Araştırma Makalesi
BibTex RIS Kaynak Göster

MANDALİNA KABUĞUNDAN ELDE EDİLEN KRİTİK ALTI SU EKSTRAKTLARININ ANTİOKSİDAN AKTİVİTE DÜZEYİNE EKSTRAKSİYON PARAMETRELERİNİN ETKİSİ

Yıl 2017, Cilt: 42 Sayı: 4, 405 - 412, 22.04.2017

Öz

Meyve suyu üretimi sırasında fazla miktarda yan ürün olarak açığa çıkan
mandalina kabuğu gıda endüstrisinde içerdiği antioksidan bileşikler açısından
önemli bir kaynaktır. Bu çalışmanın amacı, mandalina kabuğundan kritik altı su
ekstraksiyonu tekniği ile elde edilen su ekstraktlarının antioksidan aktivite
ve fenolik bileşik içeriğine ekstraksiyon sıcaklığının ve statik ekstraksiyon
süresinin etkisini araştırmaktır. Kritik altı su ekstraktlarının antioksidan
aktivitesi 1,1-difenil-2-pikrilhidrazil (DPPH)-IC50 yöntemi, demir
iyonu indirgeyici antioksidan güç (FRAP) yöntemi ve oksidan olarak bakır (II)
kullanan toplam antioksidan (CUPRAC) yöntemi ile belirlenmiştir. 5 dakika
statik ekstraksiyon süresi için ekstraksiyon sıcaklığının 50°C’den 180°C’ye
yükselmesi ile mandalina kabuğundan elde edilen kritik altı su esktraktlarının IC50 değerleri 40.8 kat düşmüş olup FRAP ve CUPRAC değerleri ise
sırası ile 66.9 and 34.2 kat
artmıştır. Ayrıca, kritik altı su esktraktlarının toplam fenolik madde
(TPC) içeriği ekstraksiyon sıcaklığının 50°C’den 180°C’ye yükselmesi ile 5 ve
15 dakika statik ekstraksiyon sürelerinde sırası ile 4.9 ve 5.0 kat artmıştır. Buna karşın, ekstraksiyon sıcaklığının
50°C’den 180°C’ye yükselmesi ile 5 ve 15 dakika statik ekstraksiyon sürelerinde
kritik altı su esktraktlarının toplam
flavonoit içeriklerinde (TFC) sırası ile 9.6 ve 9.9 kat artış elde edilmiştir.

Kaynakça

  • Munshi P, Bhaduri S. 2009. Supercritical CO2: A twenty first century solvent for the chemical industry. Curr Sci, 97 (10): 63-72.
  • Teo CC, Tana SN, Hong Yonga JW, Hewb CS, Ong ES. 2010. Pressurized hot water extraction (PHWE). J Chromatogr A, 1217 (16): 2484-94.
  • Pereira CG, Meireles MAA. 2010. Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives. Food Bioprocess Technol, 3(3): 340-372.
  • Ghafoor K, Park J, Choi YH. 2010. Optimization of supercritical fluid extraction of bioactive compounds from grape (Vitis labrusca B.) peel by using response surface methodology. Innovative Food Sci Emerging Technol, 11 (3): 485-490.
  • Pérez-Serradilla JA, Luque de Castro MD. 2011. Microwave-assisted extraction of phenolic compounds from wine lees and spray-drying of the extract. Food Chem, 124 (4): 1652-1659.
  • Carrera C, Ruiz-Rodríguez A, Palma M, Barroso CG. 2012. Ultrasound assisted extraction of phenolic compounds from grapes. Anal Chim Acta, 732: 100-104.
  • Valdes A, Vidal L, Beltrán A, Canals A, Garrigós MC. 2015. Microwave-assisted extraction of phenolic compounds from almond skin byproducts (Prunus amygdalus): A multivariate analysis approach. J Agric Food Chem, 63 (22): 5395-5402.
  • Heffels P, Weber F, Schieber A. 2015. Influence of accelerated solvent extraction and ultrasound-assisted extraction on the anthocyanin profile of different vaccinium species in the context of statistical models for authentication. J Agric Food Chem, 63 (34): 7532-7538.
  • Setyaningsih W, Saputro IE, Barbero GF, Palma M, Barroso CG. 2015. Determination of melatonin in rice (Oryza sativa) grains by pressurized liquid extraction. J Agric Food Chem, 63 (4): 1107-1115.
  • He B, Zhang LL, Yue XY, Liang J, Jiang J, Gao XL, Yue PX. 2016. Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chem, 204: 70-76.
  • Cheigh CI, Chung EY, Chung, MS. 2012. Enhanced extraction of flavanones hesperidin and narirutin from Citrus unshiu peel using subcritical water. J Food Eng, 110: 472-477.
  • Özkaynak Kanmaz E, Ova G. 2013. The effective parameters for subcritical water extraction of SDG lignan from flaxseed (Linum usitatissimum L.) using accelerated solvent extractor. Eur Food Res Technol, 237(2): 159-166.
  • Özkaynak Kanmaz E. 2014. Subcritical water extraction of phenolic compounds from flaxseed meal sticks using accelerated solvent extractor (ASE). Eur Food Res Technol, 238: 85-91.
  • Ko MJ, Cheigh CI, Chung MS. 2014. Relationship analysis between flavonoids structure and subcritical water extraction (SWE). Food Chem, 143: 147-155.
  • Hayat K, Hussain S, Abbas S, Farooq U, Ding B, Xia S, Jia C, Zhang X, Xia W. 2009. Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Sep Purif Technol, 70: 63-70.
  • Hayat K, Zhang X, Chen H, Xia S, Jia C, Zhong F. 2010. Liberation and separation of phenolic compounds from citrus mandarin peels by microwave heating and its effect on antioxidant activity. Sep Purif Technol, 73: 371-376.
  • Çam M, Hışıl Y. 2010. Pressurized water extraction of polyphenols from pomegranate peels. Food Chem, 123: 878-885.
  • Benzie JFF, Strain, JJ. 1999. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Meth. Enzymology, 299: 15-27.
  • Molyneux. 2004. The use of the stable free radical diphenylpicrylhyrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol, 26: 211-219.
  • Apak R, Güçlü K, Özyürek M, Karademir SE. 2004. Novel Total Antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC Method. J Agric Food Chem, 52: 7970-7981.
  • Škerget M, Kotnik P, Hadolin M, Hraš AR, Simonič M, Knez Ž. 2005. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem, 89: 191-198.
  • Chang CH, Lin HY, Chang CY, Liu YC. 2006. Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. J Food Eng, 77: 478-485.
  • Rodríguez-Meizoso I, Marin FR, Herrero M, Sẽnorans FJ, Reglero G, Cifuentes A, Ibáňez E. 2006. Subcritical water extraction of nutraceuticals with antioxidant activity from oregano, Chemical and functional characterization. J Pharm Biomed Anal, 41: 1560-1565.
  • Wiboonsirikul J, Kimura Y, Kadota M, Morita M, Tsuno T, Adachi S. 2007. Properties of extracts from defatted rice bran by its subcritical water treatment. J Agric Food Chem, (55), 8759-8765.
  • Tezcan F, Gultekin-Ozguven M, Diken T, Ozcelik B, Erim B. 2009. Antioxidant activity and total phenolic, organic acid and sugar content in commercial pomegranate juices. Food Chem, 115: 873-877.
  • Ozgen M, Durgaç C, Serçe S, Kaya C. 2008. Chemical and antioxidant properties of pomegranate cultivars grown in the Mediterranean region of Turkey. Food Chem, 111: 703-706.
  • Delgado-Andrade C, Rufián-Henares JA, Morales FJ. 2005. Assessing the Antioxidant Activity of Melanoidins from Coffee Brews by Different Antioxidant Methods. J Agric Food Chem, 53 (20): 7832-7836.
  • Min KY, Lee KA, Kim HJ, Kim KT, Chung MS, Chang PS, Park H, Paik HD. 2014. Antioxidative and anti-inflammatory activities of citrus unshiu peel extracts using a combined process of subcritical water extraction and acid Hydrolysis. Food Sci Biotechno, 23(5): 1441-1446.

THE EFFECT OF EXTRACTION PARAMETERS ON ANTIOXIDANT ACTIVITY OF SUBCRITICAL WATER EXTRACTS OBTAINED FROM MANDARIN PEEL

Yıl 2017, Cilt: 42 Sayı: 4, 405 - 412, 22.04.2017

Öz

Mandarin peel, which
discarded as by-product at large amounts during fruit juice production, are a
valuable source of antioxidant compounds in the food industry. The aim of this
study was to investigate
the effect of extraction temperature and static extraction time on
antioxidant activity and phenolic compounds during subcritical water
extraction.
The antioxidant
activity of subcritical water extracts were determined by
1,1-diphenyl-2-picrylhydrazyl (DPPH) assay as IC50, ferric ion
reducing antioxidant power (FRAP) and total antioxidant potential assay using
Cu(II) complex as an oxidant (CUPRAC). As the
IC50 value
of the subcritical water extracts obtained from mandarin peel decreased 40.8 times,
FRAP and CUPRAC values increased 66.9 and 34.2 times with increasing extraction
temperature from 50 to 180°C for 5 min, respectively. Besides, total phenolic
content (TPC) of subcritical water extracts increased 4.9 and 5.0 times from 50
to 180°C for 5 and 15 min whereas, 9.6 and 9.9 times increase was obtained for
total flavonoid content (TFC) in the subcritical water extracts, respectively.

Kaynakça

  • Munshi P, Bhaduri S. 2009. Supercritical CO2: A twenty first century solvent for the chemical industry. Curr Sci, 97 (10): 63-72.
  • Teo CC, Tana SN, Hong Yonga JW, Hewb CS, Ong ES. 2010. Pressurized hot water extraction (PHWE). J Chromatogr A, 1217 (16): 2484-94.
  • Pereira CG, Meireles MAA. 2010. Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives. Food Bioprocess Technol, 3(3): 340-372.
  • Ghafoor K, Park J, Choi YH. 2010. Optimization of supercritical fluid extraction of bioactive compounds from grape (Vitis labrusca B.) peel by using response surface methodology. Innovative Food Sci Emerging Technol, 11 (3): 485-490.
  • Pérez-Serradilla JA, Luque de Castro MD. 2011. Microwave-assisted extraction of phenolic compounds from wine lees and spray-drying of the extract. Food Chem, 124 (4): 1652-1659.
  • Carrera C, Ruiz-Rodríguez A, Palma M, Barroso CG. 2012. Ultrasound assisted extraction of phenolic compounds from grapes. Anal Chim Acta, 732: 100-104.
  • Valdes A, Vidal L, Beltrán A, Canals A, Garrigós MC. 2015. Microwave-assisted extraction of phenolic compounds from almond skin byproducts (Prunus amygdalus): A multivariate analysis approach. J Agric Food Chem, 63 (22): 5395-5402.
  • Heffels P, Weber F, Schieber A. 2015. Influence of accelerated solvent extraction and ultrasound-assisted extraction on the anthocyanin profile of different vaccinium species in the context of statistical models for authentication. J Agric Food Chem, 63 (34): 7532-7538.
  • Setyaningsih W, Saputro IE, Barbero GF, Palma M, Barroso CG. 2015. Determination of melatonin in rice (Oryza sativa) grains by pressurized liquid extraction. J Agric Food Chem, 63 (4): 1107-1115.
  • He B, Zhang LL, Yue XY, Liang J, Jiang J, Gao XL, Yue PX. 2016. Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chem, 204: 70-76.
  • Cheigh CI, Chung EY, Chung, MS. 2012. Enhanced extraction of flavanones hesperidin and narirutin from Citrus unshiu peel using subcritical water. J Food Eng, 110: 472-477.
  • Özkaynak Kanmaz E, Ova G. 2013. The effective parameters for subcritical water extraction of SDG lignan from flaxseed (Linum usitatissimum L.) using accelerated solvent extractor. Eur Food Res Technol, 237(2): 159-166.
  • Özkaynak Kanmaz E. 2014. Subcritical water extraction of phenolic compounds from flaxseed meal sticks using accelerated solvent extractor (ASE). Eur Food Res Technol, 238: 85-91.
  • Ko MJ, Cheigh CI, Chung MS. 2014. Relationship analysis between flavonoids structure and subcritical water extraction (SWE). Food Chem, 143: 147-155.
  • Hayat K, Hussain S, Abbas S, Farooq U, Ding B, Xia S, Jia C, Zhang X, Xia W. 2009. Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Sep Purif Technol, 70: 63-70.
  • Hayat K, Zhang X, Chen H, Xia S, Jia C, Zhong F. 2010. Liberation and separation of phenolic compounds from citrus mandarin peels by microwave heating and its effect on antioxidant activity. Sep Purif Technol, 73: 371-376.
  • Çam M, Hışıl Y. 2010. Pressurized water extraction of polyphenols from pomegranate peels. Food Chem, 123: 878-885.
  • Benzie JFF, Strain, JJ. 1999. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Meth. Enzymology, 299: 15-27.
  • Molyneux. 2004. The use of the stable free radical diphenylpicrylhyrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol, 26: 211-219.
  • Apak R, Güçlü K, Özyürek M, Karademir SE. 2004. Novel Total Antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC Method. J Agric Food Chem, 52: 7970-7981.
  • Škerget M, Kotnik P, Hadolin M, Hraš AR, Simonič M, Knez Ž. 2005. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem, 89: 191-198.
  • Chang CH, Lin HY, Chang CY, Liu YC. 2006. Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. J Food Eng, 77: 478-485.
  • Rodríguez-Meizoso I, Marin FR, Herrero M, Sẽnorans FJ, Reglero G, Cifuentes A, Ibáňez E. 2006. Subcritical water extraction of nutraceuticals with antioxidant activity from oregano, Chemical and functional characterization. J Pharm Biomed Anal, 41: 1560-1565.
  • Wiboonsirikul J, Kimura Y, Kadota M, Morita M, Tsuno T, Adachi S. 2007. Properties of extracts from defatted rice bran by its subcritical water treatment. J Agric Food Chem, (55), 8759-8765.
  • Tezcan F, Gultekin-Ozguven M, Diken T, Ozcelik B, Erim B. 2009. Antioxidant activity and total phenolic, organic acid and sugar content in commercial pomegranate juices. Food Chem, 115: 873-877.
  • Ozgen M, Durgaç C, Serçe S, Kaya C. 2008. Chemical and antioxidant properties of pomegranate cultivars grown in the Mediterranean region of Turkey. Food Chem, 111: 703-706.
  • Delgado-Andrade C, Rufián-Henares JA, Morales FJ. 2005. Assessing the Antioxidant Activity of Melanoidins from Coffee Brews by Different Antioxidant Methods. J Agric Food Chem, 53 (20): 7832-7836.
  • Min KY, Lee KA, Kim HJ, Kim KT, Chung MS, Chang PS, Park H, Paik HD. 2014. Antioxidative and anti-inflammatory activities of citrus unshiu peel extracts using a combined process of subcritical water extraction and acid Hydrolysis. Food Sci Biotechno, 23(5): 1441-1446.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Evrim Özkaynak Kanmaz

Özlem Saral Bu kişi benim

Yayımlanma Tarihi 22 Nisan 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 42 Sayı: 4

Kaynak Göster

APA Özkaynak Kanmaz, E., & Saral, Ö. (2017). MANDALİNA KABUĞUNDAN ELDE EDİLEN KRİTİK ALTI SU EKSTRAKTLARININ ANTİOKSİDAN AKTİVİTE DÜZEYİNE EKSTRAKSİYON PARAMETRELERİNİN ETKİSİ. Gıda, 42(4), 405-412.
AMA Özkaynak Kanmaz E, Saral Ö. MANDALİNA KABUĞUNDAN ELDE EDİLEN KRİTİK ALTI SU EKSTRAKTLARININ ANTİOKSİDAN AKTİVİTE DÜZEYİNE EKSTRAKSİYON PARAMETRELERİNİN ETKİSİ. GIDA. Ağustos 2017;42(4):405-412.
Chicago Özkaynak Kanmaz, Evrim, ve Özlem Saral. “MANDALİNA KABUĞUNDAN ELDE EDİLEN KRİTİK ALTI SU EKSTRAKTLARININ ANTİOKSİDAN AKTİVİTE DÜZEYİNE EKSTRAKSİYON PARAMETRELERİNİN ETKİSİ”. Gıda 42, sy. 4 (Ağustos 2017): 405-12.
EndNote Özkaynak Kanmaz E, Saral Ö (01 Ağustos 2017) MANDALİNA KABUĞUNDAN ELDE EDİLEN KRİTİK ALTI SU EKSTRAKTLARININ ANTİOKSİDAN AKTİVİTE DÜZEYİNE EKSTRAKSİYON PARAMETRELERİNİN ETKİSİ. Gıda 42 4 405–412.
IEEE E. Özkaynak Kanmaz ve Ö. Saral, “MANDALİNA KABUĞUNDAN ELDE EDİLEN KRİTİK ALTI SU EKSTRAKTLARININ ANTİOKSİDAN AKTİVİTE DÜZEYİNE EKSTRAKSİYON PARAMETRELERİNİN ETKİSİ”, GIDA, c. 42, sy. 4, ss. 405–412, 2017.
ISNAD Özkaynak Kanmaz, Evrim - Saral, Özlem. “MANDALİNA KABUĞUNDAN ELDE EDİLEN KRİTİK ALTI SU EKSTRAKTLARININ ANTİOKSİDAN AKTİVİTE DÜZEYİNE EKSTRAKSİYON PARAMETRELERİNİN ETKİSİ”. Gıda 42/4 (Ağustos 2017), 405-412.
JAMA Özkaynak Kanmaz E, Saral Ö. MANDALİNA KABUĞUNDAN ELDE EDİLEN KRİTİK ALTI SU EKSTRAKTLARININ ANTİOKSİDAN AKTİVİTE DÜZEYİNE EKSTRAKSİYON PARAMETRELERİNİN ETKİSİ. GIDA. 2017;42:405–412.
MLA Özkaynak Kanmaz, Evrim ve Özlem Saral. “MANDALİNA KABUĞUNDAN ELDE EDİLEN KRİTİK ALTI SU EKSTRAKTLARININ ANTİOKSİDAN AKTİVİTE DÜZEYİNE EKSTRAKSİYON PARAMETRELERİNİN ETKİSİ”. Gıda, c. 42, sy. 4, 2017, ss. 405-12.
Vancouver Özkaynak Kanmaz E, Saral Ö. MANDALİNA KABUĞUNDAN ELDE EDİLEN KRİTİK ALTI SU EKSTRAKTLARININ ANTİOKSİDAN AKTİVİTE DÜZEYİNE EKSTRAKSİYON PARAMETRELERİNİN ETKİSİ. GIDA. 2017;42(4):405-12.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/