Research Article
BibTex RIS Cite

Effect of Calcium and Boron on the Ion Status, Carbohydrate and Proline Content, Gas Exchange Parameters and Growth Performance of Pomegranate cv. Wonderful Plants Grown Under NaCl Stress

Year 2014, Volume: 1 Issue: Özel Sayı-2, 1606 - 1617, 01.03.2014

Abstract

A greenhouse experiment was conducted to study the effects of sodium chloride (NaCl) on growth, nutrient status, carbohydrate and proline content and gas exchange parameters of pomegranate plants (Punica granatum L.) cv. Wonderful. One-year-old own-rooted pomegranate plants were grown for 58 days in a 1:1 sand–perlite medium. They were irrigated with nutrient solutions containing two concentrations of B (25 or 100 μΜ) in combination with 0, 40 or 80 mM NaCl and 1.0 or 10 mM CaCl2, respectively. At the end of the experiment, the greatest height was observed in plants treated with 1.0 or 10 mM CaCl or 100 μM B, whereas it was significantly reduced by the inclusion of NaCl into the nutrient solution. Similarly, a decline of fresh and dry matter weight was recorded in the treatment with 80 mM NaCl. The concentration of chlorophyll and carbohydrates in leaves was unaffected by the inclusion of NaCl into the nutrient solution, whereas in roots, the respective concentrations of carbohydrates were reduced by 50% compared to control. Moreover, as a result of salinity (mainly 80 mM NaCl), a decrease of photosynthetic parameters (photosynthetic rate and stomatal conductance) was recorded, while proline concentration of leaves increased and that of roots was reduced. Finally, the inclusion of NaCl in the nutrient solution led to increased Na and Cl, reduced P and Mg in leaves, and P, K and Zn in roots. However, B, Fe and Mn concentrations were not affected by NaCl treatments

References

  • Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrig. Rome.Alpaslan, M., Gunes, A., 2001. Interactive effects of boron and salinity stress permeability and mineral composition of tomato and cucumber plants. Plant Soil. 236: 123-128. 56. UN-FAO, on the growth, membrane
  • Bastías, E., Alcaraz-López, C., Bonilla, I., Martínez- Ballesta M.C., Bolaños, L., Carvajal, M., 2010. Interactions between salinity and boron toxicity in tomato plants involve apoplastic calcium. J. Plant Physiol. 167: 54- 60.
  • Βlumenfeld, A., Shaya, F., Hillel, R., 2000. Cultivation of Mediterraneans, http:// resources. Ciheam. Org/om/pdf/α42/ 00600264. Options
  • Cabanêro, F.J., Martinez, V., Carvajal, M., 2004. Does calcium determine water uptake under saline conditions in pepper plants, or is it water flux which determine calcium uptake? Plant Sci. 166: 443-50.
  • Centritto, M., Loreto, F., Chartzoulakis, K., 2003. The use of low [CO2] to estimate diffusional and non-diffusional photosynthetic capacity of salt-stressed olive saplings. Plant Cell Environ. 26: 585-94.
  • Chatzissavvidis, C., Papadakis, I., Therios, I., 2008. Effect of calcium on the ion status and growth performance of a citrus rootstock grown under NaCl stress. Soil Sci. Plant Nutr. 54: 910-915.
  • Chatzissavvidis, C., Antonopoulou, C., Therios, I., Dimassi, K., 2014. Responses of trifoliate orange (Poncirus trifoliata (L.) Raf.) to continuously and gradually increasing NaCl concentration. Acta Bot. Croatica 73 (1): 1-6.
  • Chen, T.H.H., Murata, N., 2002. Enhancement of tolerance of abiotic stress by metabolic engineering compatible solutes. Curr. Opin. Plant Biol. 5: 250-257. and other
  • Cruz, V., Cuartero, J., Bolarin, M.C., Romero, M., 1990. Evaluation ascertaining salt stress responses in Lycopersicon species. J. Am. Soc. Hort. Sci. 115: 1000-1003. characters for
  • Debez, A., Koyro, H.W., Grignon, C., Abdelly, C., B., Huczermayer, between the photosynthetic activity and the performance of Cakile maritime after long- term salt treatment. Physiol. Plant. 133: 373- 85. Relationship
  • Doring, J., Ludders, P., 1987. Influence of sodium salts on Na, Cl and SO4 content in leaves, shoots and roots of Punica granatum. Gartenbauwissenschaft. 52: 26–31.
  • Flowers, T.J., Yeo, A.R., 1995. Breeding for salinity resistance in crop plants-where next? Aust. J. Plant Physiol. 22: 875-884.
  • Franco, D.L., Filho, J.E., Prisco, J.T., Filho, E.G., 1999. CaCl2 Effects osmoregulator stressed cowpea seedlings. Rev. Bras. Fisiol. Vegetal. 11 (3): 145-151. growth and NaCl in
  • Grattan, S.R., Grieve, C.M., 1999. Salinity-mineral nutrient relations in horticulture crops. Sci. Hortic.78: 127–157.
  • Greenway, H., Munns, R., 1980. Mechanisms of salt tolerance in nonhalophytes. Ann. Rev. Plant Physiol. 31: 149–190.
  • Hamada, A.M., El-Enany, A.E., 1994. Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. Biol. Plant. 36: 75-81.
  • Hasanpour, Z., Karimi, H.R., Mirdehghan, 2014. Effects of salinity and water stress on ecophysiological parameters and concentration of
  • Hoagland, D.R., Arnon, D.I., 1950. The water culture method for growing plants without soil. California Agriculture Experiment Station Circular 347: 1-39.
  • Karimi, G., Ghorbanli, M., Heidari, H., Khavari Nejad, R.A., Assareh, M., 2005. The effects of NaCl on growth, water relations, osmolytes and ion content in Kochia prostrata. Biol. Plant. 49: 301-304.
  • Karimi, H.R., Hasanpour, Z, 2014. Effects of salinity stress and macronutrients pomegranate (Punica granatum L.) J. Plant Nutr. 27 (12): 1937-1951. growth and of concentration
  • Kaya, C., Kirnak, H., Higgs, D., Saltali, K, 2002. Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Sci. Hortic. 93: 65–74.
  • Khan, A., McNeilly, A.T., Collins, J.C., 2000. Accumulation of amino acids, proline and carbohydrates in response to aluminum and manganese stress in maize. J. Plant Nutr. 23: 1303–1314.
  • Kwon, T., Abe, T., Sasahara, T., 1995. Enhanced saline stress resistance in threonine and methionine overproducing mutant cell line from protoplast culture of rice (Oryza sativa L.). Plant Physiol. 145: 551-556.
  • Maas, E.V., Hoffmann, G.J., 1976. Crop salt tolerance: evaluation of existing data. In: Proc. Int. Conf. Texas Technical Univ. 187– 197.
  • Marschner, H., 1995. Mineral Nutrition of Higher Plants. Academic Press, London. 379-396.
  • Martin, P.K., Korbner, R.M.D., 1995. Sodium and chloride ions contribute synergistically to salt toxicity in wheat. Biol. Plant. 37 (2): 265- 271.
  • Martinez- Ballesta, M.C., Martinez, V., Carvajal, M., 2000. Regulation of water channel activity in whole roots and in protoplasts from roots of melon plants grown under saline conditions. Aust. J. Plant Physiol. 27: 685-691.
  • Martinez-Ballesta, M.C., Silva, C., Lopez-Berenguer, C., Cabanero, F.J., Carvajal, M., 2006. Plant aquaporins: New perspectives on water and nutrient uptake in saline environment. Plant Biol. 8: 535–546.
  • Meinzer, F.C., Plaut, Z., Saliendra, N.Z., 1994. Cation isotope discrimination, gas exchange and growth of sugarcane cultivars under salinity. Plant Physiol. 104: 521-526.
  • Misra, A.N., Sahl, S.M., Misra, M., Singh, P., Meera, T., Das, N., Har, M., Sahu, P., 1997. Sodium chloride induced changes in leaf growth, and pigment and protein contents in two rice cultivars. Biol. Plant. 39: 257–262.
  • Munns, R., 1993. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell Environ. 16: 15- 24.
  • Naumann, J.C., Young, D.R., Anderson, J.E., 2007. Linking leaf properties to physiological responses for detection of salt and drought stress in coastal plant species. Physiol. Plant. 131: 422-33. fluorescence
  • Navarro, A., Bañon, S., Olmos, E., Sánchez-Blanco, M.J., 2007. Effects of sodium chloride on water potential components, hydraulic conductivity, gas ultrastructure of Arbutus unedo plants. Plant Sci. 172: 473-480. and leaf
  • Naeini, M.R., Khoshgoftarmanesh, A.H., Lessani, H., Fallahi, E., 2004. Effects of sodium chloride – induced salinity on mineral nutrients and soluble sugars in three commercial cultivars of pomegranate. J. Plant Nutr. 27: 1319- 1326.
  • Νaeini, M.R., Khoshgoftarmanesh, A.H., Fallahi, E., 2006. Partitioning of chlorine, sodium, and potassium and shoot growth of three pomegranate cultivars under different levels of salinity. J. Plant. Nutr. 29: 1835-1843.
  • Nedjimi, B., Daoud, Y., 2009. Effects of calcium chloride on growth, membrane permeability and root hydraulic conductivity in two Atriplex species grown at high (sodium chloride) salinity. J. Plant Nutr. 32: 1818- 1830.
  • Ortiz, A., Martínez, V. Cerdà, A., 1994. Short-term effects of osmotic shock and calcium on growth and solute composition of Phaseolus vulgaris L. plants. Physiol. Plant. 911: 468- 476.
  • Patil, V.K., Waghmare, P.R., 1982. Salinity tolerance of pomegranate. Journal Maharashtra Agricultural University. 7: 268–269.
  • Perez-Alfocea, F., Estañ, M.T., Caro, M., Bolarin, M.C., 1993. Response of tomato cultivars to salinity. Plant Soil. 150: 203-211.
  • Perez-Alfocea, F., Balibrea, M.E., Santa Cruz, A., Estañ, M.T., 1996. Agronomical physiological characterization of salinity tolerance in a commercial tomato hybrid. Plant Soil. 180: 251-257. and
  • Rengel, Z., 1992. The role of calcium in salt toxicity. Plant Cell Environ. 15: 625-632.
  • Ruiz, J.M., Belakbir, L., Ragala, J.M., Romero, L., 1997. Response of plant yield and leaf pigments to saline conditions: effectiveness of different rootstocks in melon plants (Cucumis melo L.). Soil Sci. Plant Nutr. 43: 855-862.
  • Sarkhosh, A., Zamani, Z., Fatahi, R., Ebadi, A., 2006. RAPD markers reveal polymorphism among some granatum L) genotypes. Sci. Hortic. 111: 24– 29. (Punica
  • Silva, C., Aranda, F.J., Ortiz, A., Carvajal, M., Martinez, V., Teruel, J.A., 2007. Root plasma membrane lipid changes in relation to water transport in pepper: a response to NaCl and CaCl2 treatment. J. Plant Biol. 50: 650-7.
  • Singh, M.P., Pandey, S.K., Singh, M., Ram, P.C., Singh, B.B., transpiration, stomatal conductance and leaf genotypes grown under sodic conditions. Photosynthetica. 24: 623-627. in mustard
  • Sotiropoulos, T.E., 2007. Effect of NaCl and CaCl2 on growth and chlorophyll, proline and sugars in the apple rootstock M4 cultured in vitro Biol. Plant. 51 (1): 177-180. of minerals,
  • Termaat, A., Munns, R., 1986. Use of concentrated macronutrient solutions to separate osmotic from NaCl-specific effects on plant growth. Aust. J. Plant. Physiol. 13: 509-522.
  • Tewari, T.N., Singh, B.B., 1991. Stress studies in lentil (Lensesculenta Moench). II. Sodicity- induced changes in chlorophyll, nitrate, nitrite reductase, nucleic acids, proline, yield, and yield components in lentil. Plant Soil. 135: 225-250.
  • White, P.J., Broadley, M.R., 2003. Calcium in plants. Ann. Bot. 92: 487–511. J.F., Spectrophotometric chlorophylls a and b and their pheophytins in ethanol. Bioch. Biophys. Acta. 109: 448- 453. A., 1965. of
  • Wolf, B., 1974. Improvement in the azomethine-H method for the determination of boron. Commun. Soil Sci. Plant Anal. 5: 39-44.
  • Zhao, G.Q., Ma, B.L., Ren, C.Z., 2007. Growth, gas exchange, chlorophyll fluorescence, and ion content of naked oat in response to salinity. Crop Sci. 47: 123-31.
  • Zidan, M.A. Al-Zahrani, H.S., 1994. Effect of NaCl on the metabolic changes in sweet basil (Ocimum basilicum). Pak. J. Sci. Ind. Res. 37: 541-543.

Effect of Calcium and Boron on the Ion Status, Carbohydrate and Proline Content, Gas Exchange Parameters and Growth Performance of Pomegranate cv. Wonderful Plants Grown Under NaCl Stress

Year 2014, Volume: 1 Issue: Özel Sayı-2, 1606 - 1617, 01.03.2014

Abstract

References

  • Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrig. Rome.Alpaslan, M., Gunes, A., 2001. Interactive effects of boron and salinity stress permeability and mineral composition of tomato and cucumber plants. Plant Soil. 236: 123-128. 56. UN-FAO, on the growth, membrane
  • Bastías, E., Alcaraz-López, C., Bonilla, I., Martínez- Ballesta M.C., Bolaños, L., Carvajal, M., 2010. Interactions between salinity and boron toxicity in tomato plants involve apoplastic calcium. J. Plant Physiol. 167: 54- 60.
  • Βlumenfeld, A., Shaya, F., Hillel, R., 2000. Cultivation of Mediterraneans, http:// resources. Ciheam. Org/om/pdf/α42/ 00600264. Options
  • Cabanêro, F.J., Martinez, V., Carvajal, M., 2004. Does calcium determine water uptake under saline conditions in pepper plants, or is it water flux which determine calcium uptake? Plant Sci. 166: 443-50.
  • Centritto, M., Loreto, F., Chartzoulakis, K., 2003. The use of low [CO2] to estimate diffusional and non-diffusional photosynthetic capacity of salt-stressed olive saplings. Plant Cell Environ. 26: 585-94.
  • Chatzissavvidis, C., Papadakis, I., Therios, I., 2008. Effect of calcium on the ion status and growth performance of a citrus rootstock grown under NaCl stress. Soil Sci. Plant Nutr. 54: 910-915.
  • Chatzissavvidis, C., Antonopoulou, C., Therios, I., Dimassi, K., 2014. Responses of trifoliate orange (Poncirus trifoliata (L.) Raf.) to continuously and gradually increasing NaCl concentration. Acta Bot. Croatica 73 (1): 1-6.
  • Chen, T.H.H., Murata, N., 2002. Enhancement of tolerance of abiotic stress by metabolic engineering compatible solutes. Curr. Opin. Plant Biol. 5: 250-257. and other
  • Cruz, V., Cuartero, J., Bolarin, M.C., Romero, M., 1990. Evaluation ascertaining salt stress responses in Lycopersicon species. J. Am. Soc. Hort. Sci. 115: 1000-1003. characters for
  • Debez, A., Koyro, H.W., Grignon, C., Abdelly, C., B., Huczermayer, between the photosynthetic activity and the performance of Cakile maritime after long- term salt treatment. Physiol. Plant. 133: 373- 85. Relationship
  • Doring, J., Ludders, P., 1987. Influence of sodium salts on Na, Cl and SO4 content in leaves, shoots and roots of Punica granatum. Gartenbauwissenschaft. 52: 26–31.
  • Flowers, T.J., Yeo, A.R., 1995. Breeding for salinity resistance in crop plants-where next? Aust. J. Plant Physiol. 22: 875-884.
  • Franco, D.L., Filho, J.E., Prisco, J.T., Filho, E.G., 1999. CaCl2 Effects osmoregulator stressed cowpea seedlings. Rev. Bras. Fisiol. Vegetal. 11 (3): 145-151. growth and NaCl in
  • Grattan, S.R., Grieve, C.M., 1999. Salinity-mineral nutrient relations in horticulture crops. Sci. Hortic.78: 127–157.
  • Greenway, H., Munns, R., 1980. Mechanisms of salt tolerance in nonhalophytes. Ann. Rev. Plant Physiol. 31: 149–190.
  • Hamada, A.M., El-Enany, A.E., 1994. Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. Biol. Plant. 36: 75-81.
  • Hasanpour, Z., Karimi, H.R., Mirdehghan, 2014. Effects of salinity and water stress on ecophysiological parameters and concentration of
  • Hoagland, D.R., Arnon, D.I., 1950. The water culture method for growing plants without soil. California Agriculture Experiment Station Circular 347: 1-39.
  • Karimi, G., Ghorbanli, M., Heidari, H., Khavari Nejad, R.A., Assareh, M., 2005. The effects of NaCl on growth, water relations, osmolytes and ion content in Kochia prostrata. Biol. Plant. 49: 301-304.
  • Karimi, H.R., Hasanpour, Z, 2014. Effects of salinity stress and macronutrients pomegranate (Punica granatum L.) J. Plant Nutr. 27 (12): 1937-1951. growth and of concentration
  • Kaya, C., Kirnak, H., Higgs, D., Saltali, K, 2002. Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Sci. Hortic. 93: 65–74.
  • Khan, A., McNeilly, A.T., Collins, J.C., 2000. Accumulation of amino acids, proline and carbohydrates in response to aluminum and manganese stress in maize. J. Plant Nutr. 23: 1303–1314.
  • Kwon, T., Abe, T., Sasahara, T., 1995. Enhanced saline stress resistance in threonine and methionine overproducing mutant cell line from protoplast culture of rice (Oryza sativa L.). Plant Physiol. 145: 551-556.
  • Maas, E.V., Hoffmann, G.J., 1976. Crop salt tolerance: evaluation of existing data. In: Proc. Int. Conf. Texas Technical Univ. 187– 197.
  • Marschner, H., 1995. Mineral Nutrition of Higher Plants. Academic Press, London. 379-396.
  • Martin, P.K., Korbner, R.M.D., 1995. Sodium and chloride ions contribute synergistically to salt toxicity in wheat. Biol. Plant. 37 (2): 265- 271.
  • Martinez- Ballesta, M.C., Martinez, V., Carvajal, M., 2000. Regulation of water channel activity in whole roots and in protoplasts from roots of melon plants grown under saline conditions. Aust. J. Plant Physiol. 27: 685-691.
  • Martinez-Ballesta, M.C., Silva, C., Lopez-Berenguer, C., Cabanero, F.J., Carvajal, M., 2006. Plant aquaporins: New perspectives on water and nutrient uptake in saline environment. Plant Biol. 8: 535–546.
  • Meinzer, F.C., Plaut, Z., Saliendra, N.Z., 1994. Cation isotope discrimination, gas exchange and growth of sugarcane cultivars under salinity. Plant Physiol. 104: 521-526.
  • Misra, A.N., Sahl, S.M., Misra, M., Singh, P., Meera, T., Das, N., Har, M., Sahu, P., 1997. Sodium chloride induced changes in leaf growth, and pigment and protein contents in two rice cultivars. Biol. Plant. 39: 257–262.
  • Munns, R., 1993. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell Environ. 16: 15- 24.
  • Naumann, J.C., Young, D.R., Anderson, J.E., 2007. Linking leaf properties to physiological responses for detection of salt and drought stress in coastal plant species. Physiol. Plant. 131: 422-33. fluorescence
  • Navarro, A., Bañon, S., Olmos, E., Sánchez-Blanco, M.J., 2007. Effects of sodium chloride on water potential components, hydraulic conductivity, gas ultrastructure of Arbutus unedo plants. Plant Sci. 172: 473-480. and leaf
  • Naeini, M.R., Khoshgoftarmanesh, A.H., Lessani, H., Fallahi, E., 2004. Effects of sodium chloride – induced salinity on mineral nutrients and soluble sugars in three commercial cultivars of pomegranate. J. Plant Nutr. 27: 1319- 1326.
  • Νaeini, M.R., Khoshgoftarmanesh, A.H., Fallahi, E., 2006. Partitioning of chlorine, sodium, and potassium and shoot growth of three pomegranate cultivars under different levels of salinity. J. Plant. Nutr. 29: 1835-1843.
  • Nedjimi, B., Daoud, Y., 2009. Effects of calcium chloride on growth, membrane permeability and root hydraulic conductivity in two Atriplex species grown at high (sodium chloride) salinity. J. Plant Nutr. 32: 1818- 1830.
  • Ortiz, A., Martínez, V. Cerdà, A., 1994. Short-term effects of osmotic shock and calcium on growth and solute composition of Phaseolus vulgaris L. plants. Physiol. Plant. 911: 468- 476.
  • Patil, V.K., Waghmare, P.R., 1982. Salinity tolerance of pomegranate. Journal Maharashtra Agricultural University. 7: 268–269.
  • Perez-Alfocea, F., Estañ, M.T., Caro, M., Bolarin, M.C., 1993. Response of tomato cultivars to salinity. Plant Soil. 150: 203-211.
  • Perez-Alfocea, F., Balibrea, M.E., Santa Cruz, A., Estañ, M.T., 1996. Agronomical physiological characterization of salinity tolerance in a commercial tomato hybrid. Plant Soil. 180: 251-257. and
  • Rengel, Z., 1992. The role of calcium in salt toxicity. Plant Cell Environ. 15: 625-632.
  • Ruiz, J.M., Belakbir, L., Ragala, J.M., Romero, L., 1997. Response of plant yield and leaf pigments to saline conditions: effectiveness of different rootstocks in melon plants (Cucumis melo L.). Soil Sci. Plant Nutr. 43: 855-862.
  • Sarkhosh, A., Zamani, Z., Fatahi, R., Ebadi, A., 2006. RAPD markers reveal polymorphism among some granatum L) genotypes. Sci. Hortic. 111: 24– 29. (Punica
  • Silva, C., Aranda, F.J., Ortiz, A., Carvajal, M., Martinez, V., Teruel, J.A., 2007. Root plasma membrane lipid changes in relation to water transport in pepper: a response to NaCl and CaCl2 treatment. J. Plant Biol. 50: 650-7.
  • Singh, M.P., Pandey, S.K., Singh, M., Ram, P.C., Singh, B.B., transpiration, stomatal conductance and leaf genotypes grown under sodic conditions. Photosynthetica. 24: 623-627. in mustard
  • Sotiropoulos, T.E., 2007. Effect of NaCl and CaCl2 on growth and chlorophyll, proline and sugars in the apple rootstock M4 cultured in vitro Biol. Plant. 51 (1): 177-180. of minerals,
  • Termaat, A., Munns, R., 1986. Use of concentrated macronutrient solutions to separate osmotic from NaCl-specific effects on plant growth. Aust. J. Plant. Physiol. 13: 509-522.
  • Tewari, T.N., Singh, B.B., 1991. Stress studies in lentil (Lensesculenta Moench). II. Sodicity- induced changes in chlorophyll, nitrate, nitrite reductase, nucleic acids, proline, yield, and yield components in lentil. Plant Soil. 135: 225-250.
  • White, P.J., Broadley, M.R., 2003. Calcium in plants. Ann. Bot. 92: 487–511. J.F., Spectrophotometric chlorophylls a and b and their pheophytins in ethanol. Bioch. Biophys. Acta. 109: 448- 453. A., 1965. of
  • Wolf, B., 1974. Improvement in the azomethine-H method for the determination of boron. Commun. Soil Sci. Plant Anal. 5: 39-44.
  • Zhao, G.Q., Ma, B.L., Ren, C.Z., 2007. Growth, gas exchange, chlorophyll fluorescence, and ion content of naked oat in response to salinity. Crop Sci. 47: 123-31.
  • Zidan, M.A. Al-Zahrani, H.S., 1994. Effect of NaCl on the metabolic changes in sweet basil (Ocimum basilicum). Pak. J. Sci. Ind. Res. 37: 541-543.
There are 52 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Eleana Sarafı This is me

Christos Chatzıssavvıdıs This is me

Ioannis Therıos This is me

Publication Date March 1, 2014
Submission Date January 26, 2015
Published in Issue Year 2014 Volume: 1 Issue: Özel Sayı-2

Cite

APA Sarafı, E., Chatzıssavvıdıs, C., & Therıos, I. (2014). Effect of Calcium and Boron on the Ion Status, Carbohydrate and Proline Content, Gas Exchange Parameters and Growth Performance of Pomegranate cv. Wonderful Plants Grown Under NaCl Stress. Turkish Journal of Agricultural and Natural Sciences, 1(Özel Sayı-2), 1606-1617.