Research Article
BibTex RIS Cite

Determination of Some Phenolic Substance Changes in Cultivar/Genotypes of Different Vitis Species

Year 2019, , 153 - 161, 27.06.2019
https://doi.org/10.20289/zfdergi.467136

Abstract

Objective: In this study, the phenolic changes in the leaves of grape cultivars/genotypes belonging to different species and powdery also downy mildew diseases were examined for two years and the relationship between resistance to diseases and these components were evaluated.

Material and Methods: 2 V. labrusca genotypes, 11 V. vinifera species/genotypes and 2 interspecies hybrids were studied. Mildew and powdery mildew disease was applied by artificial inoculation to species/genotypes and then total phenol content (spectrophotometric), antioxidant activity (spectrophotometric), routine (HPLC) and chlorogenic acid (HPLC) changes in leaf samples before and after the diseases were examined.

Results: Although there was a significant increase in total phenol content and antioxidant activity after the diseases, there were differences in the amount of routine and chlorogenic acid. In addition, the study concluded that the FX1-1 was the most remarkable genotype because it was resistant to both diseases and contained a high amount of different phenolic compounds.

Conclusion: As in many similar studies, it was observed that there were serious increases especially after the diseases in total phenol content and antioxidant activities. Most of the cultivars/genotypes used in the study were found to be resistant and tolerant according to the disease inoculation results. In the future studies, it will be useful to  conduct comprehensive studies on the effects of total phenol content and antioxidant activity on the increase of the cause and the effects on the resistance to diseases.

References

  • Amrine KC, Blanco-Ulate B, Riaz S, Pap D, Jones L, Figueroa-Balderas R, Walker MA, Cantu D. 2015. Comparative transcriptomics of Central Asian Vitis vinifera accessions reveals distinct defence strategies against powdery mildew. Hortic Res, 2: 15037. Doi: 10.1038/hortres.2015.37.
  • Armijo G, Schlechter R, Agurto M, Muñoz D, Nuñez C. Arce-Johnson P. 2016. Grapevine Pathogenic Microorganisms: Understanding Infection Strategies and Host Response Scenarios. Front Plant Sci, 7: 382. Doi: 10.3389/fpls.2016.00382.
  • Balik J, Kyseláková M. Vrchotová N, Tříska J, Kumšta M, Veverka J, Híc P. Totušek J. Lefnerová D. 2008. Relations between polyphenols content and antioxidant activity in vine grapes and leaves. Czech J Food Sci, 26: 25-32.
  • Baydar NG, Babalık Z, Türk FH, Çetin ES. 2011. Phenolic composition and antioxidant activities of wines and extracts of some grape varieties grown in Turkey. J of Agri Sci, 17: 67-76.
  • Boso S, Martínez MC, Unger S. Kassemeyer HH. 2006. Evaluation of foliar resistance to downy mildew in different cv. Albariño clones. Vitis, 4: 23-27.
  • Boso S, Alonso-Villaverde V, Gago P, Santiago JL. Martinez MC. 2014. Susceptibility to downy mildew (Plasmopara viticola) of different Vitis cultivars. Crop Protec, 63: 26-35. Breksa AP, Takeoka GR, Hidalgo MB, Vilches A. Vasse J. 2010. Antioxidant activity and phenolic content of 16 raisin grape (Vitis vinifera L.) cultivars and selections. Food Chem, 121: 740-745.
  • Brewer MR, Milgroom MG. 2010. Phylogeography and population structure of the grape powdery mildew fungus, Erysiphe necator, from diverse Vitis species. BMC Evolutionary Biology, Doi: 10:268http://www.biomedcentral.com/1471-2148/10/268.
  • Çetinkaya N, Onoğur E. 2006. Organik yetiştiricilik yapılan yuvarlak çekirdeksiz üzüm bağlarında farklı gübreleme uygulamalarının külleme hastalığı gelişimi ve verime etkileri. Ege Üniv Ziraat Fak Derg, 43(1): 33-44.
  • Calonnec A, Deliere L, Cartolaro P, Delmotte F, Forget D, Wiedemann-Merdioglu S, Merdinoglu D, Schneider C. 2008. Evaluation of grapevine resistance to downy and powdery mildew in a population segregating for run1 and rpv1 resistance genes. Integrated Protection in Viticulture IOBC/wprs Bulletin, Vol. 36, 2008 p. 45-52.
  • Cadle-Davidson L, Chicoine DR, Consolie NH. 2011. Variation within and among Vitis spp. for foliar resistance to the powdery mildew pathogen Erysiphe necator. Plant Dis, 95: 202-211.
  • Di Gaspero G, Gipriani C. 2002. Resistance gene analogs are candidate markers for disease-resistance genes in grape ( Vitis spp.). Theor Appl Genet, 101: 301-308.
  • Di Gaspero G, Copetti D, Coleman C, Castellarin SD, Eibach R, Kozma P, Lacombe T, Gambetta G, Zvyagin A, Cindrić P, Kovács L, Morgante M, Testolin R. 2012. Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance. Theor Appl Genet, 124(2): 277–286. Doi: 10.1007/s00122-011-1703-8.
  • Eibach R, Zyprian EM, Welter LJ, Töpfer R. 2007. The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis, 46: 120–124.
  • Eibach R, Töpfer R. 2014. Progress in grapevine breeding. Acta Hort, 1046: 197-210.
  • Figueiredo, A., J. Martins, M. Sebastiana, A. Guerreiro, A. Silva, A.R. Matos, F. Monteiro, M.S. Pais, P. Roepstorff, A.V. Coelho. 2017. Specific adjustments in grapevine leaf proteome discriminating resistant and susceptible grapevine genotypes to Plasmopara viticola. J Proteomics, 152: 48-57.
  • Kono, A., Y. Ban, A. Sato and N. Mitani. 2015. Evaluation of 17 Table Grape Accessions for Foliar Resistance to Downy Mildew. Acta Hort, 1082: 207-211.
  • Kara, Z., A. Sabır, O. Doğan ve Ö. Eker. 2016. ‘Gök Üzüm’ (Vitis Vinifera L.) Çeşidinin Ticari Potansiyeli ve Ampelografik Özellikleri. Nevşehir Bilim ve Teknoloji Dergisi TARGİD Özel Sayı, 395-410.
  • Katalinic, V., I. Generalic, D. Skroza, I. Ljubenkov, A. Teskera, I. Konta and M. Boban. 2009. Insight in the phenolic composition and antioxidative properties of Vitis vinifera leaves extracts. Croat J Food Sci Technol, 1: 7-15.
  • Katalinic, V., S.S. Mozina, I. Generalic, D. Skroza, I. Ljubenkov and A. Klancnik. 2013. Phenolic profile, antioxidant capacity, and antimicrobial activity of leaf extracts from six Vitis vinifera L. varieties. Int J Food Prop, 16: 45-60.
  • Kozma, P., E. Kiss, S. Hoffmann, Z.S. Galbács and T. Dula. 2009. Using the powdery mildew resistant Muscadinia rotundifolia and Vitis vinifera 'Kishmish Vatkana' for breeding new cultivars. Acta Hortic, 827: 559-564.
  • Lisek J., 2014. Evaluation of yield and healthiness of twenty table grapevıne cultivars grown in Central Poland. Journal of Horti Res, 22: 101-107.
  • Liu, R., L. Wang, J. Zhu, T. Chen, Y. Wang and Y. Xu. 2015. Histological responses to downy mildew in resistant and susceptible grapevines. Protoplasma, 252: 259–270. Doi:10.1007/s00709-014-0677-1.
  • Merdinoglu D, Blasi P, Wiedemann-Merdinoglu S, Mestre P, Peressotti E, Poutaraud A, Prado E, Schneider C. 2014. Breeding for durable resistance to downy and powdery mildew in grapevine. Acta Hortic, 1046: 65-72.
  • IPGRI-UPOV-OIV. 1997. Descriptors for Grapevines (Vitis spp.). Geneva, Switzerland: International Union for the Protection of New Varieties of Plants/Office International de la Vigne et du Vin /International Plant Genetic Resources Institute.
  • Pieterse C.M, Leon-Reyes A, Van der Ent S, Van Wees SC. 2009. Networking by small-molecule hormones in plant immunity. Nat Chem Biol, 5: 308–316. Doi:10.1038/nchembio.164.
  • Polesani M, Bortesi L, Ferrarini A, Zamboni A, Fasoli M, Zadra C, Lovato A, Pezzotti M, Delledonne M, Polverari A. 2010. General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species. BMC Genomics, 11: 117.
  • Reisch BI, Pratt C. 1996. Fruit breeding, Vol II. Vine and small fruit crops, Wiley, New York.
  • Reisch BI, Pool RM, Peterson DV, Martens MH. 1993. Table grape varieties for cool climates. İnformation Bulletin 234, 9 p. Cornell Cooperative Extension, Cornell University. Http://www.nysaes.cornell.edu/hort/faculty/reisch/bulletin/table/ tableindex2. html.
  • Reynolds A. 2015. Grapevine Breeding Programs for the Wine Industry. Woodhead Publishing Series in Food Science, Technology and Nutrition: Number 268. 466 page. https://doi.org/10.1016/C2013-0-16445-8.
  • Samoticha J, Wojdylo A, Golis T. 2017. Phenolic composition, physicochemical properties and antioxidant activity of interspecific hybrids of grapes growing in Poland. Food Chemistry, 215: 263-273. https://doi.org/10.1016/j.foodchem.2016.07.147.
  • SAS Institute. 2007. JMP Statistical Discovery Software. JMP 7.0 Edition of Program. Cary, NC, USA: SAS Institute.
  • Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Enol Viticult, 16: 144-158.
  • Sotolář R. 2007. Comparison of grape seedlings population against downy mildew by using different provocation methods. Not Bot Hort Agrobot Cluj, 35: 61-68.
  • Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH. 2006. Comparison of ABTS, DPPH, FRAP and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal, 19: 669-675.
  • Töpfer R, Hausmann L, Eibach R. 2011. Molecular breeding. In: Zapater JM, Blondon AM, Kole C (eds) Genetics, genomics, and breeding of grapes. Science Publishers, New Hampshire, USA, pp 160–185.
  • Vezzulli S, Vecchione A, Stefanini M. Zulini L. 2018. Downy mildew resistance evaluation in 28 grapevine hybrids promising for breeding programs in Trentino region (Italy). Eur J Plant Pathol, 150:485–495.
  • Wang Y, Li Y, He P, Chen J, Lamikanra O, Lu J. 1995. Evaluation of foliar resistance to Uncinula necator in Chinese wild Vitis species. Vitis, 34: 159-164.
  • Zamboni A, Gatto P, Cestaro A, Pilati S, Viola R, Mattivi F, Moser C, Velasco R. 2009. Grapevine cell early activation of specific responses to DIMEB, a resveratrol elicitor. BMC Genomics, 10: 363.

Farklı Vitis Türlerine Mensup Üzüm Çeşit/Genotiplerinde Bazı Fenolik Madde Değişimlerinin Belirlenmesi

Year 2019, , 153 - 161, 27.06.2019
https://doi.org/10.20289/zfdergi.467136

Abstract

Amaç: Bu çalışmada farklı türlere mensup üzüm çeşit/genotiplerinin külleme ve mildiyö hastalıkları sonrasında yapraklarındaki bazı fenolik madde değişimleri iki yıl süre ile incelenerek hastalıklara dayanıklılık ile bu bileşenler arasındaki ilişki incelenmiştir.

Materyal ve Metot: Çalışmada 2 V. labrusca genotipi, 11 V. vinifera çeşit/genotipi ve 2 türler arası melez çeşit ile çalışılmıştır. Çeşit/genotiplere mildiyö ve külleme hastalığı suni inokülasyon ile uygulanmış ve akabinde, hastalık öncesi ve sonrasında alınan yaprak örneklerindeki toplam fenolik madde miktarı (spektrofotometrik), antioksidan aktivitesi (spektrofotometrik), rutin (HPLC) ve klorogenik asit (HPLC) değişimleri incelenmiştir.

Bulgular: Üzüm çeşit ve genotiplerinde mildiyö ve külleme hastalıkları sonrasında toplam fenol miktarı ile antioksidan aktivitesinde ciddi artışlar görülmesine karşılık; rutin ve klorogenik asit miktarlarında ise çeşit veya genotipe ayrıca hastalığa bağlı olarak farklılıklar görülmüştür. Çalışma sonucunda FX1-1 genotipi hastalıklara dayanıklılığı ve farklı fenolik bileşenleri yüksek miktarda içermesi sebebiyle dikkat çekici bulunmuştur.

Sonuç: Benzer pek çok çalışmada olduğu gibi özellikle toplam fenol miktarı ve antioksidan aktivitesinde hastalıklar sonrasında ciddi artışlar olduğu görülürken diğer bileşenlerdeki artışların değişkenlik gösterdiği sonucuna ulaşılmıştır. Çalışmada kullanılan çeşit/genotiplerin büyük bir kısmının hastalık inokülasyon sonuçlarına göre dayanıklı ve tolerant oldukları belirlenirken sınırlı sayıda çeşit/genotipin ise özellikle külleme yönünden hassas oldukları tespit edilmiştir. Bundan sonraki çalışmalarda toplam fenol miktarı ve antioksidan aktivitesindeki artışlar üzerine yoğunlaşarak neden arttıkları ve hastalıklara dayanıklılıkta ne gibi etkileri olduğu konusunda kapsamlı çalışmalar yapılması yararlı olacaktır.

References

  • Amrine KC, Blanco-Ulate B, Riaz S, Pap D, Jones L, Figueroa-Balderas R, Walker MA, Cantu D. 2015. Comparative transcriptomics of Central Asian Vitis vinifera accessions reveals distinct defence strategies against powdery mildew. Hortic Res, 2: 15037. Doi: 10.1038/hortres.2015.37.
  • Armijo G, Schlechter R, Agurto M, Muñoz D, Nuñez C. Arce-Johnson P. 2016. Grapevine Pathogenic Microorganisms: Understanding Infection Strategies and Host Response Scenarios. Front Plant Sci, 7: 382. Doi: 10.3389/fpls.2016.00382.
  • Balik J, Kyseláková M. Vrchotová N, Tříska J, Kumšta M, Veverka J, Híc P. Totušek J. Lefnerová D. 2008. Relations between polyphenols content and antioxidant activity in vine grapes and leaves. Czech J Food Sci, 26: 25-32.
  • Baydar NG, Babalık Z, Türk FH, Çetin ES. 2011. Phenolic composition and antioxidant activities of wines and extracts of some grape varieties grown in Turkey. J of Agri Sci, 17: 67-76.
  • Boso S, Martínez MC, Unger S. Kassemeyer HH. 2006. Evaluation of foliar resistance to downy mildew in different cv. Albariño clones. Vitis, 4: 23-27.
  • Boso S, Alonso-Villaverde V, Gago P, Santiago JL. Martinez MC. 2014. Susceptibility to downy mildew (Plasmopara viticola) of different Vitis cultivars. Crop Protec, 63: 26-35. Breksa AP, Takeoka GR, Hidalgo MB, Vilches A. Vasse J. 2010. Antioxidant activity and phenolic content of 16 raisin grape (Vitis vinifera L.) cultivars and selections. Food Chem, 121: 740-745.
  • Brewer MR, Milgroom MG. 2010. Phylogeography and population structure of the grape powdery mildew fungus, Erysiphe necator, from diverse Vitis species. BMC Evolutionary Biology, Doi: 10:268http://www.biomedcentral.com/1471-2148/10/268.
  • Çetinkaya N, Onoğur E. 2006. Organik yetiştiricilik yapılan yuvarlak çekirdeksiz üzüm bağlarında farklı gübreleme uygulamalarının külleme hastalığı gelişimi ve verime etkileri. Ege Üniv Ziraat Fak Derg, 43(1): 33-44.
  • Calonnec A, Deliere L, Cartolaro P, Delmotte F, Forget D, Wiedemann-Merdioglu S, Merdinoglu D, Schneider C. 2008. Evaluation of grapevine resistance to downy and powdery mildew in a population segregating for run1 and rpv1 resistance genes. Integrated Protection in Viticulture IOBC/wprs Bulletin, Vol. 36, 2008 p. 45-52.
  • Cadle-Davidson L, Chicoine DR, Consolie NH. 2011. Variation within and among Vitis spp. for foliar resistance to the powdery mildew pathogen Erysiphe necator. Plant Dis, 95: 202-211.
  • Di Gaspero G, Gipriani C. 2002. Resistance gene analogs are candidate markers for disease-resistance genes in grape ( Vitis spp.). Theor Appl Genet, 101: 301-308.
  • Di Gaspero G, Copetti D, Coleman C, Castellarin SD, Eibach R, Kozma P, Lacombe T, Gambetta G, Zvyagin A, Cindrić P, Kovács L, Morgante M, Testolin R. 2012. Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance. Theor Appl Genet, 124(2): 277–286. Doi: 10.1007/s00122-011-1703-8.
  • Eibach R, Zyprian EM, Welter LJ, Töpfer R. 2007. The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis, 46: 120–124.
  • Eibach R, Töpfer R. 2014. Progress in grapevine breeding. Acta Hort, 1046: 197-210.
  • Figueiredo, A., J. Martins, M. Sebastiana, A. Guerreiro, A. Silva, A.R. Matos, F. Monteiro, M.S. Pais, P. Roepstorff, A.V. Coelho. 2017. Specific adjustments in grapevine leaf proteome discriminating resistant and susceptible grapevine genotypes to Plasmopara viticola. J Proteomics, 152: 48-57.
  • Kono, A., Y. Ban, A. Sato and N. Mitani. 2015. Evaluation of 17 Table Grape Accessions for Foliar Resistance to Downy Mildew. Acta Hort, 1082: 207-211.
  • Kara, Z., A. Sabır, O. Doğan ve Ö. Eker. 2016. ‘Gök Üzüm’ (Vitis Vinifera L.) Çeşidinin Ticari Potansiyeli ve Ampelografik Özellikleri. Nevşehir Bilim ve Teknoloji Dergisi TARGİD Özel Sayı, 395-410.
  • Katalinic, V., I. Generalic, D. Skroza, I. Ljubenkov, A. Teskera, I. Konta and M. Boban. 2009. Insight in the phenolic composition and antioxidative properties of Vitis vinifera leaves extracts. Croat J Food Sci Technol, 1: 7-15.
  • Katalinic, V., S.S. Mozina, I. Generalic, D. Skroza, I. Ljubenkov and A. Klancnik. 2013. Phenolic profile, antioxidant capacity, and antimicrobial activity of leaf extracts from six Vitis vinifera L. varieties. Int J Food Prop, 16: 45-60.
  • Kozma, P., E. Kiss, S. Hoffmann, Z.S. Galbács and T. Dula. 2009. Using the powdery mildew resistant Muscadinia rotundifolia and Vitis vinifera 'Kishmish Vatkana' for breeding new cultivars. Acta Hortic, 827: 559-564.
  • Lisek J., 2014. Evaluation of yield and healthiness of twenty table grapevıne cultivars grown in Central Poland. Journal of Horti Res, 22: 101-107.
  • Liu, R., L. Wang, J. Zhu, T. Chen, Y. Wang and Y. Xu. 2015. Histological responses to downy mildew in resistant and susceptible grapevines. Protoplasma, 252: 259–270. Doi:10.1007/s00709-014-0677-1.
  • Merdinoglu D, Blasi P, Wiedemann-Merdinoglu S, Mestre P, Peressotti E, Poutaraud A, Prado E, Schneider C. 2014. Breeding for durable resistance to downy and powdery mildew in grapevine. Acta Hortic, 1046: 65-72.
  • IPGRI-UPOV-OIV. 1997. Descriptors for Grapevines (Vitis spp.). Geneva, Switzerland: International Union for the Protection of New Varieties of Plants/Office International de la Vigne et du Vin /International Plant Genetic Resources Institute.
  • Pieterse C.M, Leon-Reyes A, Van der Ent S, Van Wees SC. 2009. Networking by small-molecule hormones in plant immunity. Nat Chem Biol, 5: 308–316. Doi:10.1038/nchembio.164.
  • Polesani M, Bortesi L, Ferrarini A, Zamboni A, Fasoli M, Zadra C, Lovato A, Pezzotti M, Delledonne M, Polverari A. 2010. General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species. BMC Genomics, 11: 117.
  • Reisch BI, Pratt C. 1996. Fruit breeding, Vol II. Vine and small fruit crops, Wiley, New York.
  • Reisch BI, Pool RM, Peterson DV, Martens MH. 1993. Table grape varieties for cool climates. İnformation Bulletin 234, 9 p. Cornell Cooperative Extension, Cornell University. Http://www.nysaes.cornell.edu/hort/faculty/reisch/bulletin/table/ tableindex2. html.
  • Reynolds A. 2015. Grapevine Breeding Programs for the Wine Industry. Woodhead Publishing Series in Food Science, Technology and Nutrition: Number 268. 466 page. https://doi.org/10.1016/C2013-0-16445-8.
  • Samoticha J, Wojdylo A, Golis T. 2017. Phenolic composition, physicochemical properties and antioxidant activity of interspecific hybrids of grapes growing in Poland. Food Chemistry, 215: 263-273. https://doi.org/10.1016/j.foodchem.2016.07.147.
  • SAS Institute. 2007. JMP Statistical Discovery Software. JMP 7.0 Edition of Program. Cary, NC, USA: SAS Institute.
  • Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Enol Viticult, 16: 144-158.
  • Sotolář R. 2007. Comparison of grape seedlings population against downy mildew by using different provocation methods. Not Bot Hort Agrobot Cluj, 35: 61-68.
  • Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH. 2006. Comparison of ABTS, DPPH, FRAP and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal, 19: 669-675.
  • Töpfer R, Hausmann L, Eibach R. 2011. Molecular breeding. In: Zapater JM, Blondon AM, Kole C (eds) Genetics, genomics, and breeding of grapes. Science Publishers, New Hampshire, USA, pp 160–185.
  • Vezzulli S, Vecchione A, Stefanini M. Zulini L. 2018. Downy mildew resistance evaluation in 28 grapevine hybrids promising for breeding programs in Trentino region (Italy). Eur J Plant Pathol, 150:485–495.
  • Wang Y, Li Y, He P, Chen J, Lamikanra O, Lu J. 1995. Evaluation of foliar resistance to Uncinula necator in Chinese wild Vitis species. Vitis, 34: 159-164.
  • Zamboni A, Gatto P, Cestaro A, Pilati S, Viola R, Mattivi F, Moser C, Velasco R. 2009. Grapevine cell early activation of specific responses to DIMEB, a resveratrol elicitor. BMC Genomics, 10: 363.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Arif Atak 0000-0001-7251-2417

Zekiye Goksel 0000-0002-2903-6459

Publication Date June 27, 2019
Submission Date October 4, 2018
Acceptance Date November 21, 2018
Published in Issue Year 2019

Cite

APA Atak, A., & Goksel, Z. (2019). Farklı Vitis Türlerine Mensup Üzüm Çeşit/Genotiplerinde Bazı Fenolik Madde Değişimlerinin Belirlenmesi. Journal of Agriculture Faculty of Ege University, 56(2), 153-161. https://doi.org/10.20289/zfdergi.467136

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.