruya PM, Hantoko D, Rizkiana J, Makertihartha I, Yan M, Susanto H (2021) Utilization of Modified Zeolite as Catalyst for Steam Gasification of Palm Kernel Shell. Bull Chem React Eng Catal 16, 623–31. [Crossref]
  • [57] Maryudi M, Aktawan A, Amelia S. Water scrubber and zeolite catalyst for clean syngas production on biomass gasification of bagasse in a downdraft system. J Bahan Alam Terbarukan 2022;11:92–9. [Crossref]
  • [58] Liu P, Chen Z, Li X, Chen W, Li Y, Sun T, et al. Enhanced degradation of VOCs from biomass gasification catalyzed by Ni/HZSM-5 series catalyst. J Environ Manage 2023;345. [Crossref]
  • [59] Singh A, Shivapuji AM, Dasappa S. VPSA process characterization for ISO quality green hydrogen generation using two practical multi-component biomass gasification feeds. Sep Purif Technol 2023;315:123667. [Crossref]
  • [60] Zsinka V, Miskolczi N, Juzsakova T, Jakab M. Pyrolysis-gasification of biomass using nickel modified catalysts: The effect of the catalyst regeneration on the product properties. J Energy Inst 2022;105:16–24. [Crossref]
  • [61] Dastyar W, Raheem A, Zhao M, Yuan W, Li H, Ting ZJ. Effects of ionic liquid-assisted pretreatment of heavy metal-contaminated biomass on the yield and composition of syngas production using noncatalytic and catalytic pyrolysis and gasification processes. ACS Sustain Chem Eng 2019;7:18303–12. [Crossref]
  • [62] Kislov VM, Salganskii EA, Tsvetkov M V, Tsvetkova YY. Effect of catalysts on the yield of products formed in biomass gasification. Russ J Appl Chem 2017;90:716–20. [Crossref]
  • [63] Laksmono N, Paraschiv M, Loubar K, Tazerout M. Biodiesel production from biomass gasification tar via thermal/catalytic cracking. Fuel Process Technol 2013;106:776–83. [Crossref]
  • [64] Phillips SD, Tarud JK, Biddy MJ, Dutta A. Gasoline from woody biomass via thermochemical gasification, methanol synthesis, and methanol-to-gasoline technologies: A technoeconomic analysis. Ind Eng Chem Res 2011;50:11734–45. [Crossref]
  • [65] Buchireddy PR, Bricka RM, Rodriguez J, Holmes W. Biomass gasification: catalytic removal of tars over zeolites and nickel supported zeolites. Energy & Fuels 2010;24:2707–15. [Crossref]
  • [66] Thao Ngo TNL, Chiang KY. Hydrogen sulfide removal from simulated synthesis gas using a hot gas cleaning system. J Environ Chem Eng 2023;11:109592. [Crossref]
  • [67] Hus J. Experimental verification of a pilot pyrolysis/ split product gasification (PSPG ) unit. Energy 2022;244:1–9. [Crossref]
  • [68] Kim I-T, Ahn K-H, Jung J, Jeong Y, Shin D-C, Lee Y-E. Removal of tar contents derived from lignocellulosic biomass gasification facilities using MgAl- LDH@clinoptilolite. Catalysts 2021;11:1111. [Crossref]
  • [69] Chipera SJ, Bish DL. Thermodynamic modeling of natural zeolite stability. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); 1997.
  • [70] H. Abbasi, F. Rahimpour, F. Pourfayaz AK. Evaluating integration of biomass gasification process with solid oxide fuel cell and torrefaction process. J Therm Eng 2019;5:230–9. [Crossref]
  • [71] Güney OF, Koyun A. Experimental analysis and kinetic modelling for steam gasification of the Turkish Lignites. J Therm Eng 2020;6:204–13. [Crossref]
  • [72] Acevedo-Paez JC, Arenas-Castiblanco E, Posso F, Alarcón E, Villa AL, Jahromi H, et al. Effect of calcium and potassium on activity of mordenite-supported nickel catalyst for hydrogen production from biomass gasification. Int J Hydrogen Energy 2023. [Crossref]
  • [73] Huang X, Ma M, Li M, Shen W. Regulating the location of framework aluminium in mordenite for the carbonylation of dimethyl ether. Catal Sci Technol 2020;10:7280–90. [Crossref]
  • [74] Woolcock PJ, Brown RC. A review of cleaning technologies for biomass-derived syngas. Biomass and Bioenergy 2013;52:54–84. [Crossref]
  • [75] Mohamed DKB, Veksha A, Ha QLM, Chan WP, Lim T-T, Lisak G. Advanced Ni tar reforming catalysts resistant to syngas impurities: Current knowledge, research gaps and future prospects. Fuel 2022;318:123602. [Crossref]
  • [76] Torres W, Pansare SS, Goodwin Jr JG. Hot gas removal of tars, ammonia, and hydrogen sulfide from biomass gasification gas. Catal Rev 2007;49:407–56. [Crossref]
  • [77] Jae J, Tompsett GA, Foster AJ, Hammond KD, Auerbach SM, Lobo RF, et al. Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J Catal 2011;279:257–68. [Crossref]
  • [78] Mertens G, Snellings R, Balen K Van, Bicer-Simsir B, Verlooy P, Elsen J. Pozzolanic reactions of common natural zeolites with lime and parameters affecting their reactivity. Cem Concr Res 2009;39:233–40. [Crossref]
  • [79] Saramok M, Inger M, Antoniak-Jurak K, Szymaszek- Wawryca A, Samojeden B, Motak M. physicochemical features and NH₃-SCR catalytic performance of natural zeolite modified with iron—the effect of Fe loading. Catalysts 2022;12. [Crossref]
  • [80] Lari GM, Dapsens PY, Scholz D, Mitchell S, Mondelli C, Pérez-Ramírez J. Deactivation mechanisms of tin-zeolites in biomass conversions. Green Chem 2016;18:1249–60. [Crossref]
  • [81] Cadar O, Dinca Z, Senila M, Becze A, Todor F. Studies on the modification of some natural zeolite from NW Romania after acid and basic treatments. Int Multidiscip Sci GeoConference SGEM 2020;20:309–16. [Crossref]
  • [82] Petranovskii V, Chaves-Rivas F, Espinoza MAH, Pestryakov A, Kolobova E. Potential uses of natural zeolites for the development of new materials: short review. MATEC Web Conf., vol. 85, EDP Sciences; 2016, p. 1014. [Crossref]
  • [83] Santi LP, Prakoso HT, Kalbuadi DN. Preliminary study of molecular sieve materials to alleviate problems faced by tropical peatland. IOP Conf. Ser. Earth Environ. Sci., vol. 1025, IOP Publishing; 2022, p. 12027. [Crossref]
  • [84] Froment GF (2008) Kinetic modeling of hydrocarbon processing and the effect of catalyst deactivation by coke formation. Catal Rev 50, 1–18. [Crossref]
  • [85] Van Kooten WEJ, Krijnsen HC, Van Den Bleek CM, Calis HPA. Deactivation of zeolite catalysts used for NOx removal. Appl Catal B Environ 2000;25:125–35. [Crossref]
  • [86] Guan G, Kaewpanha M, Hao X, Abudula A. Catalytic steam reforming of biomass tar: Prospects and challenges. Renew Sustain energy Rev 2016;58:450–61. [Crossref]
  • [87] Silaghi MC, Chizallet C, Raybaud P. Challenges on molecular aspects of dealumination and desilication of zeolites. Microporous Mesoporous Mater 2014;191:82–96. [Crossref]
  • [88] Cruciani G. Zeolites upon heating: Factors governing their thermal stability and structural changes. J Phys Chem Solids 2006;67:1973–94. [Crossref]
  • [89] Al-Shawabkeh AF, Al-Najdawi N, Olimat AN. High purity oxygen production by pressure vacuum swing adsorption using natural zeolite. Results Eng 2023;18:101119. [Crossref]
  • [90] Chikati R. Iron Supported on Clinoptilolite (Natural Zeolites) as a Low-Temperature Fischer-Tropsch Synthesis Catalyst, University of the Witwatersrand, Faculty of Engineering and the Built.
  • [91] Guisnet M, Magnoux P, Martin D. Roles of acidity and pore structure in the deactivation of zeolites by carbonaceous deposits. In: Studies in Surface Science and Catalysis, vol 111, Elsevier, pp 1–19.
  • [92] Ates A, Hardacre C (2012) The effect of various treatment conditions on natural zeolites: Ion exchange, acidic, thermal and steam treatments. J Colloid Interface Sci 1997;372:130–40. [Crossref]
  • [93] Hulea V, Huguet E, Cammarano C, Lacarriere A, Durand R, Leroi C, et al. Conversion of methyl mercaptan and methanol to hydrocarbons over solid acid catalysts – A comparative study. Appl Catal B Environ 2014;144:547–53. [Crossref]
  • [94] Zhao X, Li J, Tian P, Wang L, Li X, Lin S, et al. Achieving a superlong lifetime in the zeolite-catalyzed MTO reaction under high pressure: synergistic effect of hydrogen and water. ACS Catal 2019;9:3017–25. [Crossref]
  • [95] Bai J, Liu S, Xie S, Xu L, Lin L. Shape selectivity in methane dehydroaromatization over Mo/MCM-22 catalysts during a lifetime experiment. Catal Letters 2003;90:123–30. [Crossref]
  • [96] Milina M, Mitchell S, Crivelli P, Cooke D, Pérez- Ramírez J. Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts. Nat Commun 2014;5:3922. [Crossref]
  • [97] Mitchell S, Boltz M, Liu J, Pérez-Ramírez J. Engineering of ZSM-5 zeolite crystals for enhanced lifetime in the production of light olefins via 2-methyl-2-butene cracking. Catal Sci Technol 2017;7:64–74. [Crossref]
  • [98] Hwang A, Kumar M, Rimer JD, Bhan A. Implications of methanol disproportionation on catalyst lifetime for methanol-to-olefins conversion by HSSZ-13. J Catal 2017;346:154–60. [Crossref]
  • [99] Zhou J, Gao M, Zhang J, Liu W, Zhang T, Li H, et al. Directed transforming of coke to active intermediates in methanol-to-olefins catalyst to boost light olefins selectivity. Nat Commun 2021;12:17. [Crossref]
  • [100] Li Z. New micro and mesoporous materials for the reaction of methanol to olefins 2014.
  • [101] Martínez A, Lopez C. The influence of ZSM-5 zeolite composition and crystal size on the in situ conversion of Fischer–Tropsch products over hybrid catalysts. Appl Catal A Gen 2005;294:251–9. [Crossref]
  • [102] Martín AJ, Mitchell S, Mondelli C, Jaydev S, Pérez- Ramírez J (2022) Unifying views on catalyst deactivation. Nat Catal 5, 854–66. [Crossref]
  • [103] Morales–Leal FJ, Ancheyta J, Torres–Mancera P, Alonso F. Experimental methodologies to perform accelerated deactivation studies of hydrotreating catalysts. Fuel 2023;332:126074. [Crossref]
  • [104] Adanenche DE, Aliyu A, Atta AY, El-Yakubu BJ. Residue fluid catalytic cracking: A review on the mitigation strategies of metal poisoning of RFCC catalyst using metal passivators/traps. Fuel 2023;343:127894. [Crossref]
  • [105] Bai P, Etim UJ, Yan Z, Mintova S, Zhang Z, Zhong Z, et al. Fluid catalytic cracking technology: current status and recent discoveries on catalyst contamination. Catal Rev 2019;61:333–405. [Crossref]
  • [106] Li N, Chen C, Wang B, Li S, Yang C, Chen X. Retardation effect of nitrogen compounds and condensed aromatics on shale oil catalytic cracking processing and their characterization. Appl Petrochemical Res 2015;5:285–95. [Crossref]
  • [107] Skorupska M, Ilnicka A, Lukaszewicz JP. The effect of nitrogen species on the catalytic properties of N-doped graphene. Sci Rep 2021;11:1–11. [Crossref]
  • [108] Bobkova T V., Doronin VP, Potapenko O V., Sorokina TP, Ostrovskii NM. Poisoning effect of nitrogen compounds on the transformation of model hydrocarbons and real feed under catalytic cracking conditions. Catal Ind 2014;6:218–22. [Crossref]
  • [109] Kordala N, Wyszkowski M. Zeolite properties, methods of synthesis, and selected applications. Molecules 2024;29. [Crossref]
  • [110] Ruiz-Martínez J, Buurmans ILC, Knowles W V, Van Der Beek D, Bergwerff JA, Vogt ETC, Weckhuysen BM (2012) Microspectroscopic insight into the deactivation process of individual cracking catalyst particles with basic sulfur components. Appl Catal A Gen 419–420, 84–94. [Crossref]
  • [111] Leflaive P, Lemberton JL, Pérot G, Mirgain C, Carriat JY, Colin JM (2002) On the origin of sulfur impurities in fluid catalytic cracking gasoline - Reactivity of thiophene derivatives and of their possible precursors under FCC conditions. Appl Catal A Gen 227, 201–15. [Crossref]
  • [112] Arevalo RL, Aspera SM, Nakanishi H (2019) Sulfation of a PdO(101) methane oxidation catalyst: Mechanism revealed by first principles calculations. Catal Sci Technol 9, 232–40. [Crossref]
  • [113] Li Y, Guo Q, Dai Z, Dong Y, Yu G, Wang F. Study of oxidation for gas mixture of H₂S and CH₄ in a non-premixed flame under oxygen deficient condition. Appl Therm Eng 2017;117:659–67. [Crossref]
  • [114] Yang Z, Liu J, Zhang L, Zheng S, Guo M, Yan Y. Catalytic combustion of low-concentration coal bed methane over CuO/γ-Al₂O₃ catalyst: Effect of SO₂. RSC Adv 2014;4:39394–9. [Crossref]
  • [115] Honkanen M, Wang J, Kärkkäinen M, Huuhtanen M, Jiang H, Kallinen K, et al. Regeneration of sulfur- poisoned Pd-based catalyst for natural gas oxidation. J Catal 2018;358:253–65. [Crossref]
  • [116] Zhang Y, Glarborg P, Andersson MP, Johansen K, Torp TK, Jensen AD, et al. Influence of the support on rhodium speciation and catalytic activity of rhodium- based catalysts for total oxidation of methane. Catal Sci Technol 2020;10:6035–44. [Crossref]
  • [117] Wallenstein D, Farmer D, Knoell J, Fougret CM, Brandt S. Progress in the deactivation of metals contaminated FCC catalysts by a novel catalyst metallation method. Appl Catal A Gen 2013;462:91–9. [Crossref]
  • [118] Li D, Zhu Q, Bao Z, Jin L, Hu H. New insight and countermeasure for sulfur poisoning on nickel- based catalysts during dry reforming of methane. Fuel 2024;363:131045. [Crossref]
  • [119] Lisi L, Cimino S. Poisoning of SCR catalysts by alkali and alkaline earth metals. Catalysts 2020;10:1475. [Crossref]
  • [120] Belviso C. Zeolite for potential toxic metal uptake from contaminated soil: A brief review. Processes 2020;8:820. [Crossref]
  • [121] Zhang Y, Dong J, Guo F, Shao Z, Wu J. Zeolite synthesized from coal fly ash produced by a gasification process for Ni2+ removal from water. Minerals 2018;8:116. [Crossref]
  • [122] Xu M, Mukarakate C, Robichaud DJ, Nimlos MR, Richards RM, Trewyn BG. Elucidating zeolite deactivation mechanisms during biomass catalytic fast pyrolysis from model reactions and zeolite syntheses. Top Catal 2016;59:73–85. [Crossref]
  • [123] Ihli J, Jacob RR, Holler M, Guizar-Sicairos M, Diaz A, Da Silva JC, et al. A three-dimensional view of structural changes caused by deactivation of fluid catalytic cracking catalysts. Nat Commun 2017;8:809. [Crossref]
  • [124] Hunston C, Baudouin D, Tarik M, Kröcher O, Vogel F. Investigating active phase loss from supported ruthenium catalysts during supercritical water gasification. Catal Sci Technol 2021;11:7431–44. [Crossref]
  • [125] Magyarová Z, Králik M, Soták T. Utilization of zeolite catalysts in biomass exploitation: a minireview. Monatshefte Für Chemie - Chem Mon 2023;154:815–35. [Crossref]
  • [126] Bingre R, Louis B, Nguyen P. An overview on zeolite shaping technology and solutions to overcome diffusion limitations. Catalysts 2018;8. [Crossref]
  • [127] Xie Y, Zhang Y, He L, Jia CQ, Yao Q, Sun M, et al. Anti-deactivation of zeolite catalysts for residue fluid catalytic cracking. Appl Catal A Gen 2023;657:119159. [Crossref]
  • [128] Sun Y, Wei L, Zhang Z, Zhang H, Li Y. Coke formation over zeolite catalysts in light alkanes aromatization and anti-carbon-deposition strategies and perspectives: a review. Energy & Fuels 2023;37:1657–77. [Crossref]
  • [129] Nazarova GY, Ivashkina EN, Ivanchina ED, Mezhova MY. A model of catalytic cracking: catalyst deactivation induced by feedstock and process variables. Catalysts 2022;12:98. [Crossref]
  • [130] Hambali HU, Jalil AA, Abdulrasheed AA, Siang TJ, Gambo Y, Umar AA. Zeolite and clay based catalysts for CO₂ reforming of methane to syngas: a review. Int J Hydrogen Energy 2022;47:30759–87. [Crossref]
  • [131] Samoilov NA. Mechanism of catalytic deactivation of zeolites in multicycle processes. React Kinet Catal Lett 1982;19:5–9. [Crossref]
  • [132] Arcoya A, Seoane XL, Soria J. Effect of iron on the deactivation of Ni/clinoptilolite catalysts by thiophene poisoning. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 1997;68:171–6. [Crossref]
  • [133] Arcoya A, Seoane XL, Soria J. Sulfur resistance of nickel catalysts supported on K-clinoptilolite containing iron in ethylbenzene hydrogenation. Stud Surf Sci Catal 1993;75:2341–4. [Crossref]
  • [134] Yaşyerli S, Ar İ, Dogu G, Dogu T. Removal of hydrogen sulfide by clinoptilolite in a fixed bed adsorber. Chem Eng Process 2002;41:785–92. [Crossref]
  • [135] Daneshvar M, Falamaki C. Fixed-bed catalytic oxidative removal of dissolved iron by manganese oxide-coated clinoptilolite: enhanced activity in the presence of aqueous Mn2+ cations. Environ Process 2018;5:65–79. [Crossref]
  • [136] Lee C-Y, Ha B-H. Deactivation of CuO/mordenite by the breakage of mordenite crystal through the H₂/O₂ cycle treatment. Stud. Surf. Sci. Catal., vol. 126, Elsevier; 1999, p. 203–10. [Crossref]
  • [137] Stöcker M, Holm KM. Improved deactivation profile observed for Pt/H-chabazites and Pt/H-Y zeolite. React Kinet Catal Lett 1990;41:271–5. [Crossref]
  • [138] Yuan Y, Lee JS, Lobo RF. Ga+-chabazite zeolite: A highly selective catalyst for nonoxidative propane dehydrogenation. J Am Chem Soc 2022. [Crossref]
  • [139] Cui Y, Xu Y, Lu J, Suzuki Y, Zhang Z-G. The effect of zeolite particle size on the activity of Mo/HZSM-5 in non-oxidative methane dehydroaromatization. Appl Catal A Gen 2011;393:348–58. [Crossref]
  • [140] Gao X, Wen Y, Tan R, Huang H, Kawi S. A review of catalyst modifications for a highly active and stable hydrogen production from methane. Int J Hydrogen Energy 2023;48:6204–32. [Crossref]
  • [141] Hutchings GJ, Themistocleous T, Copperthwaite RG. Methanol conversion to hydrocarbons using modified clinoptilolite catalysts: Investigation of catalyst lifetime and reactivation. Appl Catal 1988;43:133–40. [Crossref]
  • [142] Miro EE, Costa L, Dereppe J-M, Petunchi JO. H-mordenite deactivation during the SCR of NOx. Adsorption and diffusion of probe molecules on fresh and deactivated catalysts. Stud. Surf. Sci. Catal., vol. 111, Elsevier; 1997, p. 231–8. [Crossref]
  • [143] Ribotta A, Lezcano M, Kurgansky M V, Miroè E, Lombardo EA, Petunchi JO, et al. Kinetics, acid sites and deactivation of H-mordenite during the SCR of NOx with CH₄. Catal Letters 1997;49:77–85. [Crossref]
  • [144] Kunal P, Toops TJ, Kidder MK, Lance MJ. Deactivation trends of Pd/SSZ-13 under the simultaneous presence of NO, CO, hydrocarbons and water for passive NOx adsorption. Appl Catal B-Environmental 2021;299:120591. [Crossref]
  • [145] Aziz MAA, Jalil AA, Wongsakulphasatch S, Vo D-VN. Understanding the role of surface basic sites of catalysts in CO₂ activation in dry reforming of methane: a short review. Catal Sci Technol 2020;10:35–45. [Crossref]
  • [146] Orlyk S, Kyriienko P, Kapran A, Chedryk V, Balakin D, Gurgul J, et al. CO₂-assisted dehydrogenation of propane to propene over Zn-BEA zeolites: Impact of acid–base characteristics on catalytic performance. Catalysts 2023;13:681. [Crossref]
  • [147] Orlyk SM, Kapran AY, Chedryk VI, Nychiporuk YM, Kyriienko PI, Dzwigaj S. Effect of surface acidity/ basicity of Cr/Zn− BEA zeolite catalysts on performance in CO₂‐PDH process. ChemistrySelect 2024;9:e202304801. [Crossref]
  • [148] Yuan B, Zhu T, Han Y, Zhang X, Wang M, Li C. Deactivation mechanism and anti-deactivation measures of metal catalyst in the dry reforming of methane: A review. Atmosphere (Basel) 2023;14:770. [Crossref]
  • [149] Xing S, Turner S, Fu D, van Vreeswijk S, Liu Y, Xiao J, et al. Silicalite-1 layer secures the bifunctional nature of a CO₂ hydrogenation catalyst. JACS Au 2023;3:1029–38. [Crossref]
  • [150] Ivanov DP, Kharitonov AS, Piryutko L V. Phenol oxidation by nitrous oxide: The role of zeolite catalyst acidity. Catal Ind 2015;7:275–81. [Crossref]
  • [151] Graca I, Comparot J-D, Laforge S, Magnoux P, Lopes JM, Ribeiro MF, et al. Influence of phenol addition on the H-ZSM-5 zeolite catalytic properties during methylcyclohexane transformation. Energy & Fuels 2009;23:4224–30. [Crossref]
  • [152] Xu X, Zhang Y, Li X, Xia X, Jiang H, Toghan A. Comparative study on the catalytic behaviors of zeolites with different diffusion limitation in ethane aromatization. Microporous Mesoporous Mater 2021;315:110926. [Crossref]
  • [153] Cheng Y, Hoard J, Lambert C, Kwak JH, Peden CHF. NMR studies of Cu/zeolite SCR catalysts hydrothermally aged with urea. Catal Today 2008;136:34–9. [Crossref]
  • [154] Bach-Oller A, Furusjö E, Umeki K. On the role of potassium as a tar and soot inhibitor in biomass gasification. Appl Energy 2019;254:113488. [Crossref]
  • [155] Barrientos J, Montes V, Boutonnet M, Järås S. Further insights into the effect of sulfur on the activity and selectivity of cobalt-based Fischer–Tropsch catalysts. Catal Today 2016;275:119–26. [Crossref]
  • [156] Querini CA, Roa E. Deactivation of solid acid catalysts during isobutane alkylation with C4 olefins. Appl Catal A Gen 1997;163:199–215. [Crossref]
  • [157] Wang L, Li D, Koike M, Watanabe H, Xu Y, Nakagawa Y, et al. Catalytic performance and characterization of Ni–Co catalysts for the steam reforming of biomasstar to synthesis gas. Fuel 2013;112:654–61. [Crossref]
  • [158] Huang H, Tang X, Haas M. In-situ continuous coke deposit removal by catalytic steam gasification for fuel-cooled thermal management. J Eng Gas Turbines Power-Transactions Asme 2012;134:101502. [Crossref]
  • [159] Hui L. Function of fluidized bed reactor in reforming of methane with CO₂ to syngas in the presence of oxygen. Ind Catal 2008.
  • [160] Beltramini JN, Datta R. Gasification of Carbon Deposited on Mono and Bi-metallic Reforming Catalysts. Chemeca 88 Aust. Bicenten. Int. Conf. Process Ind. Prepr. Pap., Australia: Barton, ACT: Institution of Engineers; 1988.
  • [161] Lachén J, Herguido J, Peña JÁ. High purity hydrogen from biogas via steam iron process: Preventing reactor clogging by interspersed coke combustions. Renew Energy 2020;151:619–26. [Crossref]
  • [162] Das S, Pérez-Ramírez J, Gong J, Dewangan N, Hidajat K, Gates BC, et al. Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO₂. Chem Soc Rev 2020;49:2937–3004. [Crossref]
  • [163] Kawi S, Ashok J, Dewangan N, Pati S, Junmei C. Recent advances in catalyst technology for biomass tar model reforming: Thermal, plasma, and membrane reactors. Waste and Biomass Valorization 2022;13:1–30. [Crossref]
  • [164] Doronin VP, Sorokina TP, Lipin P V, Potapenko O V, Korotkova N V, Gordenko VI. Development and introduction of zeolite containing catalysts for cracking with controlled contents of rare earth elements. Catal Ind 2015;7:12–6. [Crossref]
  • [165] Hosseinpour M, Ahmadi SJ, Fatemi S. Successive co-operation of supercritical water and silica-supported iron oxide nanoparticles in upgrading of heavy petroleum residue: Suppression of coke deposition over catalyst. J Supercrit Fluids 2015;100:70–8. [Crossref]
  • [166] Anggoro DD, Buchori L, Putra MF, Le Monde BU. Regeneration method for spent FCC catalysts: Brief. J Res Chem 2023;4:49–53. [Crossref]
  • [167] Valle B, Aramburu B, Olazar M, Bilbao J, Gayubo AG. Steam reforming of raw bio-oil over Ni/La₂O₃- ΑAl₂O₃: Influence of temperature on product yields and catalyst deactivation. Fuel 2018;216:463–74. [Crossref]
  • [168] Barbera K, Sørensen S, Bordiga S, Skibsted J, Fordsmand H, Beato P, et al. Role of internal coke for deactivation of ZSM-5 catalysts after low temperature removal of coke with NO₂. Catal Sci Technol 2012;2:1196–206. [Crossref]
  • [169] Cao E, Zheng Y, Zhang H, Wang J, Li Y, Zhu T, et al. In-situ regenerable Cu/Zeolite adsorbent with excellent H₂S adsorption capacity for blast furnace gas. Sep Purif Technol 2024;336:126305. [Crossref]
  • [170] Daligaux V, Richard R, Manero MH (2021) Deactivation and regeneration of zeolite catalysts used in pyrolysis of plastic wastes—a process and analytical review. Catalysts 11. doi:10.3390/ catal11070770. [Crossref] [171] Galadima A, Muraza O. Stability improvement of
  • zeolite catalysts under hydrothermal conditions for their potential applications in biomass valorization and crude oil upgrading. Microporous Mesoporous Mater 2017;249:42–54. [Crossref]
  • [172] Sun P, Chen J, Zai S, Gao S, Weng X, Wu Z. Regeneration mechanism of a deactivated zeolite- supported catalyst for the combustion of chlorinated volatile organic compounds. Catal Sci Technol 2021;11:923–33. [Crossref]
  • [173] Horne PA, Nugranad N, Williams PT. The influence of steam on the zeolite catalytic upgrading of biomass pyrolysis oils. Dev Thermochem Biomass Convers Vol 1/Volume 2 1997:648–56. [Crossref]
  • [174] Díaz M, Epelde E, Valecillos J, Izaddoust S, Aguayo AT, Bilbao J (2021) Coke deactivation and regeneration of HZSM-5 zeolite catalysts in the oligomerization of 1-butene. Appl Catal B Environ 291. [Crossref]
  • [175] Cao E, Zheng Y, Zhang H, Wang J, Li Y, Zhu T, Zhang Z, Xu G, Cui Y (2024) In-situ regenerable Cu/Zeolite adsorbent with excellent H2S adsorption capacity for blast furnace gas. Sep Purif Technol 336, 126305. [Crossref]
  • [176] Leardini L, Martucci A, Braschi I, Blasioli S, Quartieri S. Regeneration of high-silica zeolites after sulfamethoxazole antibiotic adsorption: A combined in situ high-temperature synchrotron X-ray powder diffraction and thermal degradation study. Mineral Mag 2014;78:1141–59. [Crossref]
  • [177] Zhang Y, Williams PT. Carbon nanotubes and hydrogen production from the pyrolysis catalysis or catalytic-steam reforming of waste tyres. J Anal Appl Pyrolysis 2016;122:490–501. [Crossref]
  • [178] Lee D-G, Kim J-H, Lee C-H. Adsorption and thermal regeneration of acetone and toluene vapors in dealuminated Y-zeolite bed. Sep Purif Technol 2011;77:312–24. [Crossref]
  • [179] Hussain I, Jalil AA, Alhooshani K, Alasiri H, Malaibari Z, Hassan NS, et al. CO methanation over highly active and coke-resistant ruthenium- doped fibrous mordenite zeolite catalyst for synthetic natural gas (SNG) production. J Energy Inst 2023;108:101230. [Crossref]
  • [180] Zhang Q, Zhao X, Zheng Y, Xiao Y, Li J, Liu F, et al. Facile synthesis of regenerable NaY zeolite adsorbent relying on alcohol-terminated compounds for efficient trace sulfur dioxide capture. Chem Eng J 2023;475:146265. [Crossref]
  • [181] Zhang W, Zhou Z, An Y, Du S, Ruan D, Zhao C, et al. Optimization for zeolite regeneration and nitrogen removal performance of a hypochlorite-chloride regenerant. Chemosphere 2017;178:565–72. [Crossref]
  • [182] Wu SL, Kuo JH, Wey MY. Hydrogen promotion by Co/SiO₂@HZSM-5 core-shell catalyst for syngas from plastic waste gasification: The combination of functional materials. Int J Hydrogen Energy 2019;44:13480–9. [Crossref]
  • [183] Kim S, Sasmaz E, Lauterbach J. Effect of Pt and Gd on coke formation and regeneration during JP-8 cracking over ZSM-5 catalysts. Appl Catal B Environ 2015;168–169:212–9. [Crossref]
  • [184] Kumar R, Ohtani S, Tsunoji N. Direct air capture on amine-impregnated FAU zeolites: Exploring for high adsorption capacity and low-temperature regeneration. Microporous Mesoporous Mater 2023;360:112714. [Crossref]
  • [185] Andrunik M, Skalny M, Gajewska M, Marzec M, Bajda T. Comparison of pesticide adsorption efficiencies of zeolites and zeolite-carbon composites and their regeneration possibilities. Heliyon 2023;9:e20572. [Crossref]
  • [186] Küntzel J, Ham R, Melin T. Regeneration of hydrophobic zeolites with steam. Chem Eng Technol 1999;22:991–4. [Crossref]
  • [187] Schulz H, Wei M. Deactivation and thermal regeneration of zeolite HZSM-5 for methanol conversion at low temperature (260-290°C). Microporous Mesoporous Mater 1999;29:205–18. [Crossref]
  • [188] Rodeghero E, Martucci A, Cruciani G, Sarti E, Cavazzini A, Costa V, et al. Detailed investigation of thermal regeneration of high-silica ZSM-5 zeolite through in situ synchrotron X-ray powder diffraction and adsorption studies. J Phys Chem C 2017;121:17958–68. [Crossref]
  • [189] Santiago-Colón ÁN, Gounder R. Structural changes to molybdenum and Brønsted acid sites in MFI zeolites during methane dehydroaromatization reaction-regeneration cycles. J Catal 2024;430. [Crossref]
  • [190] Kariim I, Swai H, Kivevele T. Bio-oil upgrading over ZSM-5 catalyst: A review of catalyst performance and deactivation. Int J Energy Res 2023;2023. [Crossref]
  • [191] Lutz W. Zeolite Y: Synthesis, modification, and properties—a case revisited. Adv Mater Sci Eng 2014;2014:724248. [Crossref]
  • [192] Hita I, Mohamed HO, Attada Y, Zambrano N, Zhang W, Ramírez A, et al. Direct analysis at temporal and molecular level of deactivating coke species formed on zeolite catalysts with diverse pore topologies. Catal Sci Technol 2023;13:1288–300. [Crossref]
  • [193] Muhammad I, Makwashi N, Ahmed TG, Manos G, Zhao D. A mechanistic model on catalyst deactivation by coke formation in a CSTR reactor. Processes 2023;11. [Crossref]
  • [194] Bukhtiyarova M V, Echevskii G V. Coke formation on zeolites Y and their deactivation model. Pet Chem 2020;60:532–9. [Crossref]
  • [195] Liu D, Slocombe M, AlKinany H, AlMegren J, Wang J, Arden A, et al. Advances in the study of coke formation over zeolite catalysts in the methanol- to-hydrocarbon process. Appl Petrochemical Res 2016;6:209–15. [Crossref]
  • [196] Gu Y, Zhu Q, Liu Z, Fu C, Wu J, Zhu Q, et al. Nitrogen reduction reaction energy and pathways in metal-zeolites: deep learning and explainable machine learning with local acidity and hydrogen bonding features. J Mater Chem A 2022;10:14976–88. [Crossref]
  • [197] Liu M, Miao C, Wu Z. Recent advances in the synthesis, characterization, and catalytic consequence of metal species confined within zeolite for hydrogen- related reactions. Ind Chem Mater 2024. [Crossref]
  • [198] Luo HY, Lewis JD, Román-Leshkov Y. Lewis acid zeolites for biomass conversion: Perspectives and challenges on reactivity, synthesis, and stability. Annu Rev Chem Biomol Eng 2016;7:663–92. [Crossref]
  • [199] Shan J, Li Z, Zhu S, Liu H, Li J, Wang J, et al. Nanosheet MFI Zeolites for gas phase glycerol dehydration to acrolein. Catalysts 2019;9:13–27. [Crossref]
  • [200] Bartholomew CH, Argyle MD. Advances in catalyst deactivation and regeneration. Catalysts 2015;5:949–54. [Crossref]
  • [201] Ammendola P, Chirone R, Ruoppolo G, Russo G. Regeneration strategies of deactivated catalysts for thermo-catalytic decomposition process in a fluidized bed reactor. Combust Sci Technol 2008;180:869–82. [Crossref]
  • [202] Baier S, Damsgaard CD, Klumpp M, Reinhardt J, Sheppard T, Balogh Z, et al. Stability of a bifunctional Cu-based core@zeolite shell catalyst for dimethyl ether synthesis under redox conditions studied by environmental transmission electron microscopy and in situ X-ray ptychography. Microsc Microanal 2017;23:501–12. [Crossref]
  • [203] Gorshkov AS, Sineva L V, Gryaznov KO, Asalieva EY, Mordkovich VZ. Deactivation and regeneration of a zeolite-containing cobalt catalyst in a Fischer- Tropsch synthesis reactor. Catal Ind 2023;15:152–64. [Crossref]
  • [204] Padovan D, Nakajima K, Hensen EJM. Metal oxide catalysts for the valorization of biomass-derived sugars BT - Crystalline metal oxide catalysts. In: Ueda W, editor., Singapore: Springer Nature Singapore; 2022, p. 325–47. [Crossref]
  • [205] Costa P, Pinto F, André RN, Marques P. Integration of gasification and solid oxide fuel cells (SOFCs) for combined heat and power (CHP). Processes 2021;9. [Crossref]
  • [206] Botti L, Padovan D, Navar R, Tolborg S, Martinez- Espin JS, Hammond C. Thermal regeneration of Sn-containing silicates and consequences for biomass upgrading: From regeneration to preactivation. ACS Catal 2020;10:11545–55. [Crossref]
  • [207] Ruoppolo G, Landi G. Towards biomass gasification enhanced by structured iron-based catalysts. Fuels 2021;2:546–55. [Crossref]
  • [208] Rubinsin NJ, Timmiati SN, Lim KL, Isahak WNRW, Karim NA. Gasification reaction on CeO₂(111) and effects on the structural and electronic properties of adsorption molecules. Chem Eng Technol 2024..
  • [209] Huo J, Pham HN, Cheng Y, Lin H-H, Roling LT, Datye AK, Shanks BH. Deactivation and regeneration of carbon supported Pt and Ru catalysts in aqueous phase hydrogenation of 2-pentanone. Catal Sci Technol 2020;10:3047–3056. [Crossref]
  • [210] Lu F, Wang Q, Zhu M, Dai B (2023) Deactivation and Regeneration of Nitrogen Doped Carbon Catalyst for Acetylene Hydrochlorination. Molecules 28. doi:10.3390/molecules28030956. [Crossref]
  • [211] Yung MM, Starace AK, Mukarakate C, Crow AM, Leshnov MA, Magrini KA. Biomass catalytic pyrolysis on Ni/ZSM-5: effects of nickel pretreatment and loading. Energy & Fuels 2016;30:5259–68. [Crossref]
  • [212] Xu Z, Park ED. Recent advances in coke management for dry reforming of methane over Ni-based catalysts. Catalysts 2024;14. [Crossref]
  • [213] Luan H, Wu Q, Zhang J, Wang Y, Meng X, Xiao F-S. Sustainable synthesis of core-shell structured ZSM-5@silicalite-1 zeolite. Chem Res Chinese Univ 2022;38:136–40. [Crossref]
  • [214] Xu H, Wu P. New progress in zeolite synthesis and catalysis. Natl Sci Rev 2022;9:nwac045. [Crossref]
  • [215] Dyer AC, Nahil MA, Williams PT. Biomass:polystyrene co-pyrolysis coupled with metal-modified zeolite catalysis for liquid fuel and chemical production. J Mater Cycles Waste Manag 2022;24:477–90. [Crossref]
  • [216] Najimi M, Sobhani J, Ahmadi B, Shekarchi M. An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan. Constr Build Mater 2012;35:1023–33. [Crossref]
  • [217] Khoshroo M, Javid AAS, Katebi A. Effect of chloride treatment curing condition on the mechanical properties and durability of concrete containing zeolite and micro-nano-bubble water. Constr Build Mater 2018;177:417–27. [Crossref]
  • [218] Colombani N, Di Giuseppe D, Faccini B, Ferretti G, Mastrocicco M, Coltorti M. Estimated water savings in an agricultural field amended with natural zeolites. Environ Process 2016;3:617–28. [Crossref]
  • [219] de Campos Bernardi AC, Oliviera PPA, de Melo Monte MB, Souza-Barros F. Brazilian sedimentary zeolite use in agriculture. Microporous Mesoporous Mater 2013;167:16–21. [Crossref]
  • [220] Ramesh V, Jyothi JS, Shibli SMA. Effect of zeolites on soil quality, plant growth and nutrient uptake efficiency in sweet potato (Ipomoea batatas L.). J Root Crop 2015;41:25–31.
  • [221] Borchardt L, Michels N-L, Nowak T, Mitchell S, Perez-Ramirez J. Structuring zeolite bodies for enhanced heat-transfer properties. Microporous Mesoporous Mater 2015;208:196–202. [Crossref]
There are 222 citations in total.

Details

Primary Language English
Subjects Computational Methods in Fluid Flow, Heat and Mass Transfer (Incl. Computational Fluid Dynamics)
Journal Section Articles
Authors

Imron Rosyadi 0000-0003-4021-3871

Suyitno Suyitno 0000-0003-1786-0798

Zainal Arifin This is me 0000-0003-3070-4685

Tata Sutardi This is me 0000-0002-7434-0089

Publication Date October 21, 2025
Submission Date February 18, 2024
Acceptance Date September 24, 2024
Published in Issue Year 2025 Volume: 11 Issue: 5

Cite

APA Rosyadi, I., Suyitno, S., Arifin, Z., Sutardi, T. (2025). Novel approaches to zeolite deactivation mitigation and regeneration in biomass gasification. Journal of Thermal Engineering, 11(5), 1552-1584. https://doi.org/10.14744/thermal.0000993
AMA Rosyadi I, Suyitno S, Arifin Z, Sutardi T. Novel approaches to zeolite deactivation mitigation and regeneration in biomass gasification. Journal of Thermal Engineering. October 2025;11(5):1552-1584. doi:10.14744/thermal.0000993
Chicago Rosyadi, Imron, Suyitno Suyitno, Zainal Arifin, and Tata Sutardi. “Novel Approaches to Zeolite Deactivation Mitigation and Regeneration in Biomass Gasification”. Journal of Thermal Engineering 11, no. 5 (October 2025): 1552-84. https://doi.org/10.14744/thermal.0000993.
EndNote Rosyadi I, Suyitno S, Arifin Z, Sutardi T (October 1, 2025) Novel approaches to zeolite deactivation mitigation and regeneration in biomass gasification. Journal of Thermal Engineering 11 5 1552–1584.
IEEE I. Rosyadi, S. Suyitno, Z. Arifin, and T. Sutardi, “Novel approaches to zeolite deactivation mitigation and regeneration in biomass gasification”, Journal of Thermal Engineering, vol. 11, no. 5, pp. 1552–1584, 2025, doi: 10.14744/thermal.0000993.
ISNAD Rosyadi, Imron et al. “Novel Approaches to Zeolite Deactivation Mitigation and Regeneration in Biomass Gasification”. Journal of Thermal Engineering 11/5 (October2025), 1552-1584. https://doi.org/10.14744/thermal.0000993.
JAMA Rosyadi I, Suyitno S, Arifin Z, Sutardi T. Novel approaches to zeolite deactivation mitigation and regeneration in biomass gasification. Journal of Thermal Engineering. 2025;11:1552–1584.
MLA Rosyadi, Imron et al. “Novel Approaches to Zeolite Deactivation Mitigation and Regeneration in Biomass Gasification”. Journal of Thermal Engineering, vol. 11, no. 5, 2025, pp. 1552-84, doi:10.14744/thermal.0000993.
Vancouver Rosyadi I, Suyitno S, Arifin Z, Sutardi T. Novel approaches to zeolite deactivation mitigation and regeneration in biomass gasification. Journal of Thermal Engineering. 2025;11(5):1552-84.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering