Derleme
BibTex RIS Kaynak Göster

Molecular Diagnostics Methods of Thalassemia and related hemoglobinopathies: Present and Future

Yıl 2017, Cilt: 3 Sayı: 3, 599 - 616, 15.12.2017
https://doi.org/10.30569/adiyamansaglik.396211

Öz

Hemoglobinopathies,
inherited as autosomal recessive are the most common monogenic disorder. They
are characterized by mutations in the genes encoding the alpha (α) and beta (β)
globin chains of the human hemoglobin (Hb) molecule and are broadly classified
as abnormal hemoglobin and thalassemia. Several methods are now available for
detection of abnormal hemoglobin and thalassemia mutations. Despite the
technological advances in mutation detection, hematological and molecular
techniques must be used together to achieve accurate diagnosis in the screening
of mutations. In this review, we have inform the current standard hematological
techniques and diagnostic methods as well as more novel molecular techniques
that have become.

Kaynakça

  • Kaynaklar: 1. Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bulletin of the World Health Organization. 2008;86(6):480-7.
  • 2. Synodinos JT. Harteveld HC. Preconception carrier screening and prenatal diagnosis in thalassemia and hemoglobinopathies: challenges and future perspectives. Expert Review of Molecular Diagnostics.2017; 17(3): 281-291.
  • 3. Giardine B, Borg J, Viennas E, Pavlidis C, Moradkhani K, Joly P, et al. Updates of the HbVar database of human hemoglobin variants and thalassemia mutations. Nucleic acids research. 2014;42(Database issue):D1063-9.
  • 4. Clark BE. Theın SL. Molecular diagnosis of haemoglobin disorders. Clin. Lab. Haem. 2004, 26, 159–176.
  • 5. Ryan K. Bain BJ. Worthington D, et al. Significant haemoglobinopathies: guidelines for screening and diagnosis. Br. J. Haematol. 2010; 149(1), 35–49.
  • 6. Labbe RF. Vreman HJ. Stevenson DK. Zinc protoporphyrin: a metabolite with a mission. Clin. Chem. 1999; 45(12), 2060–2072.
  • 7. Buch AC. Karve PP. Panicker NK et al. Role of red cell distribution width in classifying microcytic hypochromic anaemia. J. Indian Med. Assoc. 2011; 109(5), 297–299.
  • 8. Old J. Harteveld CL. Traeger-Synodinos J, et al. Prevention of thalassaemias and other haemoglobin disorders. In: Laboratory Protocols. II (2nd Edition). Thalassaemia International Federation, Nicosia, Cyprus, 2012.
  • 9. Kohn J. Separation of haemoglobins on cellulose acetate. J. Clin. Pathol. 22(1), 109–111.
  • 10. Lorey F, Cunningham G, Shafer F et al. Universal screening for hemoglobinopathiesn using high-performance liquid chromatography: clinical results of 2.2 million screens. Eur. J. Hum. Genet.1994; 2(4), 262–271.
  • 11. Old JM. Screening and genetic diagnosis of hemoglobin disorders. Blood Reviews. 2003: 17(1):43-53.
  • 12. Van Delft P, Lenters E, Bakker-Verweij M et al. Evaluating five dedicated automatic devices for haemoglobinopathy diagnostics in multi-ethnic populations. Int. J. Lab. Hematol.2009; 31(5), 484–495.
  • 13. Troxler H, Kleinert P, Schmugge M et al. Advances in hemoglobinopathy detection and identification. Adv. Clin. Chem. 2012; 57, 1–28.
  • 14. Hachani J, Duban-Deweer S, Pottiez G et al. MALDI-TOF MS profiling as the first-tier screen for sickle cell disease in neonates: matching throughput to objectives. Proteomics, Clin. Appl. 2011; 5(7–8), 405–414.
  • 15. Liu YT. Old JM. Miles K. et al. Rapid detection of α-thalassaemia deletions and α-globin gene triplication by multiplex polymerase chain reactions. Br J Haematol. 2000;108:295-299.
  • 16. Old J. Henderson S. Molecular diagnostics for haemoglobinopathies. Expert opinion on medical diagnostics. 2010;4(3):225-40.
  • 17. Chong SS. Boehm CD. Cutting GR, et al. Simplified multiplex-PCR diagnosis of common southeast Asian deletional determinants of alpha-thalassemia. Clin Chem 2000; 46: 1692-1695.
  • 18. Karnpean R. Fucharoen G. Fucharoen S, et al. Accurate prenatal diagnosis of Hb Bart's hydrops fetalis in daily practice with a double-check PCR system. Acta haematologica. 2009;121(4):227-33.
  • 19. Wang XY. Lin MX. Lin M. A novel 6.3 kb deletion and the Rare 27.6 kb Deletion Causing alpha+-Thalassemia in two Chinese Patients. Hemoglobin. 2016;40(5):365-8.
  • 20. Harteveld CL. Voskamp A. Phylipsen M. et al. Nine unknown rearrangements in 16p13.3 and 11p15.4 causing α- and β-thalassaemia characterised by high resolution multiplex ligation-dependent probe amplification. J Med Genet. 2005;42:922-931.
  • 21. Harteveld CL. Refaldi C. Cassinerio E, et al. Segmental duplications involving the alpha-globin gene cluster are causing beta-thalassemia intermedia phenotypes in beta-thalassemia heterozygous patients. Blood cells, molecules&diseases.2008;40(3):312-6.
  • 22. Kipp BR. Roellinger SE. Lundquist PA. et al. Development and clinical implementation of a combination deletion PCR and multiplex ligation-dependent probe amplification assay for detecting deletions involving the human α-globin gene cluster. J Mol Diagn. 2011;13:549-557.
  • 23. Staaf J. Torngren T. Rambech E, et al. Detection and precise mapping of germline rearrangements in BRCA1, BRCA2, MSH2, and MLH1 using zoom-in array comparative genomic hybridization (aCGH). Human mutation. 2008;29(4):555-64.
  • 24. Shaffer LG. Bejjani BA, Torchia B, et al. The identification of microdeletion syndromes and other chromosome abnormalities: Cytogenetic methods of the past, new technologies for the future. American Journal of Medical Genetics.2007; 145: 335–345.
  • 25. Blattner A. Brunner-Agten S. Ludin K, et al. Detection of germline rearrangements in patients with alpha- and beta-thalassemia using high resolution array CGH. Blood cells, molecules & diseases. 2013;51(1):39-47.
  • 26. Liu S. Jiang H. Wu MY. Thalassemia Intermedia Caused by 16p13.3 Sectional Duplication in a beta-Thalassemia Heterozygous Child. Pediatric hematology and oncology. 2015;32(5):349-53.
  • 27. Phylipsen M. Chaibunruang A. Vogelaar IP, et al. Fine-tiling array CGH to improve diagnostics for alpha- and beta-thalassemia rearrangements. Human mutation. 2012;33(1):272-80.
  • 28. Foglietta E, Bianco I, Maggio A, Giambona A. Rapid detection of six common Mediterranean and three non-Mediterranean alpha-thalassemia point mutations by reverse dot blot analysis. American journal of hematology. 2003;74(3):191-5.
  • 29. Old JM. Screening and genetic diagnosis of haemoglobinopathies. Scand J Clin Lab Invest. 2006;66:1–16.
  • 30. Henderson SJ. Timbs AT. McCarthy J, et al. Ten Years of Routine alpha- and beta-Globin Gene Sequencing in UK Hemoglobinopathy Referrals Reveals 60 Novel Mutations. Hemoglobin. 2016;40(2):75-84.
  • 31. Old JM. Khan SN. Verma, et al. A multi-centre study to further define the molecular basis of beta-thalassemia in Thailand, Pakistan, Sri Lanka, Mauritius, Syria, and India, and to develop a simple molecular diagnostic strategy by amplification refractory mutation system polymerase chain reaction. Hemoglobin. 2001;25:397.
  • 32. Maggio A, Giambona A, Cai SP, Wall J, Kan YW, Chehab FF. Rapid and simultaneous typing of hemoglobin S, hemoglobin C, and seven Mediterranean beta-thalassemia mutations by covalent reverse dot-blot analysis: application to prenatal diagnosis in Sicily. Blood. 1993;81(1):239-42.
  • 33. Cremonesi L, Ferrari M, Giordano PC, et al. An overview of current microarray-based human globin gene mutation detection methods. Hemoglobin. 2007;31(3):289–311.
  • 34. Van Moorsel CH. van Wijngaraarden EE. Fokkema IF, et al. Beta-Globin mutation detection by tagged single-base extension and hybridization to universal glass and flow-through microarrays. European Journal Human Genetics. 2004;12:567–573.
  • 35. Bang-Ce Y, Hongqiong L, Zhuanfong Z, et al. Simultaneous detection of alpha-thalassemia and beta-thalassemia by oligonucleotide microarray. Haematologica. 2004;89:1010–1012.
  • 36. Barreto R. Arrizabalaga B. De la Hoz AB, et al. Detection of new pathogenic mutations in patients with congenital haemolytic anaemia using next-generation sequencing. International journal of laboratory hematology. 2016;38(6):629-38.
  • 37. Lee ST. Yoo EH. Kim JY, et al. Multiplex ligation-dependent probe amplification screening of isolated increased HbF levels revealed three cases of novel rearrangements/deletions in the beta-globin gene cluster. British journal of haematology. 2010;148(1):154-60.
  • 38. Ryan K Bain BJ Worthington Det al. British Committee for Standards in Haematology. Significant haemoglobinopathies: guidelines for screening and diagnosis. Br J Haematol . 2010;149:35–49.
  • 39. Clark BE. Theın SL. Molecular diagnosis of haemoglobin disorders. Clin. Lab. Haem. 2004, 26, 159–176.
  • 40. Gallienne AE. Dreau HM. McCarthy J, et al. Multiplex ligation-dependent probe amplification identification of 17 different beta-globin gene deletions (including four novel mutations) in the UK population. Hemoglobin. 2009;33(6):406-16.

Talasemi ve ilgili hemoglobinopatilerin Moleküler Tanı Yöntemleri: Günümüz ve Gelecek

Yıl 2017, Cilt: 3 Sayı: 3, 599 - 616, 15.12.2017
https://doi.org/10.30569/adiyamansaglik.396211

Öz

Hemoglobinopati, otozomal resesif geçişli
monogenik bozuklukların en sık görülen grubudur. Hemoglobin (Hb)  molekülünün alfa (α) ve beta (β) globin zincirlerini
kodlayan genlerde mutasyonlar veya delesyonlar ile karakterizedir ve genel
olarak anormal hemoglobin ve talasemi olarak sınıflandırılır. Günümüzde,
anormal hemoglobin ve talasemi mutasyonların tespiti için çeşitli yöntemler
kullanılmaktadır. Mutasyon tespitindeki teknolojik ilerlemelere rağmen,
mutasyonların taranmasında doğru tanıya ulaşabilmek için hematolojik ve
moleküler tekniklerin birlikte kullanılması gerekir. Bu derlemede, mevcut
standart hematolojik teknikler ve tanı yöntemleri ile yeni moleküler teknikler
hakkında bilgi verdik.

Kaynakça

  • Kaynaklar: 1. Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bulletin of the World Health Organization. 2008;86(6):480-7.
  • 2. Synodinos JT. Harteveld HC. Preconception carrier screening and prenatal diagnosis in thalassemia and hemoglobinopathies: challenges and future perspectives. Expert Review of Molecular Diagnostics.2017; 17(3): 281-291.
  • 3. Giardine B, Borg J, Viennas E, Pavlidis C, Moradkhani K, Joly P, et al. Updates of the HbVar database of human hemoglobin variants and thalassemia mutations. Nucleic acids research. 2014;42(Database issue):D1063-9.
  • 4. Clark BE. Theın SL. Molecular diagnosis of haemoglobin disorders. Clin. Lab. Haem. 2004, 26, 159–176.
  • 5. Ryan K. Bain BJ. Worthington D, et al. Significant haemoglobinopathies: guidelines for screening and diagnosis. Br. J. Haematol. 2010; 149(1), 35–49.
  • 6. Labbe RF. Vreman HJ. Stevenson DK. Zinc protoporphyrin: a metabolite with a mission. Clin. Chem. 1999; 45(12), 2060–2072.
  • 7. Buch AC. Karve PP. Panicker NK et al. Role of red cell distribution width in classifying microcytic hypochromic anaemia. J. Indian Med. Assoc. 2011; 109(5), 297–299.
  • 8. Old J. Harteveld CL. Traeger-Synodinos J, et al. Prevention of thalassaemias and other haemoglobin disorders. In: Laboratory Protocols. II (2nd Edition). Thalassaemia International Federation, Nicosia, Cyprus, 2012.
  • 9. Kohn J. Separation of haemoglobins on cellulose acetate. J. Clin. Pathol. 22(1), 109–111.
  • 10. Lorey F, Cunningham G, Shafer F et al. Universal screening for hemoglobinopathiesn using high-performance liquid chromatography: clinical results of 2.2 million screens. Eur. J. Hum. Genet.1994; 2(4), 262–271.
  • 11. Old JM. Screening and genetic diagnosis of hemoglobin disorders. Blood Reviews. 2003: 17(1):43-53.
  • 12. Van Delft P, Lenters E, Bakker-Verweij M et al. Evaluating five dedicated automatic devices for haemoglobinopathy diagnostics in multi-ethnic populations. Int. J. Lab. Hematol.2009; 31(5), 484–495.
  • 13. Troxler H, Kleinert P, Schmugge M et al. Advances in hemoglobinopathy detection and identification. Adv. Clin. Chem. 2012; 57, 1–28.
  • 14. Hachani J, Duban-Deweer S, Pottiez G et al. MALDI-TOF MS profiling as the first-tier screen for sickle cell disease in neonates: matching throughput to objectives. Proteomics, Clin. Appl. 2011; 5(7–8), 405–414.
  • 15. Liu YT. Old JM. Miles K. et al. Rapid detection of α-thalassaemia deletions and α-globin gene triplication by multiplex polymerase chain reactions. Br J Haematol. 2000;108:295-299.
  • 16. Old J. Henderson S. Molecular diagnostics for haemoglobinopathies. Expert opinion on medical diagnostics. 2010;4(3):225-40.
  • 17. Chong SS. Boehm CD. Cutting GR, et al. Simplified multiplex-PCR diagnosis of common southeast Asian deletional determinants of alpha-thalassemia. Clin Chem 2000; 46: 1692-1695.
  • 18. Karnpean R. Fucharoen G. Fucharoen S, et al. Accurate prenatal diagnosis of Hb Bart's hydrops fetalis in daily practice with a double-check PCR system. Acta haematologica. 2009;121(4):227-33.
  • 19. Wang XY. Lin MX. Lin M. A novel 6.3 kb deletion and the Rare 27.6 kb Deletion Causing alpha+-Thalassemia in two Chinese Patients. Hemoglobin. 2016;40(5):365-8.
  • 20. Harteveld CL. Voskamp A. Phylipsen M. et al. Nine unknown rearrangements in 16p13.3 and 11p15.4 causing α- and β-thalassaemia characterised by high resolution multiplex ligation-dependent probe amplification. J Med Genet. 2005;42:922-931.
  • 21. Harteveld CL. Refaldi C. Cassinerio E, et al. Segmental duplications involving the alpha-globin gene cluster are causing beta-thalassemia intermedia phenotypes in beta-thalassemia heterozygous patients. Blood cells, molecules&diseases.2008;40(3):312-6.
  • 22. Kipp BR. Roellinger SE. Lundquist PA. et al. Development and clinical implementation of a combination deletion PCR and multiplex ligation-dependent probe amplification assay for detecting deletions involving the human α-globin gene cluster. J Mol Diagn. 2011;13:549-557.
  • 23. Staaf J. Torngren T. Rambech E, et al. Detection and precise mapping of germline rearrangements in BRCA1, BRCA2, MSH2, and MLH1 using zoom-in array comparative genomic hybridization (aCGH). Human mutation. 2008;29(4):555-64.
  • 24. Shaffer LG. Bejjani BA, Torchia B, et al. The identification of microdeletion syndromes and other chromosome abnormalities: Cytogenetic methods of the past, new technologies for the future. American Journal of Medical Genetics.2007; 145: 335–345.
  • 25. Blattner A. Brunner-Agten S. Ludin K, et al. Detection of germline rearrangements in patients with alpha- and beta-thalassemia using high resolution array CGH. Blood cells, molecules & diseases. 2013;51(1):39-47.
  • 26. Liu S. Jiang H. Wu MY. Thalassemia Intermedia Caused by 16p13.3 Sectional Duplication in a beta-Thalassemia Heterozygous Child. Pediatric hematology and oncology. 2015;32(5):349-53.
  • 27. Phylipsen M. Chaibunruang A. Vogelaar IP, et al. Fine-tiling array CGH to improve diagnostics for alpha- and beta-thalassemia rearrangements. Human mutation. 2012;33(1):272-80.
  • 28. Foglietta E, Bianco I, Maggio A, Giambona A. Rapid detection of six common Mediterranean and three non-Mediterranean alpha-thalassemia point mutations by reverse dot blot analysis. American journal of hematology. 2003;74(3):191-5.
  • 29. Old JM. Screening and genetic diagnosis of haemoglobinopathies. Scand J Clin Lab Invest. 2006;66:1–16.
  • 30. Henderson SJ. Timbs AT. McCarthy J, et al. Ten Years of Routine alpha- and beta-Globin Gene Sequencing in UK Hemoglobinopathy Referrals Reveals 60 Novel Mutations. Hemoglobin. 2016;40(2):75-84.
  • 31. Old JM. Khan SN. Verma, et al. A multi-centre study to further define the molecular basis of beta-thalassemia in Thailand, Pakistan, Sri Lanka, Mauritius, Syria, and India, and to develop a simple molecular diagnostic strategy by amplification refractory mutation system polymerase chain reaction. Hemoglobin. 2001;25:397.
  • 32. Maggio A, Giambona A, Cai SP, Wall J, Kan YW, Chehab FF. Rapid and simultaneous typing of hemoglobin S, hemoglobin C, and seven Mediterranean beta-thalassemia mutations by covalent reverse dot-blot analysis: application to prenatal diagnosis in Sicily. Blood. 1993;81(1):239-42.
  • 33. Cremonesi L, Ferrari M, Giordano PC, et al. An overview of current microarray-based human globin gene mutation detection methods. Hemoglobin. 2007;31(3):289–311.
  • 34. Van Moorsel CH. van Wijngaraarden EE. Fokkema IF, et al. Beta-Globin mutation detection by tagged single-base extension and hybridization to universal glass and flow-through microarrays. European Journal Human Genetics. 2004;12:567–573.
  • 35. Bang-Ce Y, Hongqiong L, Zhuanfong Z, et al. Simultaneous detection of alpha-thalassemia and beta-thalassemia by oligonucleotide microarray. Haematologica. 2004;89:1010–1012.
  • 36. Barreto R. Arrizabalaga B. De la Hoz AB, et al. Detection of new pathogenic mutations in patients with congenital haemolytic anaemia using next-generation sequencing. International journal of laboratory hematology. 2016;38(6):629-38.
  • 37. Lee ST. Yoo EH. Kim JY, et al. Multiplex ligation-dependent probe amplification screening of isolated increased HbF levels revealed three cases of novel rearrangements/deletions in the beta-globin gene cluster. British journal of haematology. 2010;148(1):154-60.
  • 38. Ryan K Bain BJ Worthington Det al. British Committee for Standards in Haematology. Significant haemoglobinopathies: guidelines for screening and diagnosis. Br J Haematol . 2010;149:35–49.
  • 39. Clark BE. Theın SL. Molecular diagnosis of haemoglobin disorders. Clin. Lab. Haem. 2004, 26, 159–176.
  • 40. Gallienne AE. Dreau HM. McCarthy J, et al. Multiplex ligation-dependent probe amplification identification of 17 different beta-globin gene deletions (including four novel mutations) in the UK population. Hemoglobin. 2009;33(6):406-16.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derleme
Yazarlar

Gülüzar Özbolat

Abdullah Tuli Bu kişi benim

Yayımlanma Tarihi 15 Aralık 2017
Gönderilme Tarihi 17 Şubat 2018
Kabul Tarihi 24 Mart 2018
Yayımlandığı Sayı Yıl 2017 Cilt: 3 Sayı: 3

Kaynak Göster

AMA Özbolat G, Tuli A. Talasemi ve ilgili hemoglobinopatilerin Moleküler Tanı Yöntemleri: Günümüz ve Gelecek. ADYÜ Sağlık Bilimleri Derg. Aralık 2017;3(3):599-616. doi:10.30569/adiyamansaglik.396211