Araştırma Makalesi
BibTex RIS Kaynak Göster

Alaşım Tipinin Seçici Lazer Ergitme ile Üretilmiş Co-Cr Altyapıların Metal-Seramik Bağlantı Dayanımına Etkisi.

Yıl 2024, , 59 - 67, 26.01.2024
https://doi.org/10.54617/adoklinikbilimler.1264883

Öz

Amaç: Bu çalışma, seçici lazer ergitme (SLE) yönteminde kullanılan Co-Cr alaşım tozlarının metal-seramik (MS) bağlantı dayanımı üzerine alaşım tipinin etkisini değerlendirmeyi amaçlamıştır.
Gereç ve Yöntem: Otuz adet bar şekilli Co-Cr metal altyapı, çekirdek metal(n=10, Grup-D) kullanarak döküm yöntemi ile, tip 4 (n=10, Grup-T4) ve tip 5 (n=10, Grup-T5) alaşım tozu kullanarak SLE yöntemi ile üretildi. Çekirdek metal ve alaşım tozlarının mikro yapısı X-ışını diffraksiyon (XRD) yöntemi ile incelendi. Tüm metal altyapıların merkezine feldspatik porselen uygulandı ve fırınlandı. Tüm numunelerin MS bağlantı dayanımı(MPa) 3 nokta bükülme testi ile ölçüldü. MS bağlantı dayanımı verileri, tek yönlü varyans analizi ve Tamhane T2 post hoc testi (α=0.05) kullanılarak analiz edilmiştir. Her gruptan iki numunenin kırık metal-seramik arayüzü enerji dağılımlı X-ışını spektroskopisi ve stereo mikroskop kullanılarak incelendi.
Bulgular: Grup-T5 (25.62 ±2.02) Grup-D (37.28 ± 4.46; P=0.000016) ve grup T4’den (32.82 ± 2.85; P=0.00019) anlamlı derecede daha düşük MS bağlantı dayanımı göstermiştir. Bükme testi sonrasında metal ara yüzeyindeki porselen kalıntısının miktarı en fazla Grup D'de, en az Grup-T5’de olduğu doğrulandı.
Sonuç: Bu çalışmanın bulguları alaşım tipinin, SLE kullanılarak üretilen altyapıların MS bağlantı dayanımını etkileyebileceğini göstermiştir.

Destekleyen Kurum

Bu çalışmayı destekleyen kurum yoktur.

Proje Numarası

-

Teşekkür

Bu çalışmanın yazarları X ışını diffraksiyon (XRD) yöntemi ile alaşımların mikro yapısının karakterizasyonu sırasındaki desteklerinden dolayı Öğr.Gör. İhsan Akşit’ e teşekkür eder.

Kaynakça

  • Referans1. Anusavice KJ, Shen C, Rawls HR. Phillips’ Science of Dental Materials. 12th ed. St. Louis, Missouri: Elsevier Health Sciences; 2012. p. 367- 473.
  • Referans2. Zhou Y, Li N, Yan J, Zeng Q. Comparative analysis of the microstructures and mechanical properties of Co-Cr dental alloys fabricated by different methods. J Prosthet Dent 2018;120:617- 23.
  • Referans3. Özcan M. Fracture reasons in ceramic‐fused‐to‐metal restorations. J Oral Rehabil 2003;30:265-9.
  • Referans4. Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 2005;11:26-36.
  • Referans5. Lee D, Hanawa T, Jang S, Lee H, Hong M, Min BK, et al. Effect of post-sintering conditions on the mechanical properties of a new Co–Cr alloy produced by new subtractive manufacturing. J Nanosci Nanotechnol 2019;19:2395-8.
  • Referans6. Koutsoukis T, Zinelis S, Eliades G, Al‐Wazzan K, Rifaiy MA, Al Jabbari YS. Selective laser melting technique of Co‐Cr dental alloys: a review of structure and properties and comparative analysis with other available techniques. J Prosthodont 2015;24:303-12.
  • Referans7. Bandyopadhyay A, Traxel KD, Avila JD, Mitra I, Bose SC. CoCr Alloys. Wagner WR, Sakiyama-Elbert SE, Zhang G, Yaszemski MJ, Editors. Biomaterials Science: An Introduction to Materials in Medicine. 4th ed. London: Academic Press, an imprint of Elsevier; 2020. p. 257- 269.
  • Referans8. International organization for standardization. ISO 22674: Dentistry – Metallic materials for fixed and removable restorations and appliances. Geneva, Switzerland. 2016. https://www.iso.org/ standard/59620.html
  • Referans9. Walton TR. The up to 25-year survival and clinical performance of 2,340 high gold-based metal-ceramic single crowns. Int J Prosthodont 2013;26:151-60.
  • Referans10. Hitzler L, von Kobylinski J, Lawitzki R, Krempaszky C, Werner E, editors. Microstructural development and mechanical properties of selective laser melted Co–Cr–W dental alloy. TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings; 2020 Feb 23-27; California, USA. New York: Springer; 2020.
  • Referans11. Zhou Y, Wei W, Yan J, Liu W, Li N, Li H, et al. Microstructures and metal-ceramic bond properties of Co-Cr biomedical alloys fabricated by selective laser melting and casting. Mater Sci Eng A 2019;759:594-602.
  • Referans12. International Organization for Standardization. ISO 9693-1: Dentistry compatibility testing-part 1: Metal-ceramic systems. Geneva, Switzerland. 2012. https://www.iso.org/standard/54946. html
  • Referans13. Tonelli L, Fortunato A, Ceschini L. CoCr alloy processed by Selective Laser Melting (SLM): effect of Laser Energy Density on microstructure, surface morphology, and hardness. J Manuf Process. 2020;52:106-19.
  • Referans14. Li J, Chen C, Liao J, Liu L, Ye X, Lin S, et al. Bond strengths of porcelain to cobalt-chromium alloys made by casting, milling, and selective laser melting. J Prosthet Dent 2017;118:69-75.
  • Referans15. Kaleli N, Saraç D. Comparison of porcelain bond strength of different metal frameworks prepared by using conventional and recently introduced fabrication methods. J Prosthet Dent 2017;118:76-82.
  • Referans16. Naylor WP, King, A. H. Introduction to Metal-Ceramic Technology. 3th ed. Hanover Park, Illinois: Quintessence Publishing; 2018. p. 109-117.
  • Referans17. McLean JW. The Science and Art of Dental Ceramics-Volume I: The Nature of Dental Ceramics and Their Clinical Use. 1th ed. Chicago, Illinois: Quintessence Publishing; 1979. p. 71.
  • Referans18. Smith TB, Kelly JR, Tesk JA. In vitro fracture behavior of ceramic and metal‐ceramic restorations. J Prosthodont 1994;3:138-44.
  • Referans19. Wataha JC. Alloys for prosthodontic restorations. J Prosthet Dent 2002;87:351-63.
  • Referans20. Powers JM, Wataha JC. Dental Materials Foundations and Aplications. 11th ed. St. Louis, Missouri: Elsevier Health Sciences; 2015. p. 138- 154.
  • Referans21. Wei W, Zhou Y, Sun Q, Li N, Yan J, Li H, et al. Microstructures and mechanical properties of dental Co-Cr-Mo-W alloys fabricated by selective laser melting at different subsequent heat treatment temperatures. Metall Mater Trans A 2020;51:3205-14.
  • Referans22. Karaali A, Mirouh K, Hamamda S, Guiraldenq P. Effect of tungsten 0–8 wt.% on the oxidation of Co–Cr alloys. Comput Mater Sci 2005;33:37-43.
  • Referans23. Antanasova M, Kocjan A, Žužek B, Jovanovski S, Jevnikar P. The bond strength of dental porcelain to cobalt-chromium alloys fabricated by casting, milling and by selective laser melting: a comparative analysis. Mater Tehnol 2019;53:845-52.
  • Referans24. Dimitriadis K, Papadopoulos T, Agathopoulos S. Effect of bonding agent on metal‐ceramic bond strength between Co‐Cr fabricated with selective laser melting and dental feldspathic porcelain. J Prosthodont 2019;28:1029-36.
  • Referans25. Lawaf S, Nasermostofi S, Afradeh M, Azizi A. Comparison of the bond strength of ceramics to Co-Cr alloys made by castingand selective laser melting. J Adv Prosthodont 2017;9:52-6.
  • Referans26. Kaleli N, Çağrı U, Küçükekenci AS. Lazer tarama hızının lazer sinterleme ile üretilen metal altyapıların porselen bağlantısı üzerindeki etkisi. KOU Sag Bil Derg 2020;6:227-32.
  • Referans27. Kaleli N, Ural Ç, Küçükekenci AS. The effect of layer thickness on the porcelain bond strength of laser-sintered metal frameworks. J Prosthet Dent 2019;122:76-81.
  • Referans28. Külünk T, Kurt M, Ural Ç, Külünk Ş, Baba S. Effect of different air-abrasion particles on metal-ceramic bond strength. J Dent Sci 2011;6:140-6.
  • Referans29. Yu J, Kang S, Lee J, Jeong H, Lee S. Mechanical properties of dental alloys according to manufacturing process. Materials 2021;14:3367-79.
  • Referans30. Zinelis S, Barmpagadaki X, Vergos V, Chakmakchi M, Eliades G. Bond strength and interfacial characterization of eight low fusing porcelains to cp Ti. Dent Mater 2010;26:264-73.

The Effect of Alloy Type on Metal-Ceramic Bond Strength of Co-Cr Frameworks Fabricated by Selective Laser melting.

Yıl 2024, , 59 - 67, 26.01.2024
https://doi.org/10.54617/adoklinikbilimler.1264883

Öz

Aim:This study aimed to evaluate the effect of alloy type on the metal-ceramic(MC) bond strength of Co-Cr alloy powders used in the selective laser melting(SLM) method.
Material and Method:Thirty bar-shaped Co-Cr metal substructures were fabricated using type 4(n=10, Group-T4) and type 5(n=10, Group-T5) alloys with SLE method, using metal ingot with casting method(n=10, Group-D). The microstructure of metal ingot and alloy powders was analyzed by X-ray diffraction(XRD). Feldspathic porcelain was applied at the center of each framework and fired. MC bond strength(MPa) of all frameworks was measured using three-point bending testing. MC bond strength data were analyzed using a one-way analysis of variance and the Tamhane T2 post hoc test(α=0.05). Fractured metal-ceramic interface of two specimens from each group was examined using energy dispersive X-ray spectroscopy and a stereo microscope
Results:Group-T5 (25.62 ±2.02) showed significantly lower MC bond strength than Group-D (37.28 ± 4.46; P=0.000016) and group T4 (32.82 ± 2.85; P=0.00019). After the bending test, it was confirmed that the amount of porcelain residue at the metal interface was highest in Group D and least in Group-T5.
Conclusion: The findings of this study showed that the alloy type may affect the MC bond strength of substructures fabricated using SLE.

Proje Numarası

-

Kaynakça

  • Referans1. Anusavice KJ, Shen C, Rawls HR. Phillips’ Science of Dental Materials. 12th ed. St. Louis, Missouri: Elsevier Health Sciences; 2012. p. 367- 473.
  • Referans2. Zhou Y, Li N, Yan J, Zeng Q. Comparative analysis of the microstructures and mechanical properties of Co-Cr dental alloys fabricated by different methods. J Prosthet Dent 2018;120:617- 23.
  • Referans3. Özcan M. Fracture reasons in ceramic‐fused‐to‐metal restorations. J Oral Rehabil 2003;30:265-9.
  • Referans4. Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 2005;11:26-36.
  • Referans5. Lee D, Hanawa T, Jang S, Lee H, Hong M, Min BK, et al. Effect of post-sintering conditions on the mechanical properties of a new Co–Cr alloy produced by new subtractive manufacturing. J Nanosci Nanotechnol 2019;19:2395-8.
  • Referans6. Koutsoukis T, Zinelis S, Eliades G, Al‐Wazzan K, Rifaiy MA, Al Jabbari YS. Selective laser melting technique of Co‐Cr dental alloys: a review of structure and properties and comparative analysis with other available techniques. J Prosthodont 2015;24:303-12.
  • Referans7. Bandyopadhyay A, Traxel KD, Avila JD, Mitra I, Bose SC. CoCr Alloys. Wagner WR, Sakiyama-Elbert SE, Zhang G, Yaszemski MJ, Editors. Biomaterials Science: An Introduction to Materials in Medicine. 4th ed. London: Academic Press, an imprint of Elsevier; 2020. p. 257- 269.
  • Referans8. International organization for standardization. ISO 22674: Dentistry – Metallic materials for fixed and removable restorations and appliances. Geneva, Switzerland. 2016. https://www.iso.org/ standard/59620.html
  • Referans9. Walton TR. The up to 25-year survival and clinical performance of 2,340 high gold-based metal-ceramic single crowns. Int J Prosthodont 2013;26:151-60.
  • Referans10. Hitzler L, von Kobylinski J, Lawitzki R, Krempaszky C, Werner E, editors. Microstructural development and mechanical properties of selective laser melted Co–Cr–W dental alloy. TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings; 2020 Feb 23-27; California, USA. New York: Springer; 2020.
  • Referans11. Zhou Y, Wei W, Yan J, Liu W, Li N, Li H, et al. Microstructures and metal-ceramic bond properties of Co-Cr biomedical alloys fabricated by selective laser melting and casting. Mater Sci Eng A 2019;759:594-602.
  • Referans12. International Organization for Standardization. ISO 9693-1: Dentistry compatibility testing-part 1: Metal-ceramic systems. Geneva, Switzerland. 2012. https://www.iso.org/standard/54946. html
  • Referans13. Tonelli L, Fortunato A, Ceschini L. CoCr alloy processed by Selective Laser Melting (SLM): effect of Laser Energy Density on microstructure, surface morphology, and hardness. J Manuf Process. 2020;52:106-19.
  • Referans14. Li J, Chen C, Liao J, Liu L, Ye X, Lin S, et al. Bond strengths of porcelain to cobalt-chromium alloys made by casting, milling, and selective laser melting. J Prosthet Dent 2017;118:69-75.
  • Referans15. Kaleli N, Saraç D. Comparison of porcelain bond strength of different metal frameworks prepared by using conventional and recently introduced fabrication methods. J Prosthet Dent 2017;118:76-82.
  • Referans16. Naylor WP, King, A. H. Introduction to Metal-Ceramic Technology. 3th ed. Hanover Park, Illinois: Quintessence Publishing; 2018. p. 109-117.
  • Referans17. McLean JW. The Science and Art of Dental Ceramics-Volume I: The Nature of Dental Ceramics and Their Clinical Use. 1th ed. Chicago, Illinois: Quintessence Publishing; 1979. p. 71.
  • Referans18. Smith TB, Kelly JR, Tesk JA. In vitro fracture behavior of ceramic and metal‐ceramic restorations. J Prosthodont 1994;3:138-44.
  • Referans19. Wataha JC. Alloys for prosthodontic restorations. J Prosthet Dent 2002;87:351-63.
  • Referans20. Powers JM, Wataha JC. Dental Materials Foundations and Aplications. 11th ed. St. Louis, Missouri: Elsevier Health Sciences; 2015. p. 138- 154.
  • Referans21. Wei W, Zhou Y, Sun Q, Li N, Yan J, Li H, et al. Microstructures and mechanical properties of dental Co-Cr-Mo-W alloys fabricated by selective laser melting at different subsequent heat treatment temperatures. Metall Mater Trans A 2020;51:3205-14.
  • Referans22. Karaali A, Mirouh K, Hamamda S, Guiraldenq P. Effect of tungsten 0–8 wt.% on the oxidation of Co–Cr alloys. Comput Mater Sci 2005;33:37-43.
  • Referans23. Antanasova M, Kocjan A, Žužek B, Jovanovski S, Jevnikar P. The bond strength of dental porcelain to cobalt-chromium alloys fabricated by casting, milling and by selective laser melting: a comparative analysis. Mater Tehnol 2019;53:845-52.
  • Referans24. Dimitriadis K, Papadopoulos T, Agathopoulos S. Effect of bonding agent on metal‐ceramic bond strength between Co‐Cr fabricated with selective laser melting and dental feldspathic porcelain. J Prosthodont 2019;28:1029-36.
  • Referans25. Lawaf S, Nasermostofi S, Afradeh M, Azizi A. Comparison of the bond strength of ceramics to Co-Cr alloys made by castingand selective laser melting. J Adv Prosthodont 2017;9:52-6.
  • Referans26. Kaleli N, Çağrı U, Küçükekenci AS. Lazer tarama hızının lazer sinterleme ile üretilen metal altyapıların porselen bağlantısı üzerindeki etkisi. KOU Sag Bil Derg 2020;6:227-32.
  • Referans27. Kaleli N, Ural Ç, Küçükekenci AS. The effect of layer thickness on the porcelain bond strength of laser-sintered metal frameworks. J Prosthet Dent 2019;122:76-81.
  • Referans28. Külünk T, Kurt M, Ural Ç, Külünk Ş, Baba S. Effect of different air-abrasion particles on metal-ceramic bond strength. J Dent Sci 2011;6:140-6.
  • Referans29. Yu J, Kang S, Lee J, Jeong H, Lee S. Mechanical properties of dental alloys according to manufacturing process. Materials 2021;14:3367-79.
  • Referans30. Zinelis S, Barmpagadaki X, Vergos V, Chakmakchi M, Eliades G. Bond strength and interfacial characterization of eight low fusing porcelains to cp Ti. Dent Mater 2010;26:264-73.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Diş Hekimliği
Bölüm Araştırma Makalesi
Yazarlar

Haydar Albayrak 0000-0002-2833-1317

Aygül Yaprak 0000-0003-2283-6960

Büşra Ekici 0000-0003-3937-5304

Proje Numarası -
Yayımlanma Tarihi 26 Ocak 2024
Gönderilme Tarihi 14 Mart 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

Vancouver Albayrak H, Yaprak A, Ekici B. Alaşım Tipinin Seçici Lazer Ergitme ile Üretilmiş Co-Cr Altyapıların Metal-Seramik Bağlantı Dayanımına Etkisi. ADO Klinik Bilimler Dergisi. 2024;13(1):59-67.