Review
BibTex RIS Cite

SENSORY MONOTONY AND PSYCHOSOCIAL ADAPTATION PROCESSES OF ASTRONAUTS WITHIN THE FRAMEWORK OF SPACE NUTRITION

Year 2025, Volume: 14 Issue: 2, 372 - 400, 30.10.2025
https://doi.org/10.7460/turar.1748723

Abstract

The ability of astronauts to maintain both physiological and psychological performance during long-duration space missions depends on the adaptability of their bodies and minds to extraordinary conditions such as microgravity. Limited food variety and repetitive meal routines in space can alter taste and smell perception, leading to reduced appetite and menu fatigue. Moreover, social isolation may negatively affect astronauts’ morale and complicate psychosocial cohesion within the crew.
This study aims to examine sensory perception changes in astronaut nutrition under microgravity, the potential psychological effects of menu fatigue, and the multifaceted roles of meals in social interaction contexts. The research was conducted using a comprehensive literature review, a qualitative research method. The reviewed articles and reports addressed themes including space nutrition experiences, changes in taste and smell perception, menu fatigue, psychosocial impacts and technology-assisted interventions such as augmented reality and telematic dining. The findings indicate that technology-based solutions hold significant potential to mitigate the negative effects of social isolation and support individual well-being. Accordingly, this study highlights the importance of holistic nutritional planning for future long-duration missions and the development of strategies to enhance astronauts’ overall well-being.

References

  • Bychkov, V., Ivanov, A., & Smirnov, K. (2021). Closed-loop food production systems for long-duration space missions. Journal of Space Life Sciences, 18(3), 112–125.
  • Cooper, M., Douglas, G., & Zwart, S. R. (2017). Menu fatigue countermeasures for long-duration missions. Acta Astronautica, 131, 33–39. https://doi.org/10.1016/j.actaastro.2016.11.020
  • Cooper, M., Perchonok, M., & Douglas, G. (2011). Nutrition requirements for space exploration missions. Journal of Human Nutrition in Space, 5(2), 1–12.
  • Cruthirds, J., Smith, S. M., & Lane, H. W. (2013). Gastrointestinal health during long-duration spaceflight. Life Sciences in Space Research, 1, 50–56.
  • Davies, J., Massa, G. D., & Wheeler, R. M. (2003). Vegetable Production System (Veggie): Development and applications in space research. NASA Technical Reports.
  • Dev, S. (2024). Cognitive performance during extended space missions. NASA Human Research Program.
  • Douglas, G. (2017). Space Food Systems: Ensuring crew health on exploration missions. NASA Factsheet.
  • Douglas, G., & Perchonok, M. H. (2020). Food in space: Past, present, and future. Annual Review of Food Science and Technology, 11, 311–333.
  • Douglas, G. L., Zwart, S. R., & Smith, S. M. (2011). Space food and nutrition in future exploration missions. Nutrition, 27(6), 60–65.
  • Douglas, G. L., Zwart, S. R., Smith, S. M., & Heer, M. (2016). Space food for thought: Challenges and considerations for food and nutrition on exploration missions. Journal of Nutrition, 146(9), 1825S–1831S.
  • Douglas, G., vd. (2021). Integrating food and behavioral health for space missions. Microgravity, 7, 12. https://doi.org/10.1038/s41526-021-00145-7
  • Escriba, A., Martínez, L., & López, C. (2023). Spread harvest techniques for sustainable leafy green production in controlled environments. Journal of Space Agriculture, 12(2), 77–89.
  • Fayet, L., Morgan, P., & Silva, R. (2025). Mission Mush Vroom: Feasibility of mushroom cultivation under microgravity conditions. Advances in Space Biology, 19(1), 45–61.
  • Freeman, D., Reeve, S., Robinson, A., Ehlers, A., Clark, D., Spanlang, B., & Slater, M. (2017). Virtual reality in the assessment, understanding, and treatment of mental health disorders. Psychological Medicine, 47(14), 2393–2400. https://doi.org/10.1017/S003329171700040X
  • Frontiers in Physiology. (2025). Gut-brain axis and nutrition in space environments. Frontiers Media.
  • Genah, S., Lee, J., & Kim, H. (2021). Bone and mineral metabolism in space: Challenges and countermeasures. Life Sciences in Space Research, 28, 23–35.
  • Glew, R. (1980). Fresh fruit and vegetable supply in manned space missions. Aerospace Medicine, 51(5), 479–485.
  • Gòdia, F., Albiol, J., Montesinos, J. L., Pérez, J., Creus, N., Cabello, F., ... & Montras, A. (2002). MELISSA: A loop of interconnected bioreactors to develop life support in space. Journal of Biotechnology, 99(3), 319–330. https://doi.org/10.1016/S0168-1656(02)00222-6
  • Jiang, L., Zhao, Q., & Wu, H. (2020). Space foods: Properties, preparation, and packaging. Food Science International, 26(4), 340–356.
  • Kanas, N., Sandal, G., Boyd, J. E., Gushin, V. I., Manzey, D., North, R., & Wang, J. (2008). Psychology and culture during long-duration space missions. Acta Astronautica, 63(7-10), 744–751.
  • Kaschubek, T., Braun, C., & Voigt, M. (2021). Resupply and sustainability in human spaceflight food systems. Acta Astronautica, 186, 350–359.
  • Kim, Y., Park, S., & Choi, J. (2025). Rocking bioreactors for cultured meat in microgravity conditions. Journal of Space Biotechnology, 7(1), 14–29.
  • Lang, T., et al. (2017). Physiological adaptation to microgravity. Frontiers in Physiology, 8, 547.
  • LeBlanc, A., Schneider, V., Shackelford, L., West, S., Oganov, V., Bakulin, A., & Voronin, L. (1999). Bone mineral and lean tissue loss after long-duration spaceflight. Journal of Bone and Mineral Research, 15(4), 657–664.
  • Life. (2023). Dietary strategies for metabolic stability in microgravity. MDPI.
  • Liu, Y. (2020). Food and nutrition in space exploration. International Journal of Space Nutrition, 3(1), 12–20.
  • Massa, G. D., Wheeler, R. M., Stutte, G. W., Richards, J. T., Spencer, L. E., & Hummerick, M. E. (2016). VEGGIE: A space garden on the International Space Station. Open Agriculture, 1(1), 33–41. https://doi.org/10.1515/opag-2016-0005
  • NASA. (2015). Bulk Overwrap Bag system for food packaging in spaceflight. NASA Report.
  • NASA. (2020). Taste in Space: Crew food experience in microgravity. NASA Exploration Research.
  • NASA. (2022). Nutritional composition of romaine lettuce grown in spaceflight experiments. NASA Technical Report.
  • NASA. (2023). Advanced Plant Habitat (APH): Technical overview and research applications. NASA Factsheet.
  • NASA. (2024). Taste in Space Report: Nutritional strategies for long-duration missions. NASA.
  • NASA. (2025). Nutritional strategies for long-duration missions. NASA Exploration Research.
  • NCBI. (2023). Oxidative stress and nutrition in space. National Center for Biotechnology Information.
  • Nguyen, T., Park, H., & Lee, D. (2023). Controlled environment agriculture in space missions. Acta Horticulturae, 1383, 229–236.
  • Nutrients. (2022). Probiotics and mood regulation in isolated environments. MDPI.
  • Oluwafemi, O. R., et al. (2018). Physiological effects of microgravity on astronauts: Nutrition and health. Space Research Reviews, 10(2), 80–95.
  • Pagel, J. I., & Choukèr, A. (2016). Effects of isolation and confinement on humans: Implications for manned space explorations. Journal of Applied Physiology, 120(12), 1449–1457.
  • Patel, V., Johnson, C., & Smith, S. M. (2023). Kidney stone risk in astronauts: The role of calcium excretion. npj Microgravity, 9, 16.
  • Perchonok, M. H., Cooper, M., & Catauro, P. (2002). Mission menus and crew acceptability in space. Acta Astronautica, 50(12), 789–797.
  • Prescott, J. (2012). Chemosensory learning and flavor perception. Chemical Senses, 37(6), 478–487.
  • PMC. (2021). Psychological adaptation in analog missions. U.S. National Library of Medicine.
  • Pometto, A., & Bourland, C. (2003). Food science in spaceflight. CRC Press.
  • Raut, S. (2021). Properties of space food. Springer.
  • Roy, S. (2022). Biomass Production System (BPS): Innovations in space-based agriculture. Acta Astronautica, 193, 102–115. https://doi.org/10.1016/j.actaastro.2021.12.034
  • Shepherd, G. M. (2006). Smell images and the flavour system in the human brain. Nature, 444(7117), 316–321.
  • Smith, S. M., Zwart, S. R., Block, G., Rice, B. L., & Davis-Street, J. E. (2005). The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. Journal of Nutrition, 135(3), 437–443.
  • Stoklosa, M. J., Smith, S. M., & Zwart, S. R. (2015). Menu fatigue in long-duration missions: Implications for crew health. Aerospace Medicine and Human Performance, 86(12), 1012–1018.
  • Stuster, J. (2010). Behavioral issues associated with long-duration space expeditions: Review and analysis of astronaut journals. NASA Technical Report.
  • Suedfeld, P. (2017). The role of food in space missions: Psychological and cultural perspectives. Acta Astronautica, 134, 35–40.
  • Takeuchi, K., Yamamoto, T., & Nakamura, Y. (2025). Cultured avian meat tissues for space food applications. Nature Food Biotechnology, 6(2), 77–85.
  • Tang, Y., et al. (2022). Critical nutrients for long-duration human space missions. Frontiers in Nutrition, 9, 823452.
  • TIME SCALE Consortium. (2023). European Modular Cultivation System (EMCS): A collaborative framework for space crop research. European Space Agency Report.
  • Todhunter, K., Mills, J., & Green, D. (2024). Artificial intelligence in cultured meat production for space. Food Technology in Space, 12(1), 55–70.
  • Turroni, S., Rampelli, S., Biagi, E., Consolandi, C., Severgnini, M., Peano, C., Brigidi, P. (2022). Gut microbiome adaptation in astronauts. Cell Reports, 40(5), 111120.
  • Voorhies, A. A., et al. (2019). Study of the impact of long-duration space travel on the astronaut microbiome. Scientific Reports, 9(1), 9911.
  • Whitson, P. A., Pietrzyk, R. A., Sams, C. F., & Pak, C. Y. (2009). Renal stone risk in space. Kidney International, 67(1), 210–218.
  • White, R. J., Averner, M., & Sonnenfeld, G. (2016). Human adaptation to spaceflight: The role of microgravity. Annual Review of Medicine, 67, 377–390.
  • Yurtseven, H. R., & Yıldırım, S. (2014). Gastronomi ve Beslenmenin Sosyal Boyutları. Gastronomi Araştırmaları Dergisi, 2(1), 45–59.
  • Zabel, P., Bamsey, M., & Schubert, D. (2020). EDEN: Greenhouse-based food production technologies for space exploration. Life Sciences in Space Research, 25, 73–87. https://doi.org/10.1016/j.lssr.2020.01.004
  • Zwart, S. R., et al. (2017). Nutrition and psychological health during spaceflight. Current Psychiatry Reports, 19(10), 79.

UZAY BESLENMESİ ÇERÇEVESİNDE ASTRONOTLARIN DUYUSAL MONOTONLUK VE PSİKOSOSYAL UYUM SÜREÇLERİ

Year 2025, Volume: 14 Issue: 2, 372 - 400, 30.10.2025
https://doi.org/10.7460/turar.1748723

Abstract

Uzun süreli uzay görevlerinde astronotların hem fizyolojik hem de psikolojik olarak görevlerini sürdürebilmeleri, beden ve zihnin mikrogravite gibi olağan dışı koşullara uyum sağlayabilme kapasitesine bağlıdır. Uzayda sınırlı gıda seçenekleri ve tekrarlayan beslenme rutinleri tat ve koku deneyimini etkileyerek iştahın azalmasına ve menü monotonluğuna yol açmaktadır. Bununla birlikte sosyal izolasyon koşulları astronotların moralini düşürebilir ve ekip içi psikososyal uyumu zorlaştırabilir.
Bu çalışmada, mikrogravite koşullarında astronot beslenmesinde duyusal algı değişimlerinin, menü yorgunluğunun sebep olabileceği psikolojik etkilerin ve sosyal etkileşim bağlamında yemeğin çok yönlü işlevlerin incelenmesi amaçlanmaktadır. Araştırma nitel araştırma yöntemlerinden birisi olan kapsamlı literatür taraması kullanılarak yapılmıştır. Literatürde yer alan makale ve raporlar, mikrogravite ortamında beslenme deneyimleri, tat ve koku algısı değişimleri, menü yorgunluğu, psikososyal etkiler, artırılmış gerçeklik ve telematik sofralar temaları üzerinden kapsamlı biçimde incelenmiştir. Ayrıca, literatürdeki veriler, teknoloji temelli uygulamaların sosyal izolasyonun olumsuz etkilerini azaltmada ve bireysel iyi oluşu desteklemede önemli bir potansiyele sahip olduğunu ortaya koymaktadır. Bu doğrultuda çalışma, gelecekteki uzun süreli görevlerde beslenme planlamasına ve astronotların genel iyi oluşunu destekleyecek stratejilerin geliştirilmesine ışık tutmaktadır.

References

  • Bychkov, V., Ivanov, A., & Smirnov, K. (2021). Closed-loop food production systems for long-duration space missions. Journal of Space Life Sciences, 18(3), 112–125.
  • Cooper, M., Douglas, G., & Zwart, S. R. (2017). Menu fatigue countermeasures for long-duration missions. Acta Astronautica, 131, 33–39. https://doi.org/10.1016/j.actaastro.2016.11.020
  • Cooper, M., Perchonok, M., & Douglas, G. (2011). Nutrition requirements for space exploration missions. Journal of Human Nutrition in Space, 5(2), 1–12.
  • Cruthirds, J., Smith, S. M., & Lane, H. W. (2013). Gastrointestinal health during long-duration spaceflight. Life Sciences in Space Research, 1, 50–56.
  • Davies, J., Massa, G. D., & Wheeler, R. M. (2003). Vegetable Production System (Veggie): Development and applications in space research. NASA Technical Reports.
  • Dev, S. (2024). Cognitive performance during extended space missions. NASA Human Research Program.
  • Douglas, G. (2017). Space Food Systems: Ensuring crew health on exploration missions. NASA Factsheet.
  • Douglas, G., & Perchonok, M. H. (2020). Food in space: Past, present, and future. Annual Review of Food Science and Technology, 11, 311–333.
  • Douglas, G. L., Zwart, S. R., & Smith, S. M. (2011). Space food and nutrition in future exploration missions. Nutrition, 27(6), 60–65.
  • Douglas, G. L., Zwart, S. R., Smith, S. M., & Heer, M. (2016). Space food for thought: Challenges and considerations for food and nutrition on exploration missions. Journal of Nutrition, 146(9), 1825S–1831S.
  • Douglas, G., vd. (2021). Integrating food and behavioral health for space missions. Microgravity, 7, 12. https://doi.org/10.1038/s41526-021-00145-7
  • Escriba, A., Martínez, L., & López, C. (2023). Spread harvest techniques for sustainable leafy green production in controlled environments. Journal of Space Agriculture, 12(2), 77–89.
  • Fayet, L., Morgan, P., & Silva, R. (2025). Mission Mush Vroom: Feasibility of mushroom cultivation under microgravity conditions. Advances in Space Biology, 19(1), 45–61.
  • Freeman, D., Reeve, S., Robinson, A., Ehlers, A., Clark, D., Spanlang, B., & Slater, M. (2017). Virtual reality in the assessment, understanding, and treatment of mental health disorders. Psychological Medicine, 47(14), 2393–2400. https://doi.org/10.1017/S003329171700040X
  • Frontiers in Physiology. (2025). Gut-brain axis and nutrition in space environments. Frontiers Media.
  • Genah, S., Lee, J., & Kim, H. (2021). Bone and mineral metabolism in space: Challenges and countermeasures. Life Sciences in Space Research, 28, 23–35.
  • Glew, R. (1980). Fresh fruit and vegetable supply in manned space missions. Aerospace Medicine, 51(5), 479–485.
  • Gòdia, F., Albiol, J., Montesinos, J. L., Pérez, J., Creus, N., Cabello, F., ... & Montras, A. (2002). MELISSA: A loop of interconnected bioreactors to develop life support in space. Journal of Biotechnology, 99(3), 319–330. https://doi.org/10.1016/S0168-1656(02)00222-6
  • Jiang, L., Zhao, Q., & Wu, H. (2020). Space foods: Properties, preparation, and packaging. Food Science International, 26(4), 340–356.
  • Kanas, N., Sandal, G., Boyd, J. E., Gushin, V. I., Manzey, D., North, R., & Wang, J. (2008). Psychology and culture during long-duration space missions. Acta Astronautica, 63(7-10), 744–751.
  • Kaschubek, T., Braun, C., & Voigt, M. (2021). Resupply and sustainability in human spaceflight food systems. Acta Astronautica, 186, 350–359.
  • Kim, Y., Park, S., & Choi, J. (2025). Rocking bioreactors for cultured meat in microgravity conditions. Journal of Space Biotechnology, 7(1), 14–29.
  • Lang, T., et al. (2017). Physiological adaptation to microgravity. Frontiers in Physiology, 8, 547.
  • LeBlanc, A., Schneider, V., Shackelford, L., West, S., Oganov, V., Bakulin, A., & Voronin, L. (1999). Bone mineral and lean tissue loss after long-duration spaceflight. Journal of Bone and Mineral Research, 15(4), 657–664.
  • Life. (2023). Dietary strategies for metabolic stability in microgravity. MDPI.
  • Liu, Y. (2020). Food and nutrition in space exploration. International Journal of Space Nutrition, 3(1), 12–20.
  • Massa, G. D., Wheeler, R. M., Stutte, G. W., Richards, J. T., Spencer, L. E., & Hummerick, M. E. (2016). VEGGIE: A space garden on the International Space Station. Open Agriculture, 1(1), 33–41. https://doi.org/10.1515/opag-2016-0005
  • NASA. (2015). Bulk Overwrap Bag system for food packaging in spaceflight. NASA Report.
  • NASA. (2020). Taste in Space: Crew food experience in microgravity. NASA Exploration Research.
  • NASA. (2022). Nutritional composition of romaine lettuce grown in spaceflight experiments. NASA Technical Report.
  • NASA. (2023). Advanced Plant Habitat (APH): Technical overview and research applications. NASA Factsheet.
  • NASA. (2024). Taste in Space Report: Nutritional strategies for long-duration missions. NASA.
  • NASA. (2025). Nutritional strategies for long-duration missions. NASA Exploration Research.
  • NCBI. (2023). Oxidative stress and nutrition in space. National Center for Biotechnology Information.
  • Nguyen, T., Park, H., & Lee, D. (2023). Controlled environment agriculture in space missions. Acta Horticulturae, 1383, 229–236.
  • Nutrients. (2022). Probiotics and mood regulation in isolated environments. MDPI.
  • Oluwafemi, O. R., et al. (2018). Physiological effects of microgravity on astronauts: Nutrition and health. Space Research Reviews, 10(2), 80–95.
  • Pagel, J. I., & Choukèr, A. (2016). Effects of isolation and confinement on humans: Implications for manned space explorations. Journal of Applied Physiology, 120(12), 1449–1457.
  • Patel, V., Johnson, C., & Smith, S. M. (2023). Kidney stone risk in astronauts: The role of calcium excretion. npj Microgravity, 9, 16.
  • Perchonok, M. H., Cooper, M., & Catauro, P. (2002). Mission menus and crew acceptability in space. Acta Astronautica, 50(12), 789–797.
  • Prescott, J. (2012). Chemosensory learning and flavor perception. Chemical Senses, 37(6), 478–487.
  • PMC. (2021). Psychological adaptation in analog missions. U.S. National Library of Medicine.
  • Pometto, A., & Bourland, C. (2003). Food science in spaceflight. CRC Press.
  • Raut, S. (2021). Properties of space food. Springer.
  • Roy, S. (2022). Biomass Production System (BPS): Innovations in space-based agriculture. Acta Astronautica, 193, 102–115. https://doi.org/10.1016/j.actaastro.2021.12.034
  • Shepherd, G. M. (2006). Smell images and the flavour system in the human brain. Nature, 444(7117), 316–321.
  • Smith, S. M., Zwart, S. R., Block, G., Rice, B. L., & Davis-Street, J. E. (2005). The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. Journal of Nutrition, 135(3), 437–443.
  • Stoklosa, M. J., Smith, S. M., & Zwart, S. R. (2015). Menu fatigue in long-duration missions: Implications for crew health. Aerospace Medicine and Human Performance, 86(12), 1012–1018.
  • Stuster, J. (2010). Behavioral issues associated with long-duration space expeditions: Review and analysis of astronaut journals. NASA Technical Report.
  • Suedfeld, P. (2017). The role of food in space missions: Psychological and cultural perspectives. Acta Astronautica, 134, 35–40.
  • Takeuchi, K., Yamamoto, T., & Nakamura, Y. (2025). Cultured avian meat tissues for space food applications. Nature Food Biotechnology, 6(2), 77–85.
  • Tang, Y., et al. (2022). Critical nutrients for long-duration human space missions. Frontiers in Nutrition, 9, 823452.
  • TIME SCALE Consortium. (2023). European Modular Cultivation System (EMCS): A collaborative framework for space crop research. European Space Agency Report.
  • Todhunter, K., Mills, J., & Green, D. (2024). Artificial intelligence in cultured meat production for space. Food Technology in Space, 12(1), 55–70.
  • Turroni, S., Rampelli, S., Biagi, E., Consolandi, C., Severgnini, M., Peano, C., Brigidi, P. (2022). Gut microbiome adaptation in astronauts. Cell Reports, 40(5), 111120.
  • Voorhies, A. A., et al. (2019). Study of the impact of long-duration space travel on the astronaut microbiome. Scientific Reports, 9(1), 9911.
  • Whitson, P. A., Pietrzyk, R. A., Sams, C. F., & Pak, C. Y. (2009). Renal stone risk in space. Kidney International, 67(1), 210–218.
  • White, R. J., Averner, M., & Sonnenfeld, G. (2016). Human adaptation to spaceflight: The role of microgravity. Annual Review of Medicine, 67, 377–390.
  • Yurtseven, H. R., & Yıldırım, S. (2014). Gastronomi ve Beslenmenin Sosyal Boyutları. Gastronomi Araştırmaları Dergisi, 2(1), 45–59.
  • Zabel, P., Bamsey, M., & Schubert, D. (2020). EDEN: Greenhouse-based food production technologies for space exploration. Life Sciences in Space Research, 25, 73–87. https://doi.org/10.1016/j.lssr.2020.01.004
  • Zwart, S. R., et al. (2017). Nutrition and psychological health during spaceflight. Current Psychiatry Reports, 19(10), 79.
There are 61 citations in total.

Details

Primary Language Turkish
Subjects Gastronomy
Journal Section Derleme Makale
Authors

Rabia Kübra Irmak 0009-0008-7022-062X

Vahit Oğuz Kiper 0000-0001-5558-2341

Mehmet Akif Şen 0000-0002-2987-8074

Publication Date October 30, 2025
Submission Date July 23, 2025
Acceptance Date September 10, 2025
Published in Issue Year 2025 Volume: 14 Issue: 2

Cite

APA Irmak, R. K., Kiper, V. O., & Şen, M. A. (2025). UZAY BESLENMESİ ÇERÇEVESİNDE ASTRONOTLARIN DUYUSAL MONOTONLUK VE PSİKOSOSYAL UYUM SÜREÇLERİ. Turar Turizm Ve Araştırma Dergisi, 14(2), 372-400. https://doi.org/10.7460/turar.1748723