Research Article
BibTex RIS Cite

Ortaokul Öğretmenleri Model Oluşturma Etkinlikleri Prensiplerini Derslerinde Nasıl Kullanıyorlar?

Year 2022, Volume: 7 Issue: 1, 84 - 106, 29.06.2022
https://doi.org/10.54979/turkegitimdergisi.1026034

Abstract

Lesh ve Doerr (2003) tarafından ortaya atılan Model Oluşturma Etkinlik Prensipleri, 21. Yy bireylerinin sahip olması gereken önemli becerileri içermektedir. Bu çalışmanın amacı, ortaokul matematik öğretmenlerinin söz konusu prensipleri sınıflarında nasıl ele aldıklarını ortaya koymaktır. Bu amaçla, kolay ulaşılabilir durum örneklemesi ile belirlenen 8 ortaokul matematik öğretmeni ile bireysel görüşmeler yapılmıştır. Çalışmanın sonucunda, tüm prensipler genel olarak değerlendirildiğinde, öğretmenlerin ifadelerinden Gerçeklik, Model Oluşturma, Genelleme ve Etkili Prototip Prensiplerini doğrudan kullanmayıp mevcut müfredattaki kazanımları öğrencilere daha iyi aktarabilmek, daha anlamlı hale getirebilmek amacıyla bir araç olarak kullandıkları, Yapıyı Belgeleme ve Öz Değerlendirme Prensiplerini de sınıfta etkili bir şekilde kullanamadıkları tespit edilmiştir. Öğretmenler Model Oluşturma Etkinlik Prensiplerini önem sırasına almakta zorlansalar da en çok önemli gördükleri prensipleri, Gerçeklik, Genelleme ve Öz Değerlendirme olarak sıralarken, Model Oluşturma Prensibi çok geride kalmıştır.

References

  • Akgün, L., Çiltaş, A., Deniz, D., Çiftçi, Z., & Işık, A. (2013). İlköğretim matematik öğretmenlerinin matematiksel modelleme ile ilgili̇ farkındalıkları. Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 6(12), 1-34.
  • Bal, A. P. (2008). Yeni ilköğretim matematik öğretim programının öğretmen görüşleri açısından değerlendirilmesi. Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 17(1), 53-68.
  • Biembengut, M. S., & Hein, N. (2010). Mathematical modeling: Implications for Teaching. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.). Modeling students’ mathematical modeling competencies. ICTMA 13 Springer.
  • Blum, W., & Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 45-58.
  • Blum, W., Galbraith, P., Henn, H.-W., & Niss, M. (2007). Introduction. Modelling and Applications in Mathematics Education. The 14th ICMI Study. Springer.
  • Bushell, G. (2006). Moderation of peer assessment in group projects. Assessment and Evaluation in Higher Education,31, 91-108.
  • Chamberlin, S. A. (2010). Mathematical problems that optimize learning for academically advanced students in grades k-6. Journal of Advanced Academics, 22(1), 52-25.
  • Chamberlin, M. (2006). Design principles for teacher ınvestigations of student work. Mathematics Teacher Education and Development, 6, 52-65.
  • Chamberlin, S. A., & Moon, S. M. (2009). How does the problem based learning approach compare to the model-eliciting activity approach in mathematics? International Journal for Mathematics Teaching and Learning, 9(3), 78-105
  • Common Core State Standards Initiative (CCSSI) (2010). Common Core State Standards for Mathematics.Washington, DC: National Governors Association Center for Best Practices and the Council of ChiefState School Officers. http://www.corestandards.org/wp-content/uploads/Math_Standards.pdf
  • Dede, A., Güzel, E. (2014), Model oluşturma etkinlikleri: Kuramsal yapısı ve bir örneği. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 33 (1), 95-111.
  • Doerr, H., & English, L. D. (2003). A Modeling perspective on students’ mathematical reasoning about data. Journal of Research in Mathematics Education, 34(2), 110-136.
  • Eric, C. C. M. (2010). Tracing primary 6 students' model development within the mathematical modelling process, Journal of Mathematical Modelling and Application, 1(3), 40-57.
  • English, L. D. (2009). Promoting interdisciplinarity through mathematical modelling. ZDM, 41(1), 161-181.
  • Frejd, P. (2012). Teachers’ conceptions of mathematical modelling at Swedish Upper Secondary school. Journal of Mathematical Modelling and Application, 1(5), 17-40.
  • Julie, C. (2002). Making relevance in mathematics teacher education. In I. Vakalis, D. Hughes Hallett, D. Quinney & C. Kourouniotis (Compilers). Proceedings of 2nd International Conference on the Teaching of Mathematics. New York: Wiley
  • Lesh, R. (1985). Processes, skills, and abilities needed to use mathematics in everyday situations. Education and Urban Society, 17(4), 439-446.
  • Lesh, R., & Doerr, H. (2003). Foundations of a models and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh & H. Doerr (Eds.), Beyond Constructivism: Models and Modeling Perspective on Mathematics Problem Solving, Learning, and Teaching. Mahwah, NJ: Lawrence Erlbaum Associates.
  • Lesh, R., & Doerr, H. M. (2003). Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning and teaching. Routletge
  • Lesh, R. & Kelly, A. (2000). Multitiered teaching experiments. Handbook of research design in mathematics and science education. Routletge
  • Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T., (2000) Principles for Developing Thought-Revealing Activities for Students and Teachers. In A. Kelly, R. Lesh (Eds.), Research Design in Mathematics and Science Education. Lawrence Erlbaum Associates, Mahwah.
  • Lesh, R., & Sriraman, B. (2005). Mathematics education as a design science. ZDM, 37(6), 490-505.
  • Lesh, R., & Yoon, C. (2007). What is Distinctive in (Our Views about) Models & Modelling Perspectives on Mathematics Problem Solving, Learning, and Teaching? In Modelling and applications in mathematics education. Springer.
  • Lesh, R., & Zawojewski, J. S. (2007). Problem solving and modeling. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning. Greenwich, CT: Information Age Publishing
  • Loddington, S. (2008). Peer assessment of group work: A review of the literature. The WebPA project, eLearning Capital Programme.
  • Maaß, K. (2011). Identifying drivers for mathematical modelling – a commentary. In G. Kaiser, W. Blum, R. B. Ferri ve G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling. Springer.
  • MEB. (2015). PISA 2015 uluslararası öğrenci değerlendirme programı ulusal raporu. MEB Ölçme Değerlendirme ve Sınav Hizmetleri Genel Müdürlüğü.
  • Milli Eğitim Bakanlığı (2018). Ortaokul Matematik Dersi Öğretim Programı.
  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics.
  • Manouchehri, A., & Lewis, S. T. (2017). Reconciling intuitions and conventional knowledge: The challenge of teaching and learning mathematical modelling. In Mathematical Modelling and Applications. Springer.
  • OECD (2013), PISA 2012 Assessment and Analytical Framework: Mathematics, Reading, Science, Problem Solving and Financial Literacy, OECD Publishing.
  • OECD. (2015). OECD PISA Technical report.
  • Özpolat, A. R., Sezer, F., İşgör, İ. Y., & Sezer, M. (2007). Sınıf öğretmenlerinin yeni ilköğretim programına ilişkin görüşlerinin incelenmesi. Milli Eğitim Dergisi, 174(1), 206-213.
  • Sriraman B. (2005). Conceptualizing the notion of model eliciting, Fourth Congress of the European. Soc
  • Yoon, C. (2006). A Conceptual Analysis of the Models and Modeling Characterization of Model-Eliciting Activities as “Thought-Revealing Activities”. (Yayımlanmamış doktora tezi). http://search.proquest.com/openview/2cf4b851b7aaca866cacacf1296fed9b/1?pqorigsite=gscholar&cbl=18750&diss=y
  • Zawojevski, S. J., Lesh, R.,& English, L. (2003). A models and modeling perspective on the role of small group learning activities. R. Lesh ve H. M. Doerr (Eds.),Beyond Constructivism: A models and modeling perspective on mathematics problem solving, learning ve teaching içinde. Mahwah, NJ: Lawrence Erlbaum Associates.
Year 2022, Volume: 7 Issue: 1, 84 - 106, 29.06.2022
https://doi.org/10.54979/turkegitimdergisi.1026034

Abstract

References

  • Akgün, L., Çiltaş, A., Deniz, D., Çiftçi, Z., & Işık, A. (2013). İlköğretim matematik öğretmenlerinin matematiksel modelleme ile ilgili̇ farkındalıkları. Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 6(12), 1-34.
  • Bal, A. P. (2008). Yeni ilköğretim matematik öğretim programının öğretmen görüşleri açısından değerlendirilmesi. Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 17(1), 53-68.
  • Biembengut, M. S., & Hein, N. (2010). Mathematical modeling: Implications for Teaching. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.). Modeling students’ mathematical modeling competencies. ICTMA 13 Springer.
  • Blum, W., & Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 45-58.
  • Blum, W., Galbraith, P., Henn, H.-W., & Niss, M. (2007). Introduction. Modelling and Applications in Mathematics Education. The 14th ICMI Study. Springer.
  • Bushell, G. (2006). Moderation of peer assessment in group projects. Assessment and Evaluation in Higher Education,31, 91-108.
  • Chamberlin, S. A. (2010). Mathematical problems that optimize learning for academically advanced students in grades k-6. Journal of Advanced Academics, 22(1), 52-25.
  • Chamberlin, M. (2006). Design principles for teacher ınvestigations of student work. Mathematics Teacher Education and Development, 6, 52-65.
  • Chamberlin, S. A., & Moon, S. M. (2009). How does the problem based learning approach compare to the model-eliciting activity approach in mathematics? International Journal for Mathematics Teaching and Learning, 9(3), 78-105
  • Common Core State Standards Initiative (CCSSI) (2010). Common Core State Standards for Mathematics.Washington, DC: National Governors Association Center for Best Practices and the Council of ChiefState School Officers. http://www.corestandards.org/wp-content/uploads/Math_Standards.pdf
  • Dede, A., Güzel, E. (2014), Model oluşturma etkinlikleri: Kuramsal yapısı ve bir örneği. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 33 (1), 95-111.
  • Doerr, H., & English, L. D. (2003). A Modeling perspective on students’ mathematical reasoning about data. Journal of Research in Mathematics Education, 34(2), 110-136.
  • Eric, C. C. M. (2010). Tracing primary 6 students' model development within the mathematical modelling process, Journal of Mathematical Modelling and Application, 1(3), 40-57.
  • English, L. D. (2009). Promoting interdisciplinarity through mathematical modelling. ZDM, 41(1), 161-181.
  • Frejd, P. (2012). Teachers’ conceptions of mathematical modelling at Swedish Upper Secondary school. Journal of Mathematical Modelling and Application, 1(5), 17-40.
  • Julie, C. (2002). Making relevance in mathematics teacher education. In I. Vakalis, D. Hughes Hallett, D. Quinney & C. Kourouniotis (Compilers). Proceedings of 2nd International Conference on the Teaching of Mathematics. New York: Wiley
  • Lesh, R. (1985). Processes, skills, and abilities needed to use mathematics in everyday situations. Education and Urban Society, 17(4), 439-446.
  • Lesh, R., & Doerr, H. (2003). Foundations of a models and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh & H. Doerr (Eds.), Beyond Constructivism: Models and Modeling Perspective on Mathematics Problem Solving, Learning, and Teaching. Mahwah, NJ: Lawrence Erlbaum Associates.
  • Lesh, R., & Doerr, H. M. (2003). Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning and teaching. Routletge
  • Lesh, R. & Kelly, A. (2000). Multitiered teaching experiments. Handbook of research design in mathematics and science education. Routletge
  • Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T., (2000) Principles for Developing Thought-Revealing Activities for Students and Teachers. In A. Kelly, R. Lesh (Eds.), Research Design in Mathematics and Science Education. Lawrence Erlbaum Associates, Mahwah.
  • Lesh, R., & Sriraman, B. (2005). Mathematics education as a design science. ZDM, 37(6), 490-505.
  • Lesh, R., & Yoon, C. (2007). What is Distinctive in (Our Views about) Models & Modelling Perspectives on Mathematics Problem Solving, Learning, and Teaching? In Modelling and applications in mathematics education. Springer.
  • Lesh, R., & Zawojewski, J. S. (2007). Problem solving and modeling. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning. Greenwich, CT: Information Age Publishing
  • Loddington, S. (2008). Peer assessment of group work: A review of the literature. The WebPA project, eLearning Capital Programme.
  • Maaß, K. (2011). Identifying drivers for mathematical modelling – a commentary. In G. Kaiser, W. Blum, R. B. Ferri ve G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling. Springer.
  • MEB. (2015). PISA 2015 uluslararası öğrenci değerlendirme programı ulusal raporu. MEB Ölçme Değerlendirme ve Sınav Hizmetleri Genel Müdürlüğü.
  • Milli Eğitim Bakanlığı (2018). Ortaokul Matematik Dersi Öğretim Programı.
  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics.
  • Manouchehri, A., & Lewis, S. T. (2017). Reconciling intuitions and conventional knowledge: The challenge of teaching and learning mathematical modelling. In Mathematical Modelling and Applications. Springer.
  • OECD (2013), PISA 2012 Assessment and Analytical Framework: Mathematics, Reading, Science, Problem Solving and Financial Literacy, OECD Publishing.
  • OECD. (2015). OECD PISA Technical report.
  • Özpolat, A. R., Sezer, F., İşgör, İ. Y., & Sezer, M. (2007). Sınıf öğretmenlerinin yeni ilköğretim programına ilişkin görüşlerinin incelenmesi. Milli Eğitim Dergisi, 174(1), 206-213.
  • Sriraman B. (2005). Conceptualizing the notion of model eliciting, Fourth Congress of the European. Soc
  • Yoon, C. (2006). A Conceptual Analysis of the Models and Modeling Characterization of Model-Eliciting Activities as “Thought-Revealing Activities”. (Yayımlanmamış doktora tezi). http://search.proquest.com/openview/2cf4b851b7aaca866cacacf1296fed9b/1?pqorigsite=gscholar&cbl=18750&diss=y
  • Zawojevski, S. J., Lesh, R.,& English, L. (2003). A models and modeling perspective on the role of small group learning activities. R. Lesh ve H. M. Doerr (Eds.),Beyond Constructivism: A models and modeling perspective on mathematics problem solving, learning ve teaching içinde. Mahwah, NJ: Lawrence Erlbaum Associates.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Other Fields of Education
Journal Section Makaleler
Authors

Zeynep Arslan 0000-0001-5135-8246

Barış Duran 0000-0003-2461-8203

Merve Çelenli 0000-0002-1011-9625

Zehra Taşpınar-şener 0000-0001-8914-784X

Early Pub Date June 28, 2022
Publication Date June 29, 2022
Submission Date November 29, 2021
Acceptance Date May 11, 2022
Published in Issue Year 2022 Volume: 7 Issue: 1

Cite

APA Arslan, Z., Duran, B., Çelenli, M., Taşpınar-şener, Z. (2022). Ortaokul Öğretmenleri Model Oluşturma Etkinlikleri Prensiplerini Derslerinde Nasıl Kullanıyorlar?. Türkiye Eğitim Dergisi, 7(1), 84-106. https://doi.org/10.54979/turkegitimdergisi.1026034