Derleme
BibTex RIS Kaynak Göster

Fajların Balık Hastalıklarının Kontrolünde Kullanımı

Yıl 2021, Cilt: 17 Sayı: 4, 474 - 488, 01.12.2021
https://doi.org/10.22392/actaquatr.866136

Öz

Kültür balıkçılığında antibiyotik direncin ortaya çıkması sonucu, daha önce kolaylıkla tedavi edilen hastalıklar ile mücadele gittikçe zorlaşmış hatta imkânsız hale gelmiştir. Acil çevreyle dost alternatif yöntemlerin araştırılması ve geliştirilmesine ihtiyaç vardır. Olası seçeneklerden biri, sorunlu bakteriyel balık patojenlerini hedef alan suşa özgü bakteriyofajların profilaktik veya terapötik kullanımıdır. Yapılmış olan bu çalışmada su ürünleri yetiştiriciliğinde özellikle ülkemizde görülen bakteriyel hastalık etkenlerine karşı izole edilen bakteriyofajlar ile ilgili bugüne kadar yapılmış araştırmalar derlenmiştir. Sonuç olarak ülkemiz akuakültür sektörü açısından baktığımızda fajlar ile ilgili detaylı çalışmalara ihtiyaç bulunmaktadır. Faj terapisi stratejisinden tam olarak yararlanabilmek için faj adaylarının dikkatle seçilmesi ve izole edilmiş fajların kullanımlarının güvenli olduğundan emin olmak için ayrıntılı bir şekilde karakterize edilmesi gerekmektedir. Bugüne kadar yapılmış faj çalışmalarının çoğu in vitro koşullarda yapılmıştır ve sahada kullanıma geçmeden önce daha detaylı in vivo çalışmalara ihtiyaç vardır.

Destekleyen Kurum

İ.Ü. Bilimsel Araştırma Projeleri Yürütücü Sekreterliği

Proje Numarası

FYL-2018-30132

Kaynakça

  • Ackermann H.W. (1999). Tailed bacteriophages. The order Caudovirales. Advances in Virus Research, 51: 135–201.
  • Ackermann, H.W. (2001). Frequency of morphological phage descriptions in the year 2000. Archives of Virology, 146, 843–857.
  • Ackermann, H.W. (2005). Bacteriophage Classification: In: Kutter E, Sulakvelidze A (eds), Bacteriophages: biology and applications. CRC Press, Boca Raton.
  • Ackermann, H.W. (2007). 5500 Phages examined in the electron microscope. Archives of Virology, 152, 227–243.
  • Ackermann, H.W. (2011). The first phage electron micrographs. Bacteriophage, 1(4), 225–227.
  • Akmal, M., Rahimi-Midani, A., Hafeez-ur-Rehman, M., Hussain, A., Choi, T.-J. (2020). Isolation, characterization, and application of a bacteriophage infecting the fish pathogen Aeromonas hydrophila. Pathogens, 9, 215.
  • Alisky, J., Iczkowski K., Rapoport A., Troitsky N. (1998). Bacteriophages show promise as antimicrobial agents. The Journal of Infectious Diseases, 36:5–15.
  • Alves, D.R. (2015). Development and characterisation of a responsive polyvalent bacteriophage therapeutic. PhD thesis, Department of Chemistry University of Bath, İngiltere.
  • Barrow, P.A., Soothill, J.S. (1997). Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends in Microbiology, 5: 268–271.
  • Barton, B.A., Iwama, G.K., (1991). Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids, Annual Review of Fish Diseases, 1(6), 3–26.
  • Bilgehan, H. (2002). Temel Mikrobiyoloji ve Bağışıklık Bilimi. Barış yayınları, Fakülteler Kitabevi, İzmir.
  • Bogovazova, G.G., Voroshilova, N.N., Bondarenko, V.M., (1991). The efficacy of Klebsiella pneumoniae bacteriophage in the therapy of experimental Klebsiella infection. Zhurnal mikrobiologii, epidemiologii, immunobiologii, (4), 5-8.
  • Cabello, F.C., (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment, Environmental Microbiology, 8(7), 1137 – 1144.
  • Candan, A.A., Karataş, S., (2010). Balık Sağlığı. Kalmak Ofset Matbaacılık, İstanbul, ISBN: 978-605-88665-0-8.
  • Cao, Y., Li S., Li, S., Han, S., Wang, D., Zhao, J., Xu, L., Liu, H., Lu, T. (2020). Characterization and application of a novel Aeromonas bacteriophage as treatment for pathogenic Aeromonas hydrophila infection in rainbow trout. Aquaculture, 523, 30.
  • Carlton, R.M. (1999). Phage Therapy: Past History and Future Prospects. Archivum Immunologiae et Therapiae Experimentalis, 47: 267-274.
  • Chow, M.S., Rouf, M.A. (1983). Isolation and partial characterization of two Aeromonas hydrophila bacteriophages. Applied and Environmental Microbiology, 45(5), 1670–1676.
  • Culot A., Grosset N., Gautier M. (2019). Overcoming the challenges of phage therapy for industrial aquaculture: A review. Aquaculture, 513, 734423.
  • Çağırgan, H. (1991). First Isolation of Yersinia ruckerii from a rainbow trout farm in Turkey. European Association of Fish Pathologists: EAFP 5th International Conferences on fish diseases, Budapeşte, Macaristan, 131.
  • Dallaire-Dufresne, S., Tanaka, K.H., Trudel, M.V., Lafaille, A., Charett, S.J., (2014). Virulence, genomic features, and plasticity of Aeromonas salmonicida subsp. salmonicida, the causative agent of fish furunculosis. Veterinary Microbiology, 169(1-2), 1–7.
  • Diana, J.S., Egna, H. S., Chopin, T., Peterson, M. S., Cao, L., Pomeroy, R., (2013). Responsible aquaculture in 2050: Valuing local conditions and human innovations will be key to success. BioScience, 63(4), 255–262.
  • Easwaran, M., Dananjaya, S.H.S., Park, S.C., Lee, J., Shin, H-J, De Zoysa, M. (2016). Characterization of bacteriophage pAh-1 and its protective effects on experimental infection of Aeromonas hydrophila in Zebrafish (Danio rerio). Journal of Fish Diseases, 40(6).
  • Eraclio, G., Tremblay, D. M., Lacelle-Côté, A., Labrie, S. J., Fortina, M. G., Moineau, S. (2015). A virulent phage infecting Lactococcus garvieae, with homology to Lactococcus lactis phages. Applied and Environmental Microbiology, 81(24), 8358–8365.
  • Fiers, W., Contreras, R., Duerinck, F., Haegeman, G., Iserentant, D., Merregaert, J., Volckaert, G. (1976). Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature, 260(5551), 500.
  • Ghasemi, S.M., Bouzari, M., Emtiazi, G. (2014). Preliminary characterization of Lactococcus garvieae bacteriophage isolated from wastewater as a potential agent for biological control of lactococcosis in aquaculture. Aquaculture International, 22, 1469–1480.
  • Gulla, S., Barnes, A. C., Welch, T. J., Romalde, J. L., Ryder, D., Ormsby, M. J., Carson, J., Lagesen, K., Verner-Jeffreys, D. W., Davies, R. L., Colquhoun, D. J. (2018). Multilocus variable-number tandem-repeat analysis of Yersinia ruckeri confirms the existence of host specificity, geographic endemism, and anthropogenic dissemination of virulent clones. Applied and Environmental Microbiology, 84(16), e00730-18.
  • Hagens, S., Loessner, M.J. (2014). Phages of Listeria offer novel tools for diagnostics and biocontrol. Frontiers in Microbiology, 5:159.
  • Hayes, W. (1968). The Genetics of Bacteria and Their Viruses. Studies in Basic Genetics and Molecular Biology. Blackwell Scientific Publications, Oxford.
  • Higuera, G., Bastías, R., Tsertsvadze, G., Romero, J., Espejo, R.T. (2013). Recently discovered Vibrio anguillarum phages can protect against experimentally induced vibriosis in Atlantic salmon, Salmo salar. Aquaculture, 392–395, 128–33.
  • Hoang, A., Xuan, T.T.T., Nga, L. P., Oanh, D.T.H. (2019). Selection of phages to control Aeromonas hydrophila – An infectious agent in Striped Catfish. Biocontrol Science, 24, 1, 2328.
  • Jun, J.W., Kim, H.J,, Shin, S.P., Han, J.E. , Chai, J.Y., Park, S.C., (2013). Protective effects of the Aeromonas phages pAh1-C and pAh6-C against mass mortality of the cyprinid loach (Misgurnus anguillicaudatus) caused by Aeromonas hydrophila. Aquaculture, 416–417, 289–295.
  • Kaczkowski, H., Weber-Dabrowska, B., Dabrowski, M., Zdrojewicz, Z., Cwioro, F. (1990). Use of bacteriophages in the treatment of chronic bacterial diseases, Wiadomosci lekarskie (Warsaw, Poland: 1960), 43(3-4), 136-141.
  • Kalatzis, P.G., Bastías, R., Kokkari, C., Katharios, P. (2016) Isolation and characterization of two lytic bacteriophages, φSt2 and φGrn1; Phage therapy application for biological control of Vibrio alginolyticus in aquaculture live feeds. PLoS ONE, 11(3): e0151101.
  • Karaçoban, F. (2017). Balık patojenlerine karşı bakteriyofajların kullanımının araştırılması. Yüksek Lisans Tezi, İstanbul Üniversitesi, İstanbul.
  • Karatas, S., Candan, A., Demircan, D. (2004). Enteric red mouth disease in cultured rainbow trout (Oncorhynchus mykiss) on the Black Sea coast of Turkey. Israeli Journal of Aquaculture-Bamidgeh, 56-3, 226-231.
  • Kawanishi, M., Kojima, A., Ishihara, K., Esaki, H., Kijima, M., Takahashi, T., Suzuki, S. and Tamura, Y. (2005), Drug resistance and pulsed‐field gel electrophoresis patterns of Lactococcus garvieae isolates from cultured Seriola (yellowtail, amberjack and kingfish) in Japan. Letters in Applied Microbiology, 40: 322-328.
  • Keen, E.C., Bliskovsky, V.V., Malagon, F., Baker, J.D., Prince, J.S., Klaus, J.S., Adhya, S.L. (2017). Novel "Superspreader" Bacteriophages Promote Horizontal Gene Transfer by Transformation. mBio, 8(1):e02115-16.
  • Kim, J.H., Son, J.S., Choi, Y.J., Choresca C.H., Shin S.P., Han J.E., Jun J.W., Kang D.H., Oh C., Heo S.J., Park S.C. (2012). Isolation and characterization of a lytic Myoviridae bacteriophage PAS-1 with broad infectivity in Aeromonas salmonicida. Current Microbiology, 64, 418–426.
  • Kingwell, K. (2015). Bacteriophage therapies re-enter clinical trials. Nature Reviews Drug Discovery. 14(8):515-6.
  • Kutter E., Sulakvelidze A. (2004). Bacteriophages:biology and applications. CRC Press, Amerika, ISBN 0-8493-1336-8.
  • Le, T.S., Nguyen, T.H., Vo, H.P., Doan, V.C., Nguyen, H.L., Tran, M.T., Tran, T.T., Southgate, P.C., Kurtböke, D.İ., (2018). Protective effects of bacteriophages against Aeromonas hydrophila species causing Motile Aeromonas Septicemia (MAS) in striped catfish. Antibiotics, 7(1), 16.
  • Lederberg, E. M., Lederberg, J., (1953). Genetic studies of lysogenicity in Escherichia coli. Genetics, 38(1), 51.
  • Letchumanan, V., Chan, K. G., Pusparajah, P., Saokaew, S., Duangjai, A., Goh, B. H., Ab Mutalib, N. S., Lee, L. H. (2016). Insights into Bacteriophage Application in Controlling Vibrio Species. Frontiers in Microbiology, 7, 1114.
  • Luo, Z.H., Yu, Y.P., Jost, G., Xu, W., Huang, X.L. (2015). Complete genome sequence of a giant Vibrio bacteriophage VH7D. Marine Genomics, 3, 293-295.
  • Mai, V., Ukhanova, M., Visone, L., Abuladze, T., & Sulakvelidze, A. (2010). Bacteriophage Administration Reduces the Concentration of Listeria monocytogenes in the Gastrointestinal Tract and Its Translocation to Spleen and Liver in Experimentally Infected Mice. International Journal of Microbiology, 624234.
  • Martínez-Díaz S.F., Hipólito-Morales A. (2013). Efficacy of phage therapy to prevent mortality during the vibriosis of brine shrimp. Aquaculture, (400–401), 120-124.
  • Mateus L., Costa Y.J., Silva C., Pereira A., Cunha A., Almeida A. (2014). Efficiency of phage cocktails in the inactivation of Vibrio in aquaculture. Aquaculture, 424–425, 167-173.
  • Merabishvili, M., Pirnay, J.P., Verbeken, G., Chanishvili, N., Tediashvili, M., Lashkhi, N., Glonti, T., Krylov, V., Mast, J., Van Parys, L., Lavigne, R., Volckaert, G., Mattheus, W., Verween, G., De Corte, P., Rose, T., Jennes, S., Zizi, M., De Vos, D., Vaneechoutte, M., (2009). Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. Plos One, 4(3), e4944.
  • Merino, S., Camprubi, S., Tomas, J.M. (1990). Isolation and characterization of bacteriophage PM2 from Aeromonas hydrophila. FEMS Microbiology Letters, 68, 3, 239–244.
  • Middelboe, M., Jacquet, S., Weınbauer, M., (2008). Viruses in freshwater ecosystems: an introduction to the exploration of viruses in new aquatic habitats. Freshwater Biology, 53, 1069–1075.
  • Morozova, V. V., Vlassov, V. V., & Tikunova, N. V. (2018). Applications of Bacteriophages in the Treatment of Localized Infections in Humans. Frontiers in Microbiology, 9, 1696.
  • Myelnikov, D. 2018. An Alternative Cure: The Adoption and Survival of Bacteriophage Therapy in the USSR, 1922–1955. Journal of the History of Medicine and Allied Sciences, October 12, Vol. 73, No. 4, pp. 385–411.
  • Özkan, İ. (2015). Antibiyotik dirençli Staphylococcus aureus suşlarına spesifik litik bakteriyofaj izolasyonu ve izole edilen fajların litik spektrumlarının belirlenmesi. Yüksek Lisans Tezi, Sağlık Bilimleri Enstitüsü, Şifa Üniversitesi, İzmir.
  • Park, KH, Matsuoka, S, Nakai, T, Muroga, K. (1997). A virulent bacteriophage against Lactococcus garvieae (formerly Enterococcus seriolicida) isolated from yellowtail Seriola quinqueradiata. Diseases of Aquatic Organisms, 29:1449.
  • Paterson, W.D., Douglas, R.J., Grinyer, I., McDermott, L.A. (1969). Isolation and preliminary characterization of some Aeromonas salmonicida bacteriophages. Journal of the Fisheries Research Board of Canada, 26:629-632.
  • Rao, M.B., Lalithab, K.V. (2015). Bacteriophages for aquaculture: Are they beneficial or inimical. Aquaculture. 437, 146-154.
  • Reardon, S. (2014) Phage therapy gets revitalized. Nature, 510:15–16.
  • Richards, G.P. (2014). Bacteriophage remediation of bacterial pathogens in aquaculture: a review of the technology. Bacteriophage, 4(4), e975540.
  • Romero, J., Higuera, G., Gajardo, F., Castillo, D., Middleboe, M., García, K., Ramírez, C., Espejo, R.T. (2014). Complete genome sequence of Vibrio anguillarum phage CHOED successfully used for phage therapy in aquaculture. Genome Announcements, 2, 4 e00091-14.
  • Samanidou, V.F., Evaggelopoulou, E.N. (2007). Analytical strategies to determine antibiotic residues in fish. Journal of Separation Science, 30: 2549-2569.
  • Sankaran, N. (2010) The bacteriophage, its role in immunology: how Macfarlane Burnet’s phage research shaped his scientific life. Studies in History and Phylosophy of Biological and Biomedical Sciences, 41:367-75.
  • Schopf, J. W. (1992). The oldest fossils and what they mean, in Major Events in the History of Life. Jones and Bartlett Publishers, Boston, 29–63.
  • Sharma, S., Chatterjee, S., Datta, S., Prasad R, Dubey D., Prasad R.K., Vairale M.G. (2017). Bacteriophages and its applications: an overview. Folia Microbiologica, 62, 17–55.
  • Sillankorva, S.M. (2008). Use of bacteriophages to control biofilms. PhD in Chemical and Biological Engineering, University of Minho, Braga, Portekiz.
  • Silva, Y.J., Costa, L., Pereira, C., Mateus, C., Cunha, A., Calado, R., Gomes, N.C. M., Pardo, M.A., Hernandez, I., Almeida, A. (2014). Phage therapy as an approach to prevent Vibrio anguillarum infections in fish larvae production. PLoS One, 9(12):e114197.
  • Silva Y.J., Moreirinha, C., Pereira, C.S.G., Costa, L., Rocha, R., Cunha, A., Gomes, N.C.M., Calado, R. Almeida, A. (2016). Biological control of Aeromonas salmonicida infection in juvenile Senegalese sole (Solea senegalensis) with Phage AS-A. Aquaculture, 2016;450:225–233.
  • Slopek, S., Durlakowa, I., Weber-Dabrowska, B., Kucharewicz-Krukowska, A., Dabrowski, M., Bisikiewicz, R. (1983). Results of bacteriophage treatment of suppurative bacterial infections. I. General evaluation of the results, Archivum Immunologiae et Therapiae Experimentalis, 31(3), 267-291.
  • Slopek, S., Weber-Dabrowska, B., Dabrowski, M., Kucharewicz-Krukowska, A., (1987). Results of bacteriophage treatment of suppurative bacterial infections in the years 1981-1986. Archivum immunologiae et therapiae experimentalis, 35(5), 569-583.
  • Smith, H.W., Huggins, M.B. (1983). Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. Microbiology, 129(8), 2659-2675.
  • Smith, H.W., Huggins, M.B., Shaw, K.M. (1987). Factors influencing the survival and multiplication of bacteriophages in calves and in their environment. Microbiology, 133(5), 1127-1135.
  • Soothill, J.S., Lawrence, J.C., Ayliffe, G.A.J. (1988). The efficacy of phages in the prevention of the destruction of pig skin in vitro by Pseudomonas aeruginosa. Medical Science Research, 16, 1287-1288.
  • Soykut, E.A. (2007). Streptococcus thermophilus ve Lactobacillus bulgaricus virülent fajlarının replikasyon parametreleri, kapsid protein profilleri ve restriksiyon endonükleaz analizleri esas alınarak tanımlanmaları ve sınıflandırılmaları. Doktora Tezi, Fen Bilimleri Enstitüsü, Ankara Üniversitesi, Ankara.
  • Srinivasan, P., Ramasamy, P. (2017). Morphological characterization and biocontrol effects of Vibrio vulnificus phages against Vibriosis in the shrimp aquaculture environment. Microbial Pathogenesis, 111, 472-480.
  • Stevenson, R. M., & Airdrie, D. W. (1984). Isolation of Yersinia ruckeri bacteriophages. Applied and Environmental Microbiology, 47(6), 1201–1205.
  • Strand, A. (2017). Analyses of bacteriophages to Yersinia ruckeri and the salmon (Salmo salar L.) antibody response to the bacteriophages. Master thesis, University of Bergen, Norway.
  • Stroj, L., Weber-Dabrowska, B., Partyka, K., Mulczyk, M., Wojcik, M. (1999). Successful treatment with bacteriophage in purulent cerebrospinal meningitis in a newborn. Neurologia i Neurochirurgia Polska, 33(3), 693-698.
  • Subasinghe R., Soto D., Jia J. (2009). Global aquaculture and its role in sustainable development. Reviews in Aquaculture, 1, 2–9.
  • Sulakvelidze A., Alavidze Z., Morris J. G. (2001). Bacteriophage Therapy. Antimicrobial Agents and Chemotherapy, March, 649–659.
  • Summers, W.C. (1999). Felix d’Herelle and the origins of molecular biology. Yale University Press, New Haven, Conn.
  • Summers, W.C. (2001). Bacteriophage therapy. Annual Review of Microbiology, 55:437–45.
  • Şahin K. (2017). TÜBA-İnsan ve Hayvan Sağlığında Akılcı Antibiyotik Kullanımı ve Antibiyotik Dirençlilik Raporu. Türkiye Bilimler akademisi Yayınları, TÜBA raporları, No:21. Ses reklam Matbaacılık, Ankara.
  • Tan, D. (2015). Exploration of phage-host interactions in the fish pathogen Vibrio anguillarum and antiphage defense strategies. PhD thesis, University of Copenhagen Faculty of Science Department of Biology Marine Biological Section, Danimarka.
  • Timur, G, Timur, M. (1991). An outbreak of enteric red mouth disease in farmed rainbow trout (O. mykiss) in Turkey. Bulletin of the European Association of Fish Pathologists, 11(5): 182-183.
  • Verner-Jeffreys, D.W., Algoet, M., Pond, M.J., Virdee, H.K., Bagwell, N.J., Roberts, E.G. (2007). Furunculosis in Atlantic salmon (Salmo salar L.) is not really controllable by bacteriophage therapy. Aquaculture, 270:475-84.
  • Vinod, M.G., Shivu, M.M., Umesha, K.R., Rajeeva, B.C., Krohne, G., Karunasagar, I., Karunasagara, I. (2006). Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture, 255, 1–4, 117-124.
  • Weber-Dąbrowska, B., Jończyk-Matysiak, E., Żaczek, M., Łobocka, M., Łusiak-Szelachowska, M., Górski, A. (2016). Bacteriophage Procurement for Therapeutic Purposes. Frontiers in Microbiology, 12;7:1177.
  • WHO (2014). Antimicrobial Resistance Global Report on Surveillance. World Health Organization, Geneva, p. 257. ISBN: 9789241564748.
  • Wise, D.J., Johnso, M.R., (1998). Effect of feeding frequency and fomet-medicated feed on survival, antibody response, and weight gain of fingerling channel catfish Ictalurus punctatus after Natural Exposure to Edwardsiella ictaluri. Journal of the World Aquaculture Society, 29(2).
  • Wittebole, X., De Roock, S., & Opal, S. M. (2014). A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence, 5(1), 226–235.
  • Yıldızlı, G. (2015). Balık patojeni bazı Vibrio bakteriyofajlarının izolasyonu ve karakterizasyonu, Mersin Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Mersin.

The use of Phages for Fish Disease Control

Yıl 2021, Cilt: 17 Sayı: 4, 474 - 488, 01.12.2021
https://doi.org/10.22392/actaquatr.866136

Öz

It has become increasingly difficult or sometimes impossible to combat bacterial diseases that were previously easily treated due to the emergence of antibiotic resistance in bacterial fish pathogens. There is therefore an urgent need for more research and the development of eco-friendlier alternatives to antibiotics. One very promising option is the preventive or therapeutic use of strain-specific bacteriophages that target problematic bacterial fish pathogens. In this article, the studies on bacteriophages isolated against bacterial disease agents in aquaculture, especially in our country, have been reviewed. As a result, when we look at the aquaculture sector in our country, detailed studies on phages are needed. To take full advantage of the phage strategy, phage therapy candidates must be carefully selected and characterized in detail to ensure that they are safe to use. One main conclusion is that there is a need for more basic research related to the use of phages in the aquaculture sector of our country. So far, most of the phage studies have been carried out in vitro, and more detailed in vivo studies are needed before the phages can be used in the field.

Proje Numarası

FYL-2018-30132

Kaynakça

  • Ackermann H.W. (1999). Tailed bacteriophages. The order Caudovirales. Advances in Virus Research, 51: 135–201.
  • Ackermann, H.W. (2001). Frequency of morphological phage descriptions in the year 2000. Archives of Virology, 146, 843–857.
  • Ackermann, H.W. (2005). Bacteriophage Classification: In: Kutter E, Sulakvelidze A (eds), Bacteriophages: biology and applications. CRC Press, Boca Raton.
  • Ackermann, H.W. (2007). 5500 Phages examined in the electron microscope. Archives of Virology, 152, 227–243.
  • Ackermann, H.W. (2011). The first phage electron micrographs. Bacteriophage, 1(4), 225–227.
  • Akmal, M., Rahimi-Midani, A., Hafeez-ur-Rehman, M., Hussain, A., Choi, T.-J. (2020). Isolation, characterization, and application of a bacteriophage infecting the fish pathogen Aeromonas hydrophila. Pathogens, 9, 215.
  • Alisky, J., Iczkowski K., Rapoport A., Troitsky N. (1998). Bacteriophages show promise as antimicrobial agents. The Journal of Infectious Diseases, 36:5–15.
  • Alves, D.R. (2015). Development and characterisation of a responsive polyvalent bacteriophage therapeutic. PhD thesis, Department of Chemistry University of Bath, İngiltere.
  • Barrow, P.A., Soothill, J.S. (1997). Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends in Microbiology, 5: 268–271.
  • Barton, B.A., Iwama, G.K., (1991). Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids, Annual Review of Fish Diseases, 1(6), 3–26.
  • Bilgehan, H. (2002). Temel Mikrobiyoloji ve Bağışıklık Bilimi. Barış yayınları, Fakülteler Kitabevi, İzmir.
  • Bogovazova, G.G., Voroshilova, N.N., Bondarenko, V.M., (1991). The efficacy of Klebsiella pneumoniae bacteriophage in the therapy of experimental Klebsiella infection. Zhurnal mikrobiologii, epidemiologii, immunobiologii, (4), 5-8.
  • Cabello, F.C., (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment, Environmental Microbiology, 8(7), 1137 – 1144.
  • Candan, A.A., Karataş, S., (2010). Balık Sağlığı. Kalmak Ofset Matbaacılık, İstanbul, ISBN: 978-605-88665-0-8.
  • Cao, Y., Li S., Li, S., Han, S., Wang, D., Zhao, J., Xu, L., Liu, H., Lu, T. (2020). Characterization and application of a novel Aeromonas bacteriophage as treatment for pathogenic Aeromonas hydrophila infection in rainbow trout. Aquaculture, 523, 30.
  • Carlton, R.M. (1999). Phage Therapy: Past History and Future Prospects. Archivum Immunologiae et Therapiae Experimentalis, 47: 267-274.
  • Chow, M.S., Rouf, M.A. (1983). Isolation and partial characterization of two Aeromonas hydrophila bacteriophages. Applied and Environmental Microbiology, 45(5), 1670–1676.
  • Culot A., Grosset N., Gautier M. (2019). Overcoming the challenges of phage therapy for industrial aquaculture: A review. Aquaculture, 513, 734423.
  • Çağırgan, H. (1991). First Isolation of Yersinia ruckerii from a rainbow trout farm in Turkey. European Association of Fish Pathologists: EAFP 5th International Conferences on fish diseases, Budapeşte, Macaristan, 131.
  • Dallaire-Dufresne, S., Tanaka, K.H., Trudel, M.V., Lafaille, A., Charett, S.J., (2014). Virulence, genomic features, and plasticity of Aeromonas salmonicida subsp. salmonicida, the causative agent of fish furunculosis. Veterinary Microbiology, 169(1-2), 1–7.
  • Diana, J.S., Egna, H. S., Chopin, T., Peterson, M. S., Cao, L., Pomeroy, R., (2013). Responsible aquaculture in 2050: Valuing local conditions and human innovations will be key to success. BioScience, 63(4), 255–262.
  • Easwaran, M., Dananjaya, S.H.S., Park, S.C., Lee, J., Shin, H-J, De Zoysa, M. (2016). Characterization of bacteriophage pAh-1 and its protective effects on experimental infection of Aeromonas hydrophila in Zebrafish (Danio rerio). Journal of Fish Diseases, 40(6).
  • Eraclio, G., Tremblay, D. M., Lacelle-Côté, A., Labrie, S. J., Fortina, M. G., Moineau, S. (2015). A virulent phage infecting Lactococcus garvieae, with homology to Lactococcus lactis phages. Applied and Environmental Microbiology, 81(24), 8358–8365.
  • Fiers, W., Contreras, R., Duerinck, F., Haegeman, G., Iserentant, D., Merregaert, J., Volckaert, G. (1976). Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature, 260(5551), 500.
  • Ghasemi, S.M., Bouzari, M., Emtiazi, G. (2014). Preliminary characterization of Lactococcus garvieae bacteriophage isolated from wastewater as a potential agent for biological control of lactococcosis in aquaculture. Aquaculture International, 22, 1469–1480.
  • Gulla, S., Barnes, A. C., Welch, T. J., Romalde, J. L., Ryder, D., Ormsby, M. J., Carson, J., Lagesen, K., Verner-Jeffreys, D. W., Davies, R. L., Colquhoun, D. J. (2018). Multilocus variable-number tandem-repeat analysis of Yersinia ruckeri confirms the existence of host specificity, geographic endemism, and anthropogenic dissemination of virulent clones. Applied and Environmental Microbiology, 84(16), e00730-18.
  • Hagens, S., Loessner, M.J. (2014). Phages of Listeria offer novel tools for diagnostics and biocontrol. Frontiers in Microbiology, 5:159.
  • Hayes, W. (1968). The Genetics of Bacteria and Their Viruses. Studies in Basic Genetics and Molecular Biology. Blackwell Scientific Publications, Oxford.
  • Higuera, G., Bastías, R., Tsertsvadze, G., Romero, J., Espejo, R.T. (2013). Recently discovered Vibrio anguillarum phages can protect against experimentally induced vibriosis in Atlantic salmon, Salmo salar. Aquaculture, 392–395, 128–33.
  • Hoang, A., Xuan, T.T.T., Nga, L. P., Oanh, D.T.H. (2019). Selection of phages to control Aeromonas hydrophila – An infectious agent in Striped Catfish. Biocontrol Science, 24, 1, 2328.
  • Jun, J.W., Kim, H.J,, Shin, S.P., Han, J.E. , Chai, J.Y., Park, S.C., (2013). Protective effects of the Aeromonas phages pAh1-C and pAh6-C against mass mortality of the cyprinid loach (Misgurnus anguillicaudatus) caused by Aeromonas hydrophila. Aquaculture, 416–417, 289–295.
  • Kaczkowski, H., Weber-Dabrowska, B., Dabrowski, M., Zdrojewicz, Z., Cwioro, F. (1990). Use of bacteriophages in the treatment of chronic bacterial diseases, Wiadomosci lekarskie (Warsaw, Poland: 1960), 43(3-4), 136-141.
  • Kalatzis, P.G., Bastías, R., Kokkari, C., Katharios, P. (2016) Isolation and characterization of two lytic bacteriophages, φSt2 and φGrn1; Phage therapy application for biological control of Vibrio alginolyticus in aquaculture live feeds. PLoS ONE, 11(3): e0151101.
  • Karaçoban, F. (2017). Balık patojenlerine karşı bakteriyofajların kullanımının araştırılması. Yüksek Lisans Tezi, İstanbul Üniversitesi, İstanbul.
  • Karatas, S., Candan, A., Demircan, D. (2004). Enteric red mouth disease in cultured rainbow trout (Oncorhynchus mykiss) on the Black Sea coast of Turkey. Israeli Journal of Aquaculture-Bamidgeh, 56-3, 226-231.
  • Kawanishi, M., Kojima, A., Ishihara, K., Esaki, H., Kijima, M., Takahashi, T., Suzuki, S. and Tamura, Y. (2005), Drug resistance and pulsed‐field gel electrophoresis patterns of Lactococcus garvieae isolates from cultured Seriola (yellowtail, amberjack and kingfish) in Japan. Letters in Applied Microbiology, 40: 322-328.
  • Keen, E.C., Bliskovsky, V.V., Malagon, F., Baker, J.D., Prince, J.S., Klaus, J.S., Adhya, S.L. (2017). Novel "Superspreader" Bacteriophages Promote Horizontal Gene Transfer by Transformation. mBio, 8(1):e02115-16.
  • Kim, J.H., Son, J.S., Choi, Y.J., Choresca C.H., Shin S.P., Han J.E., Jun J.W., Kang D.H., Oh C., Heo S.J., Park S.C. (2012). Isolation and characterization of a lytic Myoviridae bacteriophage PAS-1 with broad infectivity in Aeromonas salmonicida. Current Microbiology, 64, 418–426.
  • Kingwell, K. (2015). Bacteriophage therapies re-enter clinical trials. Nature Reviews Drug Discovery. 14(8):515-6.
  • Kutter E., Sulakvelidze A. (2004). Bacteriophages:biology and applications. CRC Press, Amerika, ISBN 0-8493-1336-8.
  • Le, T.S., Nguyen, T.H., Vo, H.P., Doan, V.C., Nguyen, H.L., Tran, M.T., Tran, T.T., Southgate, P.C., Kurtböke, D.İ., (2018). Protective effects of bacteriophages against Aeromonas hydrophila species causing Motile Aeromonas Septicemia (MAS) in striped catfish. Antibiotics, 7(1), 16.
  • Lederberg, E. M., Lederberg, J., (1953). Genetic studies of lysogenicity in Escherichia coli. Genetics, 38(1), 51.
  • Letchumanan, V., Chan, K. G., Pusparajah, P., Saokaew, S., Duangjai, A., Goh, B. H., Ab Mutalib, N. S., Lee, L. H. (2016). Insights into Bacteriophage Application in Controlling Vibrio Species. Frontiers in Microbiology, 7, 1114.
  • Luo, Z.H., Yu, Y.P., Jost, G., Xu, W., Huang, X.L. (2015). Complete genome sequence of a giant Vibrio bacteriophage VH7D. Marine Genomics, 3, 293-295.
  • Mai, V., Ukhanova, M., Visone, L., Abuladze, T., & Sulakvelidze, A. (2010). Bacteriophage Administration Reduces the Concentration of Listeria monocytogenes in the Gastrointestinal Tract and Its Translocation to Spleen and Liver in Experimentally Infected Mice. International Journal of Microbiology, 624234.
  • Martínez-Díaz S.F., Hipólito-Morales A. (2013). Efficacy of phage therapy to prevent mortality during the vibriosis of brine shrimp. Aquaculture, (400–401), 120-124.
  • Mateus L., Costa Y.J., Silva C., Pereira A., Cunha A., Almeida A. (2014). Efficiency of phage cocktails in the inactivation of Vibrio in aquaculture. Aquaculture, 424–425, 167-173.
  • Merabishvili, M., Pirnay, J.P., Verbeken, G., Chanishvili, N., Tediashvili, M., Lashkhi, N., Glonti, T., Krylov, V., Mast, J., Van Parys, L., Lavigne, R., Volckaert, G., Mattheus, W., Verween, G., De Corte, P., Rose, T., Jennes, S., Zizi, M., De Vos, D., Vaneechoutte, M., (2009). Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. Plos One, 4(3), e4944.
  • Merino, S., Camprubi, S., Tomas, J.M. (1990). Isolation and characterization of bacteriophage PM2 from Aeromonas hydrophila. FEMS Microbiology Letters, 68, 3, 239–244.
  • Middelboe, M., Jacquet, S., Weınbauer, M., (2008). Viruses in freshwater ecosystems: an introduction to the exploration of viruses in new aquatic habitats. Freshwater Biology, 53, 1069–1075.
  • Morozova, V. V., Vlassov, V. V., & Tikunova, N. V. (2018). Applications of Bacteriophages in the Treatment of Localized Infections in Humans. Frontiers in Microbiology, 9, 1696.
  • Myelnikov, D. 2018. An Alternative Cure: The Adoption and Survival of Bacteriophage Therapy in the USSR, 1922–1955. Journal of the History of Medicine and Allied Sciences, October 12, Vol. 73, No. 4, pp. 385–411.
  • Özkan, İ. (2015). Antibiyotik dirençli Staphylococcus aureus suşlarına spesifik litik bakteriyofaj izolasyonu ve izole edilen fajların litik spektrumlarının belirlenmesi. Yüksek Lisans Tezi, Sağlık Bilimleri Enstitüsü, Şifa Üniversitesi, İzmir.
  • Park, KH, Matsuoka, S, Nakai, T, Muroga, K. (1997). A virulent bacteriophage against Lactococcus garvieae (formerly Enterococcus seriolicida) isolated from yellowtail Seriola quinqueradiata. Diseases of Aquatic Organisms, 29:1449.
  • Paterson, W.D., Douglas, R.J., Grinyer, I., McDermott, L.A. (1969). Isolation and preliminary characterization of some Aeromonas salmonicida bacteriophages. Journal of the Fisheries Research Board of Canada, 26:629-632.
  • Rao, M.B., Lalithab, K.V. (2015). Bacteriophages for aquaculture: Are they beneficial or inimical. Aquaculture. 437, 146-154.
  • Reardon, S. (2014) Phage therapy gets revitalized. Nature, 510:15–16.
  • Richards, G.P. (2014). Bacteriophage remediation of bacterial pathogens in aquaculture: a review of the technology. Bacteriophage, 4(4), e975540.
  • Romero, J., Higuera, G., Gajardo, F., Castillo, D., Middleboe, M., García, K., Ramírez, C., Espejo, R.T. (2014). Complete genome sequence of Vibrio anguillarum phage CHOED successfully used for phage therapy in aquaculture. Genome Announcements, 2, 4 e00091-14.
  • Samanidou, V.F., Evaggelopoulou, E.N. (2007). Analytical strategies to determine antibiotic residues in fish. Journal of Separation Science, 30: 2549-2569.
  • Sankaran, N. (2010) The bacteriophage, its role in immunology: how Macfarlane Burnet’s phage research shaped his scientific life. Studies in History and Phylosophy of Biological and Biomedical Sciences, 41:367-75.
  • Schopf, J. W. (1992). The oldest fossils and what they mean, in Major Events in the History of Life. Jones and Bartlett Publishers, Boston, 29–63.
  • Sharma, S., Chatterjee, S., Datta, S., Prasad R, Dubey D., Prasad R.K., Vairale M.G. (2017). Bacteriophages and its applications: an overview. Folia Microbiologica, 62, 17–55.
  • Sillankorva, S.M. (2008). Use of bacteriophages to control biofilms. PhD in Chemical and Biological Engineering, University of Minho, Braga, Portekiz.
  • Silva, Y.J., Costa, L., Pereira, C., Mateus, C., Cunha, A., Calado, R., Gomes, N.C. M., Pardo, M.A., Hernandez, I., Almeida, A. (2014). Phage therapy as an approach to prevent Vibrio anguillarum infections in fish larvae production. PLoS One, 9(12):e114197.
  • Silva Y.J., Moreirinha, C., Pereira, C.S.G., Costa, L., Rocha, R., Cunha, A., Gomes, N.C.M., Calado, R. Almeida, A. (2016). Biological control of Aeromonas salmonicida infection in juvenile Senegalese sole (Solea senegalensis) with Phage AS-A. Aquaculture, 2016;450:225–233.
  • Slopek, S., Durlakowa, I., Weber-Dabrowska, B., Kucharewicz-Krukowska, A., Dabrowski, M., Bisikiewicz, R. (1983). Results of bacteriophage treatment of suppurative bacterial infections. I. General evaluation of the results, Archivum Immunologiae et Therapiae Experimentalis, 31(3), 267-291.
  • Slopek, S., Weber-Dabrowska, B., Dabrowski, M., Kucharewicz-Krukowska, A., (1987). Results of bacteriophage treatment of suppurative bacterial infections in the years 1981-1986. Archivum immunologiae et therapiae experimentalis, 35(5), 569-583.
  • Smith, H.W., Huggins, M.B. (1983). Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. Microbiology, 129(8), 2659-2675.
  • Smith, H.W., Huggins, M.B., Shaw, K.M. (1987). Factors influencing the survival and multiplication of bacteriophages in calves and in their environment. Microbiology, 133(5), 1127-1135.
  • Soothill, J.S., Lawrence, J.C., Ayliffe, G.A.J. (1988). The efficacy of phages in the prevention of the destruction of pig skin in vitro by Pseudomonas aeruginosa. Medical Science Research, 16, 1287-1288.
  • Soykut, E.A. (2007). Streptococcus thermophilus ve Lactobacillus bulgaricus virülent fajlarının replikasyon parametreleri, kapsid protein profilleri ve restriksiyon endonükleaz analizleri esas alınarak tanımlanmaları ve sınıflandırılmaları. Doktora Tezi, Fen Bilimleri Enstitüsü, Ankara Üniversitesi, Ankara.
  • Srinivasan, P., Ramasamy, P. (2017). Morphological characterization and biocontrol effects of Vibrio vulnificus phages against Vibriosis in the shrimp aquaculture environment. Microbial Pathogenesis, 111, 472-480.
  • Stevenson, R. M., & Airdrie, D. W. (1984). Isolation of Yersinia ruckeri bacteriophages. Applied and Environmental Microbiology, 47(6), 1201–1205.
  • Strand, A. (2017). Analyses of bacteriophages to Yersinia ruckeri and the salmon (Salmo salar L.) antibody response to the bacteriophages. Master thesis, University of Bergen, Norway.
  • Stroj, L., Weber-Dabrowska, B., Partyka, K., Mulczyk, M., Wojcik, M. (1999). Successful treatment with bacteriophage in purulent cerebrospinal meningitis in a newborn. Neurologia i Neurochirurgia Polska, 33(3), 693-698.
  • Subasinghe R., Soto D., Jia J. (2009). Global aquaculture and its role in sustainable development. Reviews in Aquaculture, 1, 2–9.
  • Sulakvelidze A., Alavidze Z., Morris J. G. (2001). Bacteriophage Therapy. Antimicrobial Agents and Chemotherapy, March, 649–659.
  • Summers, W.C. (1999). Felix d’Herelle and the origins of molecular biology. Yale University Press, New Haven, Conn.
  • Summers, W.C. (2001). Bacteriophage therapy. Annual Review of Microbiology, 55:437–45.
  • Şahin K. (2017). TÜBA-İnsan ve Hayvan Sağlığında Akılcı Antibiyotik Kullanımı ve Antibiyotik Dirençlilik Raporu. Türkiye Bilimler akademisi Yayınları, TÜBA raporları, No:21. Ses reklam Matbaacılık, Ankara.
  • Tan, D. (2015). Exploration of phage-host interactions in the fish pathogen Vibrio anguillarum and antiphage defense strategies. PhD thesis, University of Copenhagen Faculty of Science Department of Biology Marine Biological Section, Danimarka.
  • Timur, G, Timur, M. (1991). An outbreak of enteric red mouth disease in farmed rainbow trout (O. mykiss) in Turkey. Bulletin of the European Association of Fish Pathologists, 11(5): 182-183.
  • Verner-Jeffreys, D.W., Algoet, M., Pond, M.J., Virdee, H.K., Bagwell, N.J., Roberts, E.G. (2007). Furunculosis in Atlantic salmon (Salmo salar L.) is not really controllable by bacteriophage therapy. Aquaculture, 270:475-84.
  • Vinod, M.G., Shivu, M.M., Umesha, K.R., Rajeeva, B.C., Krohne, G., Karunasagar, I., Karunasagara, I. (2006). Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture, 255, 1–4, 117-124.
  • Weber-Dąbrowska, B., Jończyk-Matysiak, E., Żaczek, M., Łobocka, M., Łusiak-Szelachowska, M., Górski, A. (2016). Bacteriophage Procurement for Therapeutic Purposes. Frontiers in Microbiology, 12;7:1177.
  • WHO (2014). Antimicrobial Resistance Global Report on Surveillance. World Health Organization, Geneva, p. 257. ISBN: 9789241564748.
  • Wise, D.J., Johnso, M.R., (1998). Effect of feeding frequency and fomet-medicated feed on survival, antibody response, and weight gain of fingerling channel catfish Ictalurus punctatus after Natural Exposure to Edwardsiella ictaluri. Journal of the World Aquaculture Society, 29(2).
  • Wittebole, X., De Roock, S., & Opal, S. M. (2014). A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence, 5(1), 226–235.
  • Yıldızlı, G. (2015). Balık patojeni bazı Vibrio bakteriyofajlarının izolasyonu ve karakterizasyonu, Mersin Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Mersin.
Toplam 90 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji
Bölüm Derleme Makaleler
Yazarlar

Süheyla Karataş Steınum 0000-0003-2006-7854

Fatma Karaçoban Bu kişi benim

Proje Numarası FYL-2018-30132
Yayımlanma Tarihi 1 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 17 Sayı: 4

Kaynak Göster

APA Karataş Steınum, S., & Karaçoban, F. (2021). Fajların Balık Hastalıklarının Kontrolünde Kullanımı. Acta Aquatica Turcica, 17(4), 474-488. https://doi.org/10.22392/actaquatr.866136