Research Article
BibTex RIS Cite

Depolama Süresinin Farklı Kurutma Yöntemleri ile Kurutulmuş Kamkat Dilimlerinin Bazı Kalite Özelliklerine Etkisi

Year 2020, , 44 - 56, 31.03.2020
https://doi.org/10.29133/yyutbd.643636

Abstract

Bu çalışmada farklı kurutma yöntemleri ile kurutulmuş kamkat dilimleri oda sıcaklığında 4 ay depolanmış ve depolama süresinde ürün kalitesi ve stabilitesi incelenmiştir. Bu amaçla, kamkat dilimleri suda haşlama ön işlemi ve ön işlemsiz olarak sıcak hava, vakum, ultrason destekli ozmotik ön kurutma sonrası sıcak hava ve mikrodalga destekli sıcak hava kurutma olmak üzere 4 kurutma yöntemi ile kurutulmuştur. Depolama süresinde kurutulmuş kamkat dilimlerinin nem içerikleri ve su aktivitesi değerleri artış göstermiş, en düşük artış ön işlemsiz sıcak hava kurutma yöntemi ile kurutulan örneklerde belirlenmiştir. Genel olarak, depolamanın sonunda kurutulmuş kamkat dilimlerinin L*, b*, kroma, hue açısı değerleri azalış göstermiş, a* ve TRD değerleri ise artış göstermiştir. Depolama sürecinde, HMF değerleri 0.39-46.79 mg/kg arasında değişim göstermiştir. Depolama periyodunda kurutulmuş örneklerin askorbik asit içeriğinin %28.36-75.61 oranında kayba uğradığı gözlenmiştir. Çalışma sonucunda kamkat dilimlerinin ön işlemsiz olarak kurutulmasının 4 aylık depolama süresinde incelenen kalite özellikleri açısından daha uygun olduğu belirlenmiştir.

Supporting Institution

Akdeniz Üniversitesi, TÜBİTAK BİDEB

Thanks

Bu çalışma Farklı Yöntemlerle Kurutulmuş Kamkatın (Fortunella margarita Swing.) Bazı Kalite Özellikleri ve Depolamaya Bağlı Değişimi” adlı doktora tezinin bir kısmıdır. Çalışmayı Doktora Burs Programı kapsamında destekleyen TÜBİTAK-BİDEB’e teşekkürlerimizi sunarız.

References

  • Akdaş, S. & Başlar, M. (2015). Dehydration and degradation kinetics of bioactive compounds for mandarin slices under vacuum and oven drying conditions. Journal of Food Processing and Preservation, 39(6): 1098-1107.
  • AOAC, (2000). 17th Edi 2000 Official Method 986.21. Moisture in Spices / IS specification No. IS 1797-1985; Methods of Test for Spices and Condiments.
  • Cemeroğlu, B., Karadeniz, F. & Özkan, M. (2003). Meyve ve Sebze İşleme Teknolojisi. Gıda Teknolojisi Derneği Yayınları No:28, Ankara. 690 s.
  • Chavan, U. D. & Amarowicz, R. (2012). Osmotic dehydration process for preservation of fruits and vegetables. Journal of Food Research, 1(2): 202.
  • Chen, H. H., Hernandez, C. E. & Huang, T. C. (2005). A study of the drying effect on lemon slices using a closed-type solar dryer. Solar Energy, 78(1): 97-103.
  • Chiu, N. C. & Chang, K. S. (1998). The illustrated medicinal plants of Taiwan. Taiwan: SMC publishing Ltd, Vol 5, Taipei, Taiwan, 194 p.
  • Darvishi, H., Khoshtaghaza, M.H. & Minaei, S. (2014). Drying kinetics and colour change of lemon slices. Internatıonal Agrophysics, 28:1-6.
  • Del Caro, A., Piga, A. Pinna, I. P., Fenu, M. & Agabbio, M. (2004). Effect of drying conditions and storage period on polyphenolic content. antioxidant capacity. and ascorbic acid of prunes. Journal of Agricultural and Food Chemistry, 52(15): 4780-4784.
  • Di Scala, K. C. & Crapiste, G. H. (2008). Drying kinetics and quality changes during drying of red pepper. LWT Food Science and Technology, 41(5): 789–795.Doymaz, İ. (2007). Air-drying characteristics of tomatoes. Journal of Food Engineering, 78: 1291–1297.
  • Ghanem Romdhane, N., Bonazzi, C., Kechaou, N. & Mihoubi, N. B. (2015). Effect of air-drying temperature on kinetics of quality attributes of lemon (Citrus limon cv. lunari) peels. Drying Technology, 33(13): 1581-1589.
  • Ghanem, N., Mihoubi, D., Kechao, N. & Mihoubi, N. B. (2012). Microwave dehydration of three citrus peel cultivars: Effect on water and oil retention capacities, color, shrinkage and total phenols content. Industrial Crops and Products, 40: 167-177.
  • Gonçalves, E. M., Pinheiro, J., Abreu, M., Brandão, T. R. S. & Silva, C. L. (2010). Carrot (Daucus carota L.) peroxidase inactivation, phenolic content and physical changes kinetics due to blanching. Journal of Food Engineering, 97(4): 574-581.
  • Gonzalez-Fesler, M., Salvatori, D., Gomez, P. & Alzamora, S. M. (2008). Convective air drying of apples as affected by blanching and calcium impregnation. Journal of Food Engineering, 87(3): 323-332.
  • Gölükcü, M. (2015). The effects of drying methods. packaging atmosphere and storage time on dried pomegranate aril quality. Tarım Bilimleri Dergisi, 21(2): 207-219.
  • Hawlader, M. N. A., Perera, C. O. & Tian, M.. (2006). Properties of modified atmosphere heat pump dried foods. Journal of Food Engineering, 74(3): 392-401.
  • Izli, G., Izli, N., Taskin, O. & Yıldız, G. (2018). Convectıve dryıng of kumquat slıces: comparıson of dıfferent dryıng temperatures on dryıng kınetıcs, colour, total phenolıc content and antıoxıdant capacıty. Latin American Applied Research, 48(1), 37-42.
  • Jiang, N., Liu, C., Li, D., Zhang, Z., Liu, C., Wang, D., ... & Zhang, M.. (2017). Evaluation of freeze drying combined with microwave vacuum drying for functional okra snacks: Antioxidant properties, sensory quality, and energy consumption. LWT-Food Science and Technology, 82, 216-226.
  • Joshi, A. P. K., Rupasinghe, H. P. V. & Khanizadeh, S. (2011). Impact of drying processes on bioactive phenolics, vitamin C and antioxidant capacity of red‐fleshed apple slices. Journal of Food Processing and Preservation, 35(4), 453-457.
  • Koyasako, A. & Bernhard, R. A. (1983). Volatile constituents of the essential oil of kumquat. Journal of Food Science, 48(6): 1807-1812.
  • Krokida, M. & Maroulis, Z. (2000). Quality changes during drying of food materials. Drying technology in agriculture and food sciences, 4(2): 61-68.
  • Lou, S. N., Lai, Y. C., Huang, J. D., Ho, C. T., Ferng, L. H. A. & Chang., Y. C. (2015). Drying effect o n flavonoid composition and antioxidant activity of immature kumquat. Food Chemistry, 171: 356-363.
  • Marques, L.G., Silveira, A.M. & Freire, J.T. (2006). Freze- Drying Characteristics of Tropical Fruits. Drying Technology,24: 457–463.
  • Methakhup, S., Chiewchan, N. & Devahastin, S. (2005). Effects of drying methods and conditions on drying kinetics and quality of Indian gooseberry flake. LWT, 38: 579-587.
  • Michalska, A., Wojdyło, A., Honke, J., Ciska, E. & Andlauer, W. (2018). Drying-induced physico-chemical changes in cranberry products. Food Chemistry, 240: 448-455.
  • Michalska, A., Wojdyło, A., Lech, K., Łysiak, G. P. & Figiel, A. (2016). Physicochemical properties of whole fruit plum powders obtained using different drying technologies. Food Chemistry, 207: 223-232.
  • Ozcan-Sinir, G., Ozkan-Karabacak, A., Tamer, C. E., & Copur, O. U. (2018). The effect of hot air, vacuum and microwave drying on drying characteristics, rehydration capacity, color, total phenolic content and antioxidant capacity of Kumquat (Citrus japonica). Food Science and Technology, (AHEAD).
  • Pala, M. & Saygı, Y. B. (1983). Su Aktivitesi ve Gıda İşletmedeki Önemi. Gıda Dergisi, 8(1): 33-39.
  • Pathare, P. B., Opara, U. L. & Al-Said, F. A. J. (2013). Colour measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology, 6(1): 36-60.
  • Rahman, M. S. (2007). Food preservation: overview. In: Rahman.M.S. (Ed.). (pp. 3-18) Handbook of Food Preservation Boca Raton, FL, USA, CRC Press.
  • Rodríguez, Ó., Gomes, W., Rodrigues, S. & Fernandes, F. A. (2017). Effect of acoustically assisted treatments on vitamins, antioxidant activity, organic acids and drying kinetics of pineapple. Ultrasonics sonochemistry, 35: 92-102.
  • Saçılık, K. (2007). Effect of drying methods on thin-layer drying characteristics of hull-less seed pumpkin (Cucurbita pepo L.). Journal of Food Engineering, 79: 23-30.
  • Sagar, V. R. & Kumar, P. S. (2010). Recent advances in drying and dehydration of fruits and vegetables: a review. Journal of Food Science and Technology, 47(1): 15-26.
  • Santos, P. H. S. & Silva, M. A. (2008). Retention of vitamin C in drying processes of fruits and vegetables—A review. Drying Technology, 26(12): 1421-1437.
  • Schirra, M., Palma, A., Aquino, S.D., Angioni, A., Minello, E.V., Melis, M. & Cabras., P. (2008). Influence of postharvest hot water treatment on nutritional and functional properties of kumquat (Fortunella japonica Lour. Swingle Cv. Ovale) Fruit. Journal of Agricultural and Food Chemistry, 56: 455–460.
  • Sdiri, S., A. Bermejo, P. Aleza, , P. Navarro & A. Salvador. (2012). Phenolic composition, organic acids, sugars, vitamin C and antioxidant activity in the juice of two new triploid late-season mandarins. Food Research International, 49(1): 462-468.
  • Toker, O. S., Doğan, M., Ersöz, N. B. & Yilmaz, M. T. (2013). Optimization of the content of 5-hydroxymethylfurfural (HMF) formed in some molasses types: HPLC-DAD analysis to determine effect of different storage time and temperature levels. Industrial Crops and Products, 50: 137-144.
  • Tontul, I. & Topuz, A. (2017). Effects of different drying methods on the physicochemical properties of pomegranate leather (pestil). LWT-Food Science and Technology, 80: 294-303.
  • Topuz, A., Feng, H. & Kushad, M. (2009). The effect of drying method and storage on color characteristics of paprika. LWT-Food Science and Technology, 42(10): 1667-1673.
  • Touati, N., Tarazona-Díaz, M. P., Aguayo, E. & Louaileche, H. (2014). Effect of storage time and temperature on the physicochemical and sensory characteristics of commercial apricot jam. Food chemistry, 145, 23-27.
  • Uddin, M. S., Hawlader, M. N. A., Ding, L. & Mujumdar, A. S. (2002). Degradation of ascorbic acid in dried guava during storage. Journal of Food Engineering, 51(1): 21-26.
  • Udomkun, P., Nagle, M., Argyropoulos, D., Mahayothee, B., Latif, S., & Müller, J. (2016). Compositional and functional dynamics of dried papaya as affected by storage time and packaging material. Food chemistry, 196, 712-719.
  • Us, F. (2006). Meyve ve sebzelerin kurutularak muhafazası. In: Acar.J, V.Gökmen ve F. Us. (Eds.). Meyve veSebze İşleme Teknolojisi Cilt 2. (s.241-297). Ankara, Türkiye: Hacettepe Üniversitesi Yayınları.
  • Us, F. (2007). Su ve Buz. In: Saldamlı.İ. (Ed.). Gıda Kimyası. (s.9-42). Ankara, Türkiye: Hacettepe Üniversitesi Yayınları. Ankara
  • Veberic, R., Jurhar, J., Mikulic-Petkovsek, M., Stampar, F. & Schmitzer, V. (2010). Comparative study of primary and secondary metabolites in 11 cultivars of persimmon fruit (Diospyros kaki L.). Food Chemistry, 119(2): 477-483.
  • Vega-Gálvez, A., Di Scala, K., Rodríguez, K., Lemus-Mondaca, R., Miranda, M., López, J. & Perez-Won, M. (2009). Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chemistry, 117(4): 647-653.
  • Wang, J., Yang, X. H., Mujumdar, A. S., Wang, D. J., Zhao, H., Fang, X. M. & Xiao, H. W. (2017). Effects of various blanching methods on weight loss, enzymes inactivation, phytochemical contents, antioxidant capacity, ultrastructure and drying kinetics of red bell pepper (Capsicum annuum L.). LWT-Food Science and Technology, 77: 337-347.
  • Wang, J., Yang, X. H., Mujumdar, A. S., Fang, X. M., Zhang, Q., Zheng, Z. A., ... & Xiao, H. W. (2018). Effects of high-humidity hot air impingement blanching (HHAIB) pretreatment on the change of antioxidant capacity, the degradation kinetics of red pigment, ascorbic acid in dehydrated red peppers during storage. Food chemistry, 259, 65-72.
  • Wang, Y.W., Zeng, W.C., Xu, P.Y., Lan, Y.J., Zhu, R.X., Zhong, K. Y., Huang, N. & Gao, H. (2012). Chemical composition and antimicrobial activity of the essential oil of Kumquat (Fortunella crassifolia Swingle) Peel. International Journal of Molecular Sciences, 13: 3382–3393.
  • Yen, Y. H., Shih, C. H. & Chang, C. H. (2008). Effect of adding ascorbic acid and glucose on the antioxidative properties during storage of dried carrot. Food Chemistry, 107(1), 265-272.

Effect of Storage Time on Some Quality Characteristics of Dried Kumquat Slices by Different Drying Methods

Year 2020, , 44 - 56, 31.03.2020
https://doi.org/10.29133/yyutbd.643636

Abstract

In this study, dried kumquat slices by different drying methods were stored at room conditions for 4 months and the product quality and stability were investigated during storage. For this purpose, the kumquat slices were dried by four drying methods including hot air, vacuum, ultrasound assisted osmotic pre-drying with hot air, and microwave assisted hot air drying with pretreatment by water blanching and without pretreatment. The moisture content and water activity values of dried kumquat slices increased during storage, and the lowest increase was determined in samples dried by hot air drying method without pretreatment. In general, L*, b*, chroma, hue angle values decreased, while a* and TRD values increased in all dried samples at the end of the storage. HMF values were ranged from 0.39 to 46.79 mg/kg during storage. It was observed that the ascorbic acid content of dried samples lost 28.36-75.61% during storage period. As a result of the study, it has been determined that drying of kumquat slices by without pretreatment is more suitable in terms of the examined quality properties during storage for 4 months. 

References

  • Akdaş, S. & Başlar, M. (2015). Dehydration and degradation kinetics of bioactive compounds for mandarin slices under vacuum and oven drying conditions. Journal of Food Processing and Preservation, 39(6): 1098-1107.
  • AOAC, (2000). 17th Edi 2000 Official Method 986.21. Moisture in Spices / IS specification No. IS 1797-1985; Methods of Test for Spices and Condiments.
  • Cemeroğlu, B., Karadeniz, F. & Özkan, M. (2003). Meyve ve Sebze İşleme Teknolojisi. Gıda Teknolojisi Derneği Yayınları No:28, Ankara. 690 s.
  • Chavan, U. D. & Amarowicz, R. (2012). Osmotic dehydration process for preservation of fruits and vegetables. Journal of Food Research, 1(2): 202.
  • Chen, H. H., Hernandez, C. E. & Huang, T. C. (2005). A study of the drying effect on lemon slices using a closed-type solar dryer. Solar Energy, 78(1): 97-103.
  • Chiu, N. C. & Chang, K. S. (1998). The illustrated medicinal plants of Taiwan. Taiwan: SMC publishing Ltd, Vol 5, Taipei, Taiwan, 194 p.
  • Darvishi, H., Khoshtaghaza, M.H. & Minaei, S. (2014). Drying kinetics and colour change of lemon slices. Internatıonal Agrophysics, 28:1-6.
  • Del Caro, A., Piga, A. Pinna, I. P., Fenu, M. & Agabbio, M. (2004). Effect of drying conditions and storage period on polyphenolic content. antioxidant capacity. and ascorbic acid of prunes. Journal of Agricultural and Food Chemistry, 52(15): 4780-4784.
  • Di Scala, K. C. & Crapiste, G. H. (2008). Drying kinetics and quality changes during drying of red pepper. LWT Food Science and Technology, 41(5): 789–795.Doymaz, İ. (2007). Air-drying characteristics of tomatoes. Journal of Food Engineering, 78: 1291–1297.
  • Ghanem Romdhane, N., Bonazzi, C., Kechaou, N. & Mihoubi, N. B. (2015). Effect of air-drying temperature on kinetics of quality attributes of lemon (Citrus limon cv. lunari) peels. Drying Technology, 33(13): 1581-1589.
  • Ghanem, N., Mihoubi, D., Kechao, N. & Mihoubi, N. B. (2012). Microwave dehydration of three citrus peel cultivars: Effect on water and oil retention capacities, color, shrinkage and total phenols content. Industrial Crops and Products, 40: 167-177.
  • Gonçalves, E. M., Pinheiro, J., Abreu, M., Brandão, T. R. S. & Silva, C. L. (2010). Carrot (Daucus carota L.) peroxidase inactivation, phenolic content and physical changes kinetics due to blanching. Journal of Food Engineering, 97(4): 574-581.
  • Gonzalez-Fesler, M., Salvatori, D., Gomez, P. & Alzamora, S. M. (2008). Convective air drying of apples as affected by blanching and calcium impregnation. Journal of Food Engineering, 87(3): 323-332.
  • Gölükcü, M. (2015). The effects of drying methods. packaging atmosphere and storage time on dried pomegranate aril quality. Tarım Bilimleri Dergisi, 21(2): 207-219.
  • Hawlader, M. N. A., Perera, C. O. & Tian, M.. (2006). Properties of modified atmosphere heat pump dried foods. Journal of Food Engineering, 74(3): 392-401.
  • Izli, G., Izli, N., Taskin, O. & Yıldız, G. (2018). Convectıve dryıng of kumquat slıces: comparıson of dıfferent dryıng temperatures on dryıng kınetıcs, colour, total phenolıc content and antıoxıdant capacıty. Latin American Applied Research, 48(1), 37-42.
  • Jiang, N., Liu, C., Li, D., Zhang, Z., Liu, C., Wang, D., ... & Zhang, M.. (2017). Evaluation of freeze drying combined with microwave vacuum drying for functional okra snacks: Antioxidant properties, sensory quality, and energy consumption. LWT-Food Science and Technology, 82, 216-226.
  • Joshi, A. P. K., Rupasinghe, H. P. V. & Khanizadeh, S. (2011). Impact of drying processes on bioactive phenolics, vitamin C and antioxidant capacity of red‐fleshed apple slices. Journal of Food Processing and Preservation, 35(4), 453-457.
  • Koyasako, A. & Bernhard, R. A. (1983). Volatile constituents of the essential oil of kumquat. Journal of Food Science, 48(6): 1807-1812.
  • Krokida, M. & Maroulis, Z. (2000). Quality changes during drying of food materials. Drying technology in agriculture and food sciences, 4(2): 61-68.
  • Lou, S. N., Lai, Y. C., Huang, J. D., Ho, C. T., Ferng, L. H. A. & Chang., Y. C. (2015). Drying effect o n flavonoid composition and antioxidant activity of immature kumquat. Food Chemistry, 171: 356-363.
  • Marques, L.G., Silveira, A.M. & Freire, J.T. (2006). Freze- Drying Characteristics of Tropical Fruits. Drying Technology,24: 457–463.
  • Methakhup, S., Chiewchan, N. & Devahastin, S. (2005). Effects of drying methods and conditions on drying kinetics and quality of Indian gooseberry flake. LWT, 38: 579-587.
  • Michalska, A., Wojdyło, A., Honke, J., Ciska, E. & Andlauer, W. (2018). Drying-induced physico-chemical changes in cranberry products. Food Chemistry, 240: 448-455.
  • Michalska, A., Wojdyło, A., Lech, K., Łysiak, G. P. & Figiel, A. (2016). Physicochemical properties of whole fruit plum powders obtained using different drying technologies. Food Chemistry, 207: 223-232.
  • Ozcan-Sinir, G., Ozkan-Karabacak, A., Tamer, C. E., & Copur, O. U. (2018). The effect of hot air, vacuum and microwave drying on drying characteristics, rehydration capacity, color, total phenolic content and antioxidant capacity of Kumquat (Citrus japonica). Food Science and Technology, (AHEAD).
  • Pala, M. & Saygı, Y. B. (1983). Su Aktivitesi ve Gıda İşletmedeki Önemi. Gıda Dergisi, 8(1): 33-39.
  • Pathare, P. B., Opara, U. L. & Al-Said, F. A. J. (2013). Colour measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology, 6(1): 36-60.
  • Rahman, M. S. (2007). Food preservation: overview. In: Rahman.M.S. (Ed.). (pp. 3-18) Handbook of Food Preservation Boca Raton, FL, USA, CRC Press.
  • Rodríguez, Ó., Gomes, W., Rodrigues, S. & Fernandes, F. A. (2017). Effect of acoustically assisted treatments on vitamins, antioxidant activity, organic acids and drying kinetics of pineapple. Ultrasonics sonochemistry, 35: 92-102.
  • Saçılık, K. (2007). Effect of drying methods on thin-layer drying characteristics of hull-less seed pumpkin (Cucurbita pepo L.). Journal of Food Engineering, 79: 23-30.
  • Sagar, V. R. & Kumar, P. S. (2010). Recent advances in drying and dehydration of fruits and vegetables: a review. Journal of Food Science and Technology, 47(1): 15-26.
  • Santos, P. H. S. & Silva, M. A. (2008). Retention of vitamin C in drying processes of fruits and vegetables—A review. Drying Technology, 26(12): 1421-1437.
  • Schirra, M., Palma, A., Aquino, S.D., Angioni, A., Minello, E.V., Melis, M. & Cabras., P. (2008). Influence of postharvest hot water treatment on nutritional and functional properties of kumquat (Fortunella japonica Lour. Swingle Cv. Ovale) Fruit. Journal of Agricultural and Food Chemistry, 56: 455–460.
  • Sdiri, S., A. Bermejo, P. Aleza, , P. Navarro & A. Salvador. (2012). Phenolic composition, organic acids, sugars, vitamin C and antioxidant activity in the juice of two new triploid late-season mandarins. Food Research International, 49(1): 462-468.
  • Toker, O. S., Doğan, M., Ersöz, N. B. & Yilmaz, M. T. (2013). Optimization of the content of 5-hydroxymethylfurfural (HMF) formed in some molasses types: HPLC-DAD analysis to determine effect of different storage time and temperature levels. Industrial Crops and Products, 50: 137-144.
  • Tontul, I. & Topuz, A. (2017). Effects of different drying methods on the physicochemical properties of pomegranate leather (pestil). LWT-Food Science and Technology, 80: 294-303.
  • Topuz, A., Feng, H. & Kushad, M. (2009). The effect of drying method and storage on color characteristics of paprika. LWT-Food Science and Technology, 42(10): 1667-1673.
  • Touati, N., Tarazona-Díaz, M. P., Aguayo, E. & Louaileche, H. (2014). Effect of storage time and temperature on the physicochemical and sensory characteristics of commercial apricot jam. Food chemistry, 145, 23-27.
  • Uddin, M. S., Hawlader, M. N. A., Ding, L. & Mujumdar, A. S. (2002). Degradation of ascorbic acid in dried guava during storage. Journal of Food Engineering, 51(1): 21-26.
  • Udomkun, P., Nagle, M., Argyropoulos, D., Mahayothee, B., Latif, S., & Müller, J. (2016). Compositional and functional dynamics of dried papaya as affected by storage time and packaging material. Food chemistry, 196, 712-719.
  • Us, F. (2006). Meyve ve sebzelerin kurutularak muhafazası. In: Acar.J, V.Gökmen ve F. Us. (Eds.). Meyve veSebze İşleme Teknolojisi Cilt 2. (s.241-297). Ankara, Türkiye: Hacettepe Üniversitesi Yayınları.
  • Us, F. (2007). Su ve Buz. In: Saldamlı.İ. (Ed.). Gıda Kimyası. (s.9-42). Ankara, Türkiye: Hacettepe Üniversitesi Yayınları. Ankara
  • Veberic, R., Jurhar, J., Mikulic-Petkovsek, M., Stampar, F. & Schmitzer, V. (2010). Comparative study of primary and secondary metabolites in 11 cultivars of persimmon fruit (Diospyros kaki L.). Food Chemistry, 119(2): 477-483.
  • Vega-Gálvez, A., Di Scala, K., Rodríguez, K., Lemus-Mondaca, R., Miranda, M., López, J. & Perez-Won, M. (2009). Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chemistry, 117(4): 647-653.
  • Wang, J., Yang, X. H., Mujumdar, A. S., Wang, D. J., Zhao, H., Fang, X. M. & Xiao, H. W. (2017). Effects of various blanching methods on weight loss, enzymes inactivation, phytochemical contents, antioxidant capacity, ultrastructure and drying kinetics of red bell pepper (Capsicum annuum L.). LWT-Food Science and Technology, 77: 337-347.
  • Wang, J., Yang, X. H., Mujumdar, A. S., Fang, X. M., Zhang, Q., Zheng, Z. A., ... & Xiao, H. W. (2018). Effects of high-humidity hot air impingement blanching (HHAIB) pretreatment on the change of antioxidant capacity, the degradation kinetics of red pigment, ascorbic acid in dehydrated red peppers during storage. Food chemistry, 259, 65-72.
  • Wang, Y.W., Zeng, W.C., Xu, P.Y., Lan, Y.J., Zhu, R.X., Zhong, K. Y., Huang, N. & Gao, H. (2012). Chemical composition and antimicrobial activity of the essential oil of Kumquat (Fortunella crassifolia Swingle) Peel. International Journal of Molecular Sciences, 13: 3382–3393.
  • Yen, Y. H., Shih, C. H. & Chang, C. H. (2008). Effect of adding ascorbic acid and glucose on the antioxidative properties during storage of dried carrot. Food Chemistry, 107(1), 265-272.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Demet Yıldız Turgut 0000-0002-7486-3701

Ayhan Topuz 0000-0002-6610-9143

Publication Date March 31, 2020
Acceptance Date January 18, 2020
Published in Issue Year 2020

Cite

APA Yıldız Turgut, D., & Topuz, A. (2020). Depolama Süresinin Farklı Kurutma Yöntemleri ile Kurutulmuş Kamkat Dilimlerinin Bazı Kalite Özelliklerine Etkisi. Yuzuncu Yıl University Journal of Agricultural Sciences, 30(1), 44-56. https://doi.org/10.29133/yyutbd.643636
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.