Research Article
BibTex RIS Cite

STEM academicians’ beliefs about the relationships between Science, Mathematics, Engineering and Technology: A pedagogical framework for STEM

Year 2018, Volume: 31 Issue: 2, 365 - 480, 28.12.2018
https://doi.org/10.19171/uefad.504913

Abstract

STEM (Science, Technology, Engineering and Mathematics) is an abbreviation that is on the agenda of educational platforms both in Turkey and around the world in recent times. When it comes to STEM education, it is an educational reform that has been put on the table of American educators particularly by industrial leaders due to the lack of workforce in the STEM areas. In parallel with these developments, this education has been incorporated into Turkish Science Education programs. Both the dissimilarity of the starting points and uncertainties as to how this education would be applied in school environments in terms of content, learning outcomes and purposes are crucial problems for Turkish context. At this point, the purpose of the present study was to uncover the STEM academicians’ beliefs about the relationships between Science, Mathematics, Engineering and Technology and to develop a pedagogical framework using a Post-Normal Science (PNS) approach. We conducted semi-structured interviews with 17 STEM academicians who were the experts in one of the STEM areas in one of the top universities in Turkey. The questions about definitions of Science, Math, Engineering and Technology, the relationships among these areas and society and the importance of ethics in these areas were asked. After the content analysis of the transcripts, we concluded that a pedagogical framework for STEM could be developed and it could include five dimensions: 1) The definitions of Science, Math, Engineering and Technology, 2) The relationships among Science, Math, Engineering, Technology and Society, 3) Common aspects, differences and benefiting from each other, 4) Responding post-normal questions based on the evidence, 5) Ethical aspects.

References

  • Akgündüz, D., Aydeniz, M., Çakmakçı, G., Çavaş, B., Çorlu, M. S., Öner, T. & Özdemir, S. (2015). STEM eğitimi Türkiye raporu: Günün modası mı yoksa gereksinim mi? [A report on STEM Education in Turkey: A provisional agenda or a necessity?][White Paper]. İstanbul Aydın Üniversitesi: STEM Merkezi ve Eğitim Fakültesi. Retrieved from http://www.aydin.edu.tr/belgeler/IAU-STEM-Egitimi-Turkiye-Raporu-2015.pdf
  • Biological Sciences Curriculum Study (2007). A decade of action: Sustaining Global Competitiveness. Executive Summary. Colorada Springs, CO:BSCS.
  • Boyd, R., Gasper, P. Ve Trout, J.D. (1999). The philosophy of science. London: MIT press.
  • Bunge, M. (2014). Philosophical inputs and outputs of technology. In R. Scharff and A. ValDusek (Eds). Philosophy of Technology (pp = 191-200). Oxford: Blackwell.
  • Business Roundtable. (2005). Tapping America’s potential: The education for innovation initiative. Washington, DC.
  • Bybee, R. W. (2010a). The teaching of science: 21st century perspectives. Arlington, Virginia: NSTA Press
  • Bybee, R. W. (2010b). What is STEM education? Science, 329, 996. doi: 10.1126/science.1194998
  • Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. Arlington: NSTA Press. Carneval, A. P., Smith, N., & Melton, M. (2011). STEM. Washington, DC: Center on Education and the Workforce
  • Charmaz K. (2014). Constructing grounded theory. 2nd ed. Thousand Oaks, CA: Sage.
  • Clark, P. (2014). Mathematics. In M. Curd ve S. Psillos (Eds). The Routledge Companion to Philosophy of Science. London: Taylor and Francis.
  • Duncan, A. (2009). Secretary Arne Duncan’s remarks to the President’s Council of Advisors on Science and Technology. Retrieved from http://www2.ed.gov/news/speeches/2009/10/10232009.html.
  • European School Net (2017). STEM. http://www.eun.org/focus-areas/stem adresinden 14.11.2017 tarihinde ulaşılmıştır.
  • Funtowicz, S. O., & Ravetz, J. R. (1993). Science for the post-normal age. Futures, 25(7), 739-755.
  • Franssen, M. (2014). Analytic Philosophy of Technology. In R. Scharff and A. ValDusek (Eds). Philosophy of Technology(pp= 201-204). Oxford: Blackwell.
  • Kılınç, A., Watt, H. ve Richardson, P.(2012). Factors influencing teaching choice in Turkey. Asia Pasific Journal of Teacher Education. 40(3), 199-226.
  • Kılınç, A., Demiral, U., & Kartal, T. (2017). Resistance to dialogic discourse in SSI teaching: The effects of an argumentation‐based workshop, teaching practicum, and induction on a preservice science teacher. Journal of Research in Science Teaching, 54(6), 764-789.
  • Kuhn, T.S., 1962. The Structure of Scientific Revolutions. University of Chicago Press, Chicago
  • Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Beverly Hills, CA: Sage.
  • Milli Eğitim Bakanlığı (MEB). (2017a). Fen Bilimleri Dersi Öğretim Programı.Ankara http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=143 adresinden 10.11.2017 tarihinde elde edilmiştir.
  • Milli Eğitim Bakanlığı (MEB). (2017b). Fizik Dersi Öğretim Programı.Ankara http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=174 adresinden 10.11.2017 tarihinde elde edilmiştir.
  • Milli Eğitim Bakanlığı (MEB). (2017c). Kimya Dersi Öğretim Programı.Ankara XXX adresinden elde edilmiştir. http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=178 adresinden 10.11.2017 tarihinde elde edilmiştir.
  • Milli Eğitim Bakanlığı (MEB) (2016) STEM Eğitim Raporu. http://yegitek.meb.gov.tr/STEM_Egitimi_Raporu.pdf adresinden 10.11.2017 tarihinde elde edilmiştir.
  • Mitcham, C. ve Schatzberg, E. (2009). Defining technology and Engineering Sciences. In D. Gabbay, P. Thagard and J. Woods (Eds). Philosophy of Technology and Engineering Sciences(pp 27-63). Amsterdam: Elsevier.
  • National Research Council (NRC). (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.
  • National Science Foundation. (2010). Preparing the next generation of STEM innovators: identifying and developing our nation’s human capital. Retrieved from http://www.nsf.gov/nsb/publications/2010/nsb1033.pdf.
  • Patton, M. (1990). Qualitative evaluation and research methods (pp. 169-186). Beverly Hills, CA: Sage.
  • Ravetz, J. (2012). The significance of the Hamburg workshop: Post-normal science and the maturing of science. Nature and Culture, 7(2), 133-150.
  • Rokeach, M. (1968). Beliefs, attitudes, and values: A theory of organization and change. San Francisco: Jossey-Bass
  • Schadewalt, W. (2014). The Greek concepts of ‘nature’ and ‘technique’. In R. Scharff and A. ValDusek (Eds). Philosophy of Technology (pp = 25-32). Oxford: Blackwell.
  • Snow, C.P. (1964). The two cultures. Cambridge: Cambridge University Press
  • Türkiye Sanayiciler ve İş Adamları Derneği (TUSİAD) (2017). 2023’e doğru Türkiye’de STEM gereksinimi.
  • Tyler, R. W. (2013). Basic principles of curriculum and instruction. University of Chicago Press.
  • Williams, J. (2011). STEM education: Proceed with caution. Design and Technology Education: An International Journal, 1(16), 26-35. Yazar, 2017.
  • Yin, R. K. (2013). Case study research: Design and methods (Applied Social Research Methods) (5th Ed.). United States of America: Sage Publications, Inc.
  • Zeidler, D. (2016). STEM education: A deficit framework for the twenty first century? A sociocultural socioscientific response. Cultural Studies of Science Education, 11(1), 11–26. 424

STEM Alanları Bilim İnsanlarının Fen, Matematik, Mühendislik ve Teknoloji Arasındaki İlişkiler Hakkında İnançları: STEM için Pedagojik bir Çerçeve

Year 2018, Volume: 31 Issue: 2, 365 - 480, 28.12.2018
https://doi.org/10.19171/uefad.504913

Abstract

STEM (Science, Technology, Engineering, Mathematics – Fen, Teknoloji, Mühendislik, Matematik) son dönemde hem Türkiye hem de dünyada eğitimsel platformlar için gündeme gelmiş bir kısaltmadır. STEM eğitimi ise Amerika’da STEM alanlarındaki iş gücünün azalması ile endüstri liderleri tarafından Amerikalı eğitimcilerin önüne konulan bir eğitim reformudur. Öte yandan Türkiye’de bu eğitim Fen öğretim programlarına dahil edilmeye başlanmıştır. Gerek çıkış noktalarının benzemezliği gerekse de bu eğitim kapsamında içerik, kazanım ve hedefler noktasında nasıl bir eğitimin yapılması gerektiğinin meçhul olması Türkiye örneklemi için önemli problemlerdir. Bu noktada bu çalışmanın amacı Türkiye’de STEM alanlarında öncü bilim insanlarının Fen, Matematik, Mühendislik ve Teknoloji arasındaki ilişkiler hakkındaki inançlarını ortaya çıkarmak ve bu inançları kullanarak Post-normal Bilim (PNB) kapsamında STEM için pedagojik bir çerçeve oluşturmaktır. Bu kapsamda Türkiye’de STEM alanlarındaki bilimsel faaliyetleri ile öne çıkan bir üniversite seçilmiş ve bu üniversitede STEM alanlarından birinde uzman olan 17 bilim insanı ile yarı-yapılandırılmış görüşmeler yapılmıştır. Görüşmelerde Fen, Matematik, Mühendislik ve Teknolojinin tanımları, bunların birbirleriyle ve toplumla olan ilişkileri ve bu alanlarda etiğin önemi üzerine sorular sorulmuştur. Verilerin içerik analizleri sonrasında PNB kapsamında STEM’in pedagojik bir çerçeveye oturtulabileceği ve bu çerçevenin beş temel parçadan oluştuğu gözlenmiştir. Bunlar 1) Fen, Matematik, Mühendislik ve Teknoloji tanımları, 2) Fen, Matematik, Mühendislik, Teknoloji ve Toplum ilişkileri, 3) Ortak yanlar, farklılıklar ve birbirlerinden yararlanma, 4) Post-normal sorunun kanıta dayalı olarak cevaplanması ve 5) Etik boyutlardır.

References

  • Akgündüz, D., Aydeniz, M., Çakmakçı, G., Çavaş, B., Çorlu, M. S., Öner, T. & Özdemir, S. (2015). STEM eğitimi Türkiye raporu: Günün modası mı yoksa gereksinim mi? [A report on STEM Education in Turkey: A provisional agenda or a necessity?][White Paper]. İstanbul Aydın Üniversitesi: STEM Merkezi ve Eğitim Fakültesi. Retrieved from http://www.aydin.edu.tr/belgeler/IAU-STEM-Egitimi-Turkiye-Raporu-2015.pdf
  • Biological Sciences Curriculum Study (2007). A decade of action: Sustaining Global Competitiveness. Executive Summary. Colorada Springs, CO:BSCS.
  • Boyd, R., Gasper, P. Ve Trout, J.D. (1999). The philosophy of science. London: MIT press.
  • Bunge, M. (2014). Philosophical inputs and outputs of technology. In R. Scharff and A. ValDusek (Eds). Philosophy of Technology (pp = 191-200). Oxford: Blackwell.
  • Business Roundtable. (2005). Tapping America’s potential: The education for innovation initiative. Washington, DC.
  • Bybee, R. W. (2010a). The teaching of science: 21st century perspectives. Arlington, Virginia: NSTA Press
  • Bybee, R. W. (2010b). What is STEM education? Science, 329, 996. doi: 10.1126/science.1194998
  • Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. Arlington: NSTA Press. Carneval, A. P., Smith, N., & Melton, M. (2011). STEM. Washington, DC: Center on Education and the Workforce
  • Charmaz K. (2014). Constructing grounded theory. 2nd ed. Thousand Oaks, CA: Sage.
  • Clark, P. (2014). Mathematics. In M. Curd ve S. Psillos (Eds). The Routledge Companion to Philosophy of Science. London: Taylor and Francis.
  • Duncan, A. (2009). Secretary Arne Duncan’s remarks to the President’s Council of Advisors on Science and Technology. Retrieved from http://www2.ed.gov/news/speeches/2009/10/10232009.html.
  • European School Net (2017). STEM. http://www.eun.org/focus-areas/stem adresinden 14.11.2017 tarihinde ulaşılmıştır.
  • Funtowicz, S. O., & Ravetz, J. R. (1993). Science for the post-normal age. Futures, 25(7), 739-755.
  • Franssen, M. (2014). Analytic Philosophy of Technology. In R. Scharff and A. ValDusek (Eds). Philosophy of Technology(pp= 201-204). Oxford: Blackwell.
  • Kılınç, A., Watt, H. ve Richardson, P.(2012). Factors influencing teaching choice in Turkey. Asia Pasific Journal of Teacher Education. 40(3), 199-226.
  • Kılınç, A., Demiral, U., & Kartal, T. (2017). Resistance to dialogic discourse in SSI teaching: The effects of an argumentation‐based workshop, teaching practicum, and induction on a preservice science teacher. Journal of Research in Science Teaching, 54(6), 764-789.
  • Kuhn, T.S., 1962. The Structure of Scientific Revolutions. University of Chicago Press, Chicago
  • Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Beverly Hills, CA: Sage.
  • Milli Eğitim Bakanlığı (MEB). (2017a). Fen Bilimleri Dersi Öğretim Programı.Ankara http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=143 adresinden 10.11.2017 tarihinde elde edilmiştir.
  • Milli Eğitim Bakanlığı (MEB). (2017b). Fizik Dersi Öğretim Programı.Ankara http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=174 adresinden 10.11.2017 tarihinde elde edilmiştir.
  • Milli Eğitim Bakanlığı (MEB). (2017c). Kimya Dersi Öğretim Programı.Ankara XXX adresinden elde edilmiştir. http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=178 adresinden 10.11.2017 tarihinde elde edilmiştir.
  • Milli Eğitim Bakanlığı (MEB) (2016) STEM Eğitim Raporu. http://yegitek.meb.gov.tr/STEM_Egitimi_Raporu.pdf adresinden 10.11.2017 tarihinde elde edilmiştir.
  • Mitcham, C. ve Schatzberg, E. (2009). Defining technology and Engineering Sciences. In D. Gabbay, P. Thagard and J. Woods (Eds). Philosophy of Technology and Engineering Sciences(pp 27-63). Amsterdam: Elsevier.
  • National Research Council (NRC). (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.
  • National Science Foundation. (2010). Preparing the next generation of STEM innovators: identifying and developing our nation’s human capital. Retrieved from http://www.nsf.gov/nsb/publications/2010/nsb1033.pdf.
  • Patton, M. (1990). Qualitative evaluation and research methods (pp. 169-186). Beverly Hills, CA: Sage.
  • Ravetz, J. (2012). The significance of the Hamburg workshop: Post-normal science and the maturing of science. Nature and Culture, 7(2), 133-150.
  • Rokeach, M. (1968). Beliefs, attitudes, and values: A theory of organization and change. San Francisco: Jossey-Bass
  • Schadewalt, W. (2014). The Greek concepts of ‘nature’ and ‘technique’. In R. Scharff and A. ValDusek (Eds). Philosophy of Technology (pp = 25-32). Oxford: Blackwell.
  • Snow, C.P. (1964). The two cultures. Cambridge: Cambridge University Press
  • Türkiye Sanayiciler ve İş Adamları Derneği (TUSİAD) (2017). 2023’e doğru Türkiye’de STEM gereksinimi.
  • Tyler, R. W. (2013). Basic principles of curriculum and instruction. University of Chicago Press.
  • Williams, J. (2011). STEM education: Proceed with caution. Design and Technology Education: An International Journal, 1(16), 26-35. Yazar, 2017.
  • Yin, R. K. (2013). Case study research: Design and methods (Applied Social Research Methods) (5th Ed.). United States of America: Sage Publications, Inc.
  • Zeidler, D. (2016). STEM education: A deficit framework for the twenty first century? A sociocultural socioscientific response. Cultural Studies of Science Education, 11(1), 11–26. 424
There are 35 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Ahmet Kılınç

Mehmet Demirbağ

Şirin Yılmaz

Publication Date December 28, 2018
Submission Date August 15, 2018
Published in Issue Year 2018 Volume: 31 Issue: 2

Cite

APA Kılınç, A., Demirbağ, M., & Yılmaz, Ş. (2018). STEM Alanları Bilim İnsanlarının Fen, Matematik, Mühendislik ve Teknoloji Arasındaki İlişkiler Hakkında İnançları: STEM için Pedagojik bir Çerçeve. Uludağ Üniversitesi Eğitim Fakültesi Dergisi, 31(2), 365-480. https://doi.org/10.19171/uefad.504913