Research Article
BibTex RIS Cite

Navicula cryptocephala'da Klorpirifos Pestisitinin Birikme, Eliminasyon Miktarları ve Bazı Biyobelirteç Yanıtlarının Belirlenmesi

Year 2025, Volume: 3 Issue: 2, 29 - 38, 04.12.2025
https://doi.org/10.62425/tjau.1790185

Abstract

Tarımsal alanlarda zararlılarla mücadele için kullanılan klorpirifos (CPF) gibi pestisitler, çeşitli yollarla sucul çevre ile karışarak sucul çevreye tehlike oluşturmaktadır. Bu çalışmada, Navicula cryptocephala'da klorpirifos kullanılarak birikim, eliminasyon miktarları ve bazı biyomarker tepkileri incelenmiştir. EC50 değerleri 0,19 mg/L olarak belirlenmiş ve akut toksisite değerleri EC50 değerlerinin 1/8, 1/4 ve 1/2'sinde gerçekleştirilmiştir. Model organizmalar 24, 48, 72, 96 ve 120 gün (eliminasyon süresi) boyunca CPF'ye maruz bırakılmıştır. 24 ve 96 saatte alınan numunelerden birikim miktarları Atomik Absorpsiyon Spektrofotometrisi (AAS) kütle spektrometrisi kullanılarak ölçülmüştür. Elde edilen süpernatantlarla, lipit peroksidasyon (TBARS) ve indirgenmiş glutatyon (GSH) seviyeleri, süperoksit dismutaz (SOD) enzim aktivitesi, glutatyon peroksidaz (GPx) enzim aktivitesi, katalaz (CAT) enzim aktivitesi ELISA mikroplaka okuyucu ile belirlendi.
Araştırma verilerine göre, mikroalglerde CPF aktif maddesinin biyobirikim miktarının, uygulama konsantrasyonu ve süresi arttıkça arttığı belirlenmiştir. Biyomarker parametrelerinin, uygulama gruplarına kıyasla kontrol ve eliminasyon gruplarında istatistiksel olarak anlamlı değişiklikler gösterdiği belirlenmiştir.

Supporting Institution

TÜBİTAK

Project Number

119Y592

References

  • Almeida, A. C., Gomes, T., Langford, K., Thomas, K. V., & Tollefsen, K. E. (2019). Oxidative stress potential of the herbicides bifenox and metribuzin in the microalgae Chlamydomonas reinhardtii. Aquatic Toxicology, 210, 117-128. https://doi.org/10.1016/j.aquatox.2019.02.021
  • Ashraf M., Javaid M., Rashid T., Ayub M., Zafar A., Ali S., & Naeem M. (2011). Replacement of Expensive Pure Nutritive Media with Low Cost Commercial Fertilizers for Mass Culture of Freshwater Algae, Chlorella vulgaris. International Journal of Agriculture & Biology, 13, 484–490.
  • Aydın, A. N., Aydın, R., & Serdar, O. (2022). Determination of Letal Concentrations (LC50) of Cyfluthrın, Dimethoate Insecticides on Gammarus pulex (L., 1758). Acta Aquatica Turcica, 18(3), 384-392. https://doi.org/10.22392/actaquatr.1080270
  • Baruah, P., & Chaurasia, N. (2020). Ecotoxicological effects of alpha-cypermethrin on freshwater alga Chlorella sp. Growth inhibition and oxidative stress studies. Environmental Toxicology and Pharmacology, 76, 103347. https://doi.org/10.1016/j.etap.2020.103347
  • Branco, D., Lima, A., Almedia, S.F.P., & Figueria, E. (2010). Sensitivity of biochemical markers to evaluate cadmium stress in the freshwater diatom Nitzschia palea (Kutzing) W. Smith. Aquatic Toxicology, 99, 109–117. https://doi.org/10.1016/j.aquatox.2010.04.010
  • Debenest, T., Silvestre, J., & Pinelli, E. (2013). Diatoms in Ecotoxicology. In: Férard JF., Blaise C. (eds) Encyclopedia of Aquatic Ecotoxicology (pp. 295-304). Springer, Dordrecht. The Netherlands
  • de Zwart, L. L., Meerman, J. H., Commandeur, J. N., & Vermeulen, N. P. (1999). Biomarkers of free radical damage: applications in experimental animals and in humans. Free Radical Biology and Medicine, 26(1-2), 202-226. https://doi.org/10.1016/S0891-5849(98)00196-8
  • Du, J., Izquierdo, D., Naoum, J., Ohlund, L., Sleno, L., Beisner, B. E., & Juneau, P. (2023). Pesticide responses of Arctic and temperate microalgae differ in relation to ecophysiological characteristics. Aquatic Toxicology, 254, 106323. https://doi.org/10.1016/j.aquatox.2022.106323
  • Eaton, D.L., Daroff, R.B., Autrup, H., Bridges, J., Buffler, P., Costa, L.G., Coyle, J., McKhann, G., Mobley, W.C., Nadel, L., Neubert, D., Schulte-Hermann, R., & Spencer, P.S. (2008). Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Critical Reviews in Toxicology, 38(sup2), 1-125. https://doi.org/10.1080/10408440802272158
  • Erdem, A., Metzler, D., Cha, D., & Huang, C.P. (2014). Inhibition of bacteria by photocatalytic nano-TiO2 particles in the absence of light. International Journal of Environmental Science and Technology, 12(9), 2987-2996. https://doi.org/10.1007/s13762-014-0729-2
  • Fenner, K., Canonica, S., Wackett, L.P., & Elsner, M. (2013). Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science, 341, 752–758. https://doi.org/10.1126/science.1236281
  • Ghosh, M., & Gaur, J. P. (1998). Current velocity and the establishment of stream algal periphyton communities. Aquatic Botany, 60(1), 1-10. https://doi.org/10.1016/S0304-3770(97)00073-9
  • Gibbons, D., Morrissey, C., & Mineau, P. (2015). A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environmental Science and Pollution Research, 22, 103–118. https://doi.org/10.1007/s11356-014-3180-5
  • Gil, F., & Pla, A. (2001). Biomarkers as biological indicators of xenobiotic exposure. Journal of Applied Toxicology, 21(4), 245-255. https://doi.org/10.1002/jat.769
  • Guo, J., Peng, J., Lei, Y., Kanerva, M., Li, Q., Song, J., & Sun, H. (2020). Comparison of oxidative stress induced by clarithromycin in two freshwater microalgae Raphidocelis subcapitata and Chlorella vulgaris. Aquatic toxicology, 219, 105376. https://doi.org/10.1016/j.aquatox.2019.105376
  • He, B., Oki, T., Sun, F.B., Komori, D., Kanae, S., Wang, Y., Kim, H., & Yamazaki, D. (2011). Estimating monthly total nitrogen concentration in streams by using artificial neural network. Journal of Environmental Management, 92(1), 172–177. https://doi.org/10.1016/j.jenvman.2010.09.014
  • Hernández-García, C. I., & Martínez-Jerónimo, F. (2020). Multistressor negative effects on an experimental phytoplankton community. The case of glyphosate and one toxigenic cyanobacterium on Chlorophycean microalgae. Science of the Total Environment, 717, 137186. https://doi.org/10.1016/j.scitotenv.2020.137186
  • Imlay, J.A., Chin, S.M., & Linn, S. (1998). Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science, 240, 640–642. https://doi.org/10.1126/science.2834821
  • Kováčik, J., Antoš, V., Micalizzi, G., Dresler, S., Hrabák, P., & Mondello, L. (2018). Accumulation and toxicity of organochlorines in green microalgae. Journal of hazardous materials, 347, 168-175. https://doi.org/10.1016/j.jhazmat.2017.12.056
  • Kumar, M. S., Kabra, A. N., Min, B., El-Dalatony, M. M., Xiong, J., Thajuddin, N., & Jeon, B. H. (2016). Insecticides induced biochemical changes in freshwater microalga Chlamydomonas mexicana. Environmental Science and Pollution Research, 23, 1091-1099. https://doi.org/10.1007/s11356-015-4681-6
  • Landrigan, P.J. (2010). What causes autism? Exploring the environmental contribution. Current Opinion in Pediatrics, 22, 219-225. http://doi.org/10.1097/MOP.0b013e328336eb9a
  • Machado, M. D., & Soares, E. V. (2019). Impact of erythromycin on a non-target organism: Cellular effects on the freshwater microalga Pseudokirchneriella subcapitata. Aquatic Toxicology, 208, 179-186. https://doi.org/10.1016/j.aquatox.2019.01.014
  • Martínez-Álvarez, R. M., Morales, A. E., & Sanz, A. (2005). Antioxidant defenses in fish: biotic and abiotic factors. Reviews in Fish Biology and fisheries, 15, 75-88. https://doi.org/10.1007/s11160-005-7846-4
  • Nie, J., Sun, Y., Zhou, Y., Kumar, M., Usman, M., Li, J., & Tsang, D. C. (2020). Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Science of the Total Environment, 707, 136080. https://doi.org/10.1016/j.scitotenv.2019.136080
  • Nikkanen, L., Solymosi, D., Jokel, M., & Allahverdiyeva, Y. (2021). Regulatory electron transport pathways of photosynthesis in cyanobacteria and microalgae: Recent advances and biotechnological prospects. Physiologia Plantarum, 173(2), 514-525. https://doi.org/10.1111/ppl.13404
  • OECD. (2011). 201: Freshwater alga and cyanobacteria. growth ınhibition test. www.oecd-ilibrary.org/environment/test-no-201-alga-growth-inhibition-test_9789264069923-en, 2019
  • Olga, B., Eija, V., & Kurt, V.F. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91(2), 179–94. https://doi.org/10.1093/aob/mcf118
  • Özkaleli, M., & Erdem, A. (2017). Bakır oksit nanopartiküllerinin Chlorella vulgaris üzerindeki ekotoksik etkileri. Sinop University Journal of Natural Sciences, 2(1), 13-23.
  • Pérez-Legaspi, I. A., Ortega-Clemente, L. A., Moha-León, J. D., Ríos-Leal, E., Gutiérrez, S. C. R., & Rubio-Franchini, I. (2016). Effect of the pesticide lindane on the biomass of the microalgae Nannochloris oculata. Journal of Environmental Science and Health, Part B, 51(2), 103-106. https://doi.org/10.1080/03601234.2015.1092824
  • Piner, P. (2009). Lambda-Cyhalothrinin Oreochromis niloticus’da karaciğerde pipeonil bütosit modülatörlüğünde oksidatif stres potansiyelinin belirlenmesi, stres proteinleri ve apoptozis üzerine etkileri. Doktora Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, 102s.
  • Regaldo L., Gervasio S., Troiani H., & Gagneten A.M. (2013). Bioaccumulation and Toxicity of Copper and Lead in Chlorella vulgaris. Journal of Algal Biomass Utilization, 4(2), 59–66.
  • Rioboo, C., Prado, R., Herrero, C. C. I. D., & Cid, A. (2007). Population growth study of the rotifer Brachionus sp. fed with triazine-exposed microalgae. Aquatic toxicology, 83(4), 247-253. https://doi.org/10.1016/j.aquatox.2007.04.006
  • Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., C.A. Johnson., U. Von Gunten., & B. Wehrli. (2006). The challenge of micropollutants in aquatic systems. Science, 313, 1072–1077. http://doi.org/10.1126/science.1127291
  • Singh, B.K. (2009). Organophosphorus-degrading bacteria: ecology and industrial applications. Nature Reviews Microbiology, 7, 156–164. https://doi.org/10.1038/nrmicro2050
  • Soto, P., Gaete, H., & Hidalgo, M. E. (2011). Assessment of catalase activity, lipid peroxidation, chlorophyll-a, and growth rate in the freshwater green algae Pseudokirchneriella subcapitata exposed to copper and zinc. Latin American Journal of Aquatic Research, 39(2), 280-285. http://doi.org/10.3856/vol39-issue2-fulltext-9
  • Tréguer, P., Nelson, D.M., Van Bennekom, A.J., Demaster, D.J., Leynaert, A., & Quéguiner, B. (1995). The Silica Balance in the World ocean: a reestimate. Science, 268, 375–379. http://doi.org/10.1126/science.268.5209.375
  • Valavanidis, A., Vlahogianni, T., Dassenakis, M., & Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and environmental safety, 64(2), 178-189. https://doi.org/10.1016/j.ecoenv.2005.03.013
  • Vandana, S., Basu, D.B., & Asit, K.C. (2001). Lipid peroxidation, free radical scavenging enzymes, and glutathione redox system in blood of rats exposed to propoxur. Pesticide Biochemistry and Physiology, 71(3), 133–139. https://doi.org/10.1006/pest.2001.2571
  • Van Camp, W., Inzé, D., & Van Montagu, M. (1997). The regulation and function of tobacco superoxide dismutases. Free Radical Biology and Medicine, 23(3), 515-520. https://doi.org/10.1016/S0891-5849(97)00112-3
  • Wang, G., Zhang, Q., Li, J., Chen, X., Lang, Q., & Kuang, S. (2019). Combined effects of erythromycin and enrofloxacin on antioxidant enzymes and photosynthesis-related gene transcription in Chlorella vulgaris. Aquatic Toxicology, 212, 138-145. https://doi.org/10.1016/j.aquatox.2019.05.004
  • Yagi, K. (1984). Assay for plasma lipid peroxidase. Methods in Enzymology, 109, 328-331.
  • Yoon, K.Y., Byeon, J.H., Park. J.H., & Hwang, J. (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of The Total Environment, 373(2), 572-575. https://doi.org/10.1016/j.scitotenv.2006.11.007
  • Zhang, S., Qiu, C. B., Zhou, Y., Jin, Z. P., & Yang, H. (2011). Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green alga Chlamydomonas reinhardtii. Ecotoxicology, 20(2), 337-347. https://doi.org/10.1007/s10646-010-0583-z
  • Zhu, J., Cai, Y., Wakisaka, M., Yang, Z., Yin, Y., Fang, W., & Zheng, A. L. T. (2023). Mitigation of oxidative stress damage caused by abiotic stress to improve biomass yield of microalgae: A review. Science of the Total Environment, 896, 165200. https://doi.org/10.1016/j.scitotenv.2023.165200

Determination of Accumulation, Elimination Amounts and Some Biomarker Responses of Chlorpyrifos Pesticide in Navicula cryptocephala

Year 2025, Volume: 3 Issue: 2, 29 - 38, 04.12.2025
https://doi.org/10.62425/tjau.1790185

Abstract

Pesticides such as chlorpyrifos (CPF), which are used to combat pests in agricultural areas, mix with the aquatic environment in various ways and pose a danger to the aquatic environment. In this study, chlorpyrifos was used in Navicula cryptocephala it was aimed to examine the accumulation, elimination amounts and some biomarker responses. EC50 values were determined as 0.19 mg/L and acute toxicity values were realized at 1/8, 1/4 and 1/2 of EC50 values. Model organisms were exposed to CPF for 24, 48, 72, 96 and 120 days (elimination period). Accumulation amounts from the samples taken at 24 and 96 hours were measured using Atomic Absorption Spectophotometry (AAS) mass spectrometry. With the supernatants obtained, lipid peroxidation (TBARS) and reduced glutathione (GSH) levels, superoxide dismutase (SOD) enzyme activity, glutathione peroxidase (GPx) enzyme activity, catalase (CAT) enzyme activity were determined with an ELISA microplate reader.
According to research data, it was determined that the bioaccumulation amount of the CPF active ingredient in microalgae increased as the application concentration and duration increased. It was determined that the biomarker parameters showed statistically significant changes in the control and elimination groups compared to the application groups.

Supporting Institution

TÜBİTAK

Project Number

119Y592

References

  • Almeida, A. C., Gomes, T., Langford, K., Thomas, K. V., & Tollefsen, K. E. (2019). Oxidative stress potential of the herbicides bifenox and metribuzin in the microalgae Chlamydomonas reinhardtii. Aquatic Toxicology, 210, 117-128. https://doi.org/10.1016/j.aquatox.2019.02.021
  • Ashraf M., Javaid M., Rashid T., Ayub M., Zafar A., Ali S., & Naeem M. (2011). Replacement of Expensive Pure Nutritive Media with Low Cost Commercial Fertilizers for Mass Culture of Freshwater Algae, Chlorella vulgaris. International Journal of Agriculture & Biology, 13, 484–490.
  • Aydın, A. N., Aydın, R., & Serdar, O. (2022). Determination of Letal Concentrations (LC50) of Cyfluthrın, Dimethoate Insecticides on Gammarus pulex (L., 1758). Acta Aquatica Turcica, 18(3), 384-392. https://doi.org/10.22392/actaquatr.1080270
  • Baruah, P., & Chaurasia, N. (2020). Ecotoxicological effects of alpha-cypermethrin on freshwater alga Chlorella sp. Growth inhibition and oxidative stress studies. Environmental Toxicology and Pharmacology, 76, 103347. https://doi.org/10.1016/j.etap.2020.103347
  • Branco, D., Lima, A., Almedia, S.F.P., & Figueria, E. (2010). Sensitivity of biochemical markers to evaluate cadmium stress in the freshwater diatom Nitzschia palea (Kutzing) W. Smith. Aquatic Toxicology, 99, 109–117. https://doi.org/10.1016/j.aquatox.2010.04.010
  • Debenest, T., Silvestre, J., & Pinelli, E. (2013). Diatoms in Ecotoxicology. In: Férard JF., Blaise C. (eds) Encyclopedia of Aquatic Ecotoxicology (pp. 295-304). Springer, Dordrecht. The Netherlands
  • de Zwart, L. L., Meerman, J. H., Commandeur, J. N., & Vermeulen, N. P. (1999). Biomarkers of free radical damage: applications in experimental animals and in humans. Free Radical Biology and Medicine, 26(1-2), 202-226. https://doi.org/10.1016/S0891-5849(98)00196-8
  • Du, J., Izquierdo, D., Naoum, J., Ohlund, L., Sleno, L., Beisner, B. E., & Juneau, P. (2023). Pesticide responses of Arctic and temperate microalgae differ in relation to ecophysiological characteristics. Aquatic Toxicology, 254, 106323. https://doi.org/10.1016/j.aquatox.2022.106323
  • Eaton, D.L., Daroff, R.B., Autrup, H., Bridges, J., Buffler, P., Costa, L.G., Coyle, J., McKhann, G., Mobley, W.C., Nadel, L., Neubert, D., Schulte-Hermann, R., & Spencer, P.S. (2008). Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Critical Reviews in Toxicology, 38(sup2), 1-125. https://doi.org/10.1080/10408440802272158
  • Erdem, A., Metzler, D., Cha, D., & Huang, C.P. (2014). Inhibition of bacteria by photocatalytic nano-TiO2 particles in the absence of light. International Journal of Environmental Science and Technology, 12(9), 2987-2996. https://doi.org/10.1007/s13762-014-0729-2
  • Fenner, K., Canonica, S., Wackett, L.P., & Elsner, M. (2013). Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science, 341, 752–758. https://doi.org/10.1126/science.1236281
  • Ghosh, M., & Gaur, J. P. (1998). Current velocity and the establishment of stream algal periphyton communities. Aquatic Botany, 60(1), 1-10. https://doi.org/10.1016/S0304-3770(97)00073-9
  • Gibbons, D., Morrissey, C., & Mineau, P. (2015). A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environmental Science and Pollution Research, 22, 103–118. https://doi.org/10.1007/s11356-014-3180-5
  • Gil, F., & Pla, A. (2001). Biomarkers as biological indicators of xenobiotic exposure. Journal of Applied Toxicology, 21(4), 245-255. https://doi.org/10.1002/jat.769
  • Guo, J., Peng, J., Lei, Y., Kanerva, M., Li, Q., Song, J., & Sun, H. (2020). Comparison of oxidative stress induced by clarithromycin in two freshwater microalgae Raphidocelis subcapitata and Chlorella vulgaris. Aquatic toxicology, 219, 105376. https://doi.org/10.1016/j.aquatox.2019.105376
  • He, B., Oki, T., Sun, F.B., Komori, D., Kanae, S., Wang, Y., Kim, H., & Yamazaki, D. (2011). Estimating monthly total nitrogen concentration in streams by using artificial neural network. Journal of Environmental Management, 92(1), 172–177. https://doi.org/10.1016/j.jenvman.2010.09.014
  • Hernández-García, C. I., & Martínez-Jerónimo, F. (2020). Multistressor negative effects on an experimental phytoplankton community. The case of glyphosate and one toxigenic cyanobacterium on Chlorophycean microalgae. Science of the Total Environment, 717, 137186. https://doi.org/10.1016/j.scitotenv.2020.137186
  • Imlay, J.A., Chin, S.M., & Linn, S. (1998). Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science, 240, 640–642. https://doi.org/10.1126/science.2834821
  • Kováčik, J., Antoš, V., Micalizzi, G., Dresler, S., Hrabák, P., & Mondello, L. (2018). Accumulation and toxicity of organochlorines in green microalgae. Journal of hazardous materials, 347, 168-175. https://doi.org/10.1016/j.jhazmat.2017.12.056
  • Kumar, M. S., Kabra, A. N., Min, B., El-Dalatony, M. M., Xiong, J., Thajuddin, N., & Jeon, B. H. (2016). Insecticides induced biochemical changes in freshwater microalga Chlamydomonas mexicana. Environmental Science and Pollution Research, 23, 1091-1099. https://doi.org/10.1007/s11356-015-4681-6
  • Landrigan, P.J. (2010). What causes autism? Exploring the environmental contribution. Current Opinion in Pediatrics, 22, 219-225. http://doi.org/10.1097/MOP.0b013e328336eb9a
  • Machado, M. D., & Soares, E. V. (2019). Impact of erythromycin on a non-target organism: Cellular effects on the freshwater microalga Pseudokirchneriella subcapitata. Aquatic Toxicology, 208, 179-186. https://doi.org/10.1016/j.aquatox.2019.01.014
  • Martínez-Álvarez, R. M., Morales, A. E., & Sanz, A. (2005). Antioxidant defenses in fish: biotic and abiotic factors. Reviews in Fish Biology and fisheries, 15, 75-88. https://doi.org/10.1007/s11160-005-7846-4
  • Nie, J., Sun, Y., Zhou, Y., Kumar, M., Usman, M., Li, J., & Tsang, D. C. (2020). Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Science of the Total Environment, 707, 136080. https://doi.org/10.1016/j.scitotenv.2019.136080
  • Nikkanen, L., Solymosi, D., Jokel, M., & Allahverdiyeva, Y. (2021). Regulatory electron transport pathways of photosynthesis in cyanobacteria and microalgae: Recent advances and biotechnological prospects. Physiologia Plantarum, 173(2), 514-525. https://doi.org/10.1111/ppl.13404
  • OECD. (2011). 201: Freshwater alga and cyanobacteria. growth ınhibition test. www.oecd-ilibrary.org/environment/test-no-201-alga-growth-inhibition-test_9789264069923-en, 2019
  • Olga, B., Eija, V., & Kurt, V.F. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91(2), 179–94. https://doi.org/10.1093/aob/mcf118
  • Özkaleli, M., & Erdem, A. (2017). Bakır oksit nanopartiküllerinin Chlorella vulgaris üzerindeki ekotoksik etkileri. Sinop University Journal of Natural Sciences, 2(1), 13-23.
  • Pérez-Legaspi, I. A., Ortega-Clemente, L. A., Moha-León, J. D., Ríos-Leal, E., Gutiérrez, S. C. R., & Rubio-Franchini, I. (2016). Effect of the pesticide lindane on the biomass of the microalgae Nannochloris oculata. Journal of Environmental Science and Health, Part B, 51(2), 103-106. https://doi.org/10.1080/03601234.2015.1092824
  • Piner, P. (2009). Lambda-Cyhalothrinin Oreochromis niloticus’da karaciğerde pipeonil bütosit modülatörlüğünde oksidatif stres potansiyelinin belirlenmesi, stres proteinleri ve apoptozis üzerine etkileri. Doktora Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, 102s.
  • Regaldo L., Gervasio S., Troiani H., & Gagneten A.M. (2013). Bioaccumulation and Toxicity of Copper and Lead in Chlorella vulgaris. Journal of Algal Biomass Utilization, 4(2), 59–66.
  • Rioboo, C., Prado, R., Herrero, C. C. I. D., & Cid, A. (2007). Population growth study of the rotifer Brachionus sp. fed with triazine-exposed microalgae. Aquatic toxicology, 83(4), 247-253. https://doi.org/10.1016/j.aquatox.2007.04.006
  • Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., C.A. Johnson., U. Von Gunten., & B. Wehrli. (2006). The challenge of micropollutants in aquatic systems. Science, 313, 1072–1077. http://doi.org/10.1126/science.1127291
  • Singh, B.K. (2009). Organophosphorus-degrading bacteria: ecology and industrial applications. Nature Reviews Microbiology, 7, 156–164. https://doi.org/10.1038/nrmicro2050
  • Soto, P., Gaete, H., & Hidalgo, M. E. (2011). Assessment of catalase activity, lipid peroxidation, chlorophyll-a, and growth rate in the freshwater green algae Pseudokirchneriella subcapitata exposed to copper and zinc. Latin American Journal of Aquatic Research, 39(2), 280-285. http://doi.org/10.3856/vol39-issue2-fulltext-9
  • Tréguer, P., Nelson, D.M., Van Bennekom, A.J., Demaster, D.J., Leynaert, A., & Quéguiner, B. (1995). The Silica Balance in the World ocean: a reestimate. Science, 268, 375–379. http://doi.org/10.1126/science.268.5209.375
  • Valavanidis, A., Vlahogianni, T., Dassenakis, M., & Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and environmental safety, 64(2), 178-189. https://doi.org/10.1016/j.ecoenv.2005.03.013
  • Vandana, S., Basu, D.B., & Asit, K.C. (2001). Lipid peroxidation, free radical scavenging enzymes, and glutathione redox system in blood of rats exposed to propoxur. Pesticide Biochemistry and Physiology, 71(3), 133–139. https://doi.org/10.1006/pest.2001.2571
  • Van Camp, W., Inzé, D., & Van Montagu, M. (1997). The regulation and function of tobacco superoxide dismutases. Free Radical Biology and Medicine, 23(3), 515-520. https://doi.org/10.1016/S0891-5849(97)00112-3
  • Wang, G., Zhang, Q., Li, J., Chen, X., Lang, Q., & Kuang, S. (2019). Combined effects of erythromycin and enrofloxacin on antioxidant enzymes and photosynthesis-related gene transcription in Chlorella vulgaris. Aquatic Toxicology, 212, 138-145. https://doi.org/10.1016/j.aquatox.2019.05.004
  • Yagi, K. (1984). Assay for plasma lipid peroxidase. Methods in Enzymology, 109, 328-331.
  • Yoon, K.Y., Byeon, J.H., Park. J.H., & Hwang, J. (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of The Total Environment, 373(2), 572-575. https://doi.org/10.1016/j.scitotenv.2006.11.007
  • Zhang, S., Qiu, C. B., Zhou, Y., Jin, Z. P., & Yang, H. (2011). Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green alga Chlamydomonas reinhardtii. Ecotoxicology, 20(2), 337-347. https://doi.org/10.1007/s10646-010-0583-z
  • Zhu, J., Cai, Y., Wakisaka, M., Yang, Z., Yin, Y., Fang, W., & Zheng, A. L. T. (2023). Mitigation of oxidative stress damage caused by abiotic stress to improve biomass yield of microalgae: A review. Science of the Total Environment, 896, 165200. https://doi.org/10.1016/j.scitotenv.2023.165200
There are 44 citations in total.

Details

Primary Language English
Subjects Ecology (Other), Aquatic Toxicology , Pollution and Contamination (Other)
Journal Section Research Article
Authors

Osman Serdar 0000-0003-1744-8883

Ayşe Nur Aydın 0000-0002-5657-8958

Abdullatif Ölçülü 0000-0002-8062-8417

Işıl Canan Çiçek Çimen 0000-0002-7427-8211

Tuba Parlak Ak 0000-0002-8318-7995

Taner Derman 0000-0002-3769-8049

Ayşegül Pala 0000-0002-5269-023X

Nuran Cikcikoglu Yildirim 0000-0003-3975-6705

Project Number 119Y592
Early Pub Date December 4, 2025
Publication Date December 4, 2025
Submission Date September 24, 2025
Acceptance Date October 14, 2025
Published in Issue Year 2025 Volume: 3 Issue: 2

Cite

APA Serdar, O., Aydın, A. N., Ölçülü, A., … Çiçek Çimen, I. C. (2025). Determination of Accumulation, Elimination Amounts and Some Biomarker Responses of Chlorpyrifos Pesticide in Navicula cryptocephala. The Trout Journal of Atatürk University, 3(2), 29-38. https://doi.org/10.62425/tjau.1790185