Araştırma Makalesi
BibTex RIS Kaynak Göster

Alaşım Tipinin Seçici Lazer Ergitme ile Üretilmiş Co-Cr Altyapıların Metal-Seramik Bağlantı Dayanımına Etkisi.

Yıl 2024, Cilt: 13 Sayı: 1, 59 - 67, 26.01.2024
https://doi.org/10.54617/adoklinikbilimler.1264883

Öz

Amaç: Bu çalışma, seçici lazer ergitme (SLE) yönteminde kullanılan Co-Cr alaşım tozlarının metal-seramik (MS) bağlantı dayanımı üzerine alaşım tipinin etkisini değerlendirmeyi amaçlamıştır.
Gereç ve Yöntem: Otuz adet bar şekilli Co-Cr metal altyapı, çekirdek metal(n=10, Grup-D) kullanarak döküm yöntemi ile, tip 4 (n=10, Grup-T4) ve tip 5 (n=10, Grup-T5) alaşım tozu kullanarak SLE yöntemi ile üretildi. Çekirdek metal ve alaşım tozlarının mikro yapısı X-ışını diffraksiyon (XRD) yöntemi ile incelendi. Tüm metal altyapıların merkezine feldspatik porselen uygulandı ve fırınlandı. Tüm numunelerin MS bağlantı dayanımı(MPa) 3 nokta bükülme testi ile ölçüldü. MS bağlantı dayanımı verileri, tek yönlü varyans analizi ve Tamhane T2 post hoc testi (α=0.05) kullanılarak analiz edilmiştir. Her gruptan iki numunenin kırık metal-seramik arayüzü enerji dağılımlı X-ışını spektroskopisi ve stereo mikroskop kullanılarak incelendi.
Bulgular: Grup-T5 (25.62 ±2.02) Grup-D (37.28 ± 4.46; P=0.000016) ve grup T4’den (32.82 ± 2.85; P=0.00019) anlamlı derecede daha düşük MS bağlantı dayanımı göstermiştir. Bükme testi sonrasında metal ara yüzeyindeki porselen kalıntısının miktarı en fazla Grup D'de, en az Grup-T5’de olduğu doğrulandı.
Sonuç: Bu çalışmanın bulguları alaşım tipinin, SLE kullanılarak üretilen altyapıların MS bağlantı dayanımını etkileyebileceğini göstermiştir.

Destekleyen Kurum

Bu çalışmayı destekleyen kurum yoktur.

Proje Numarası

-

Teşekkür

Bu çalışmanın yazarları X ışını diffraksiyon (XRD) yöntemi ile alaşımların mikro yapısının karakterizasyonu sırasındaki desteklerinden dolayı Öğr.Gör. İhsan Akşit’ e teşekkür eder.

Kaynakça

  • Referans1. Anusavice KJ, Shen C, Rawls HR. Phillips’ Science of Dental Materials. 12th ed. St. Louis, Missouri: Elsevier Health Sciences; 2012. p. 367- 473.
  • Referans2. Zhou Y, Li N, Yan J, Zeng Q. Comparative analysis of the microstructures and mechanical properties of Co-Cr dental alloys fabricated by different methods. J Prosthet Dent 2018;120:617- 23.
  • Referans3. Özcan M. Fracture reasons in ceramic‐fused‐to‐metal restorations. J Oral Rehabil 2003;30:265-9.
  • Referans4. Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 2005;11:26-36.
  • Referans5. Lee D, Hanawa T, Jang S, Lee H, Hong M, Min BK, et al. Effect of post-sintering conditions on the mechanical properties of a new Co–Cr alloy produced by new subtractive manufacturing. J Nanosci Nanotechnol 2019;19:2395-8.
  • Referans6. Koutsoukis T, Zinelis S, Eliades G, Al‐Wazzan K, Rifaiy MA, Al Jabbari YS. Selective laser melting technique of Co‐Cr dental alloys: a review of structure and properties and comparative analysis with other available techniques. J Prosthodont 2015;24:303-12.
  • Referans7. Bandyopadhyay A, Traxel KD, Avila JD, Mitra I, Bose SC. CoCr Alloys. Wagner WR, Sakiyama-Elbert SE, Zhang G, Yaszemski MJ, Editors. Biomaterials Science: An Introduction to Materials in Medicine. 4th ed. London: Academic Press, an imprint of Elsevier; 2020. p. 257- 269.
  • Referans8. International organization for standardization. ISO 22674: Dentistry – Metallic materials for fixed and removable restorations and appliances. Geneva, Switzerland. 2016. https://www.iso.org/ standard/59620.html
  • Referans9. Walton TR. The up to 25-year survival and clinical performance of 2,340 high gold-based metal-ceramic single crowns. Int J Prosthodont 2013;26:151-60.
  • Referans10. Hitzler L, von Kobylinski J, Lawitzki R, Krempaszky C, Werner E, editors. Microstructural development and mechanical properties of selective laser melted Co–Cr–W dental alloy. TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings; 2020 Feb 23-27; California, USA. New York: Springer; 2020.
  • Referans11. Zhou Y, Wei W, Yan J, Liu W, Li N, Li H, et al. Microstructures and metal-ceramic bond properties of Co-Cr biomedical alloys fabricated by selective laser melting and casting. Mater Sci Eng A 2019;759:594-602.
  • Referans12. International Organization for Standardization. ISO 9693-1: Dentistry compatibility testing-part 1: Metal-ceramic systems. Geneva, Switzerland. 2012. https://www.iso.org/standard/54946. html
  • Referans13. Tonelli L, Fortunato A, Ceschini L. CoCr alloy processed by Selective Laser Melting (SLM): effect of Laser Energy Density on microstructure, surface morphology, and hardness. J Manuf Process. 2020;52:106-19.
  • Referans14. Li J, Chen C, Liao J, Liu L, Ye X, Lin S, et al. Bond strengths of porcelain to cobalt-chromium alloys made by casting, milling, and selective laser melting. J Prosthet Dent 2017;118:69-75.
  • Referans15. Kaleli N, Saraç D. Comparison of porcelain bond strength of different metal frameworks prepared by using conventional and recently introduced fabrication methods. J Prosthet Dent 2017;118:76-82.
  • Referans16. Naylor WP, King, A. H. Introduction to Metal-Ceramic Technology. 3th ed. Hanover Park, Illinois: Quintessence Publishing; 2018. p. 109-117.
  • Referans17. McLean JW. The Science and Art of Dental Ceramics-Volume I: The Nature of Dental Ceramics and Their Clinical Use. 1th ed. Chicago, Illinois: Quintessence Publishing; 1979. p. 71.
  • Referans18. Smith TB, Kelly JR, Tesk JA. In vitro fracture behavior of ceramic and metal‐ceramic restorations. J Prosthodont 1994;3:138-44.
  • Referans19. Wataha JC. Alloys for prosthodontic restorations. J Prosthet Dent 2002;87:351-63.
  • Referans20. Powers JM, Wataha JC. Dental Materials Foundations and Aplications. 11th ed. St. Louis, Missouri: Elsevier Health Sciences; 2015. p. 138- 154.
  • Referans21. Wei W, Zhou Y, Sun Q, Li N, Yan J, Li H, et al. Microstructures and mechanical properties of dental Co-Cr-Mo-W alloys fabricated by selective laser melting at different subsequent heat treatment temperatures. Metall Mater Trans A 2020;51:3205-14.
  • Referans22. Karaali A, Mirouh K, Hamamda S, Guiraldenq P. Effect of tungsten 0–8 wt.% on the oxidation of Co–Cr alloys. Comput Mater Sci 2005;33:37-43.
  • Referans23. Antanasova M, Kocjan A, Žužek B, Jovanovski S, Jevnikar P. The bond strength of dental porcelain to cobalt-chromium alloys fabricated by casting, milling and by selective laser melting: a comparative analysis. Mater Tehnol 2019;53:845-52.
  • Referans24. Dimitriadis K, Papadopoulos T, Agathopoulos S. Effect of bonding agent on metal‐ceramic bond strength between Co‐Cr fabricated with selective laser melting and dental feldspathic porcelain. J Prosthodont 2019;28:1029-36.
  • Referans25. Lawaf S, Nasermostofi S, Afradeh M, Azizi A. Comparison of the bond strength of ceramics to Co-Cr alloys made by castingand selective laser melting. J Adv Prosthodont 2017;9:52-6.
  • Referans26. Kaleli N, Çağrı U, Küçükekenci AS. Lazer tarama hızının lazer sinterleme ile üretilen metal altyapıların porselen bağlantısı üzerindeki etkisi. KOU Sag Bil Derg 2020;6:227-32.
  • Referans27. Kaleli N, Ural Ç, Küçükekenci AS. The effect of layer thickness on the porcelain bond strength of laser-sintered metal frameworks. J Prosthet Dent 2019;122:76-81.
  • Referans28. Külünk T, Kurt M, Ural Ç, Külünk Ş, Baba S. Effect of different air-abrasion particles on metal-ceramic bond strength. J Dent Sci 2011;6:140-6.
  • Referans29. Yu J, Kang S, Lee J, Jeong H, Lee S. Mechanical properties of dental alloys according to manufacturing process. Materials 2021;14:3367-79.
  • Referans30. Zinelis S, Barmpagadaki X, Vergos V, Chakmakchi M, Eliades G. Bond strength and interfacial characterization of eight low fusing porcelains to cp Ti. Dent Mater 2010;26:264-73.

The Effect of Alloy Type on Metal-Ceramic Bond Strength of Co-Cr Frameworks Fabricated by Selective Laser melting.

Yıl 2024, Cilt: 13 Sayı: 1, 59 - 67, 26.01.2024
https://doi.org/10.54617/adoklinikbilimler.1264883

Öz

Aim:This study aimed to evaluate the effect of alloy type on the metal-ceramic(MC) bond strength of Co-Cr alloy powders used in the selective laser melting(SLM) method.
Material and Method:Thirty bar-shaped Co-Cr metal substructures were fabricated using type 4(n=10, Group-T4) and type 5(n=10, Group-T5) alloys with SLE method, using metal ingot with casting method(n=10, Group-D). The microstructure of metal ingot and alloy powders was analyzed by X-ray diffraction(XRD). Feldspathic porcelain was applied at the center of each framework and fired. MC bond strength(MPa) of all frameworks was measured using three-point bending testing. MC bond strength data were analyzed using a one-way analysis of variance and the Tamhane T2 post hoc test(α=0.05). Fractured metal-ceramic interface of two specimens from each group was examined using energy dispersive X-ray spectroscopy and a stereo microscope
Results:Group-T5 (25.62 ±2.02) showed significantly lower MC bond strength than Group-D (37.28 ± 4.46; P=0.000016) and group T4 (32.82 ± 2.85; P=0.00019). After the bending test, it was confirmed that the amount of porcelain residue at the metal interface was highest in Group D and least in Group-T5.
Conclusion: The findings of this study showed that the alloy type may affect the MC bond strength of substructures fabricated using SLE.

Proje Numarası

-

Kaynakça

  • Referans1. Anusavice KJ, Shen C, Rawls HR. Phillips’ Science of Dental Materials. 12th ed. St. Louis, Missouri: Elsevier Health Sciences; 2012. p. 367- 473.
  • Referans2. Zhou Y, Li N, Yan J, Zeng Q. Comparative analysis of the microstructures and mechanical properties of Co-Cr dental alloys fabricated by different methods. J Prosthet Dent 2018;120:617- 23.
  • Referans3. Özcan M. Fracture reasons in ceramic‐fused‐to‐metal restorations. J Oral Rehabil 2003;30:265-9.
  • Referans4. Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 2005;11:26-36.
  • Referans5. Lee D, Hanawa T, Jang S, Lee H, Hong M, Min BK, et al. Effect of post-sintering conditions on the mechanical properties of a new Co–Cr alloy produced by new subtractive manufacturing. J Nanosci Nanotechnol 2019;19:2395-8.
  • Referans6. Koutsoukis T, Zinelis S, Eliades G, Al‐Wazzan K, Rifaiy MA, Al Jabbari YS. Selective laser melting technique of Co‐Cr dental alloys: a review of structure and properties and comparative analysis with other available techniques. J Prosthodont 2015;24:303-12.
  • Referans7. Bandyopadhyay A, Traxel KD, Avila JD, Mitra I, Bose SC. CoCr Alloys. Wagner WR, Sakiyama-Elbert SE, Zhang G, Yaszemski MJ, Editors. Biomaterials Science: An Introduction to Materials in Medicine. 4th ed. London: Academic Press, an imprint of Elsevier; 2020. p. 257- 269.
  • Referans8. International organization for standardization. ISO 22674: Dentistry – Metallic materials for fixed and removable restorations and appliances. Geneva, Switzerland. 2016. https://www.iso.org/ standard/59620.html
  • Referans9. Walton TR. The up to 25-year survival and clinical performance of 2,340 high gold-based metal-ceramic single crowns. Int J Prosthodont 2013;26:151-60.
  • Referans10. Hitzler L, von Kobylinski J, Lawitzki R, Krempaszky C, Werner E, editors. Microstructural development and mechanical properties of selective laser melted Co–Cr–W dental alloy. TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings; 2020 Feb 23-27; California, USA. New York: Springer; 2020.
  • Referans11. Zhou Y, Wei W, Yan J, Liu W, Li N, Li H, et al. Microstructures and metal-ceramic bond properties of Co-Cr biomedical alloys fabricated by selective laser melting and casting. Mater Sci Eng A 2019;759:594-602.
  • Referans12. International Organization for Standardization. ISO 9693-1: Dentistry compatibility testing-part 1: Metal-ceramic systems. Geneva, Switzerland. 2012. https://www.iso.org/standard/54946. html
  • Referans13. Tonelli L, Fortunato A, Ceschini L. CoCr alloy processed by Selective Laser Melting (SLM): effect of Laser Energy Density on microstructure, surface morphology, and hardness. J Manuf Process. 2020;52:106-19.
  • Referans14. Li J, Chen C, Liao J, Liu L, Ye X, Lin S, et al. Bond strengths of porcelain to cobalt-chromium alloys made by casting, milling, and selective laser melting. J Prosthet Dent 2017;118:69-75.
  • Referans15. Kaleli N, Saraç D. Comparison of porcelain bond strength of different metal frameworks prepared by using conventional and recently introduced fabrication methods. J Prosthet Dent 2017;118:76-82.
  • Referans16. Naylor WP, King, A. H. Introduction to Metal-Ceramic Technology. 3th ed. Hanover Park, Illinois: Quintessence Publishing; 2018. p. 109-117.
  • Referans17. McLean JW. The Science and Art of Dental Ceramics-Volume I: The Nature of Dental Ceramics and Their Clinical Use. 1th ed. Chicago, Illinois: Quintessence Publishing; 1979. p. 71.
  • Referans18. Smith TB, Kelly JR, Tesk JA. In vitro fracture behavior of ceramic and metal‐ceramic restorations. J Prosthodont 1994;3:138-44.
  • Referans19. Wataha JC. Alloys for prosthodontic restorations. J Prosthet Dent 2002;87:351-63.
  • Referans20. Powers JM, Wataha JC. Dental Materials Foundations and Aplications. 11th ed. St. Louis, Missouri: Elsevier Health Sciences; 2015. p. 138- 154.
  • Referans21. Wei W, Zhou Y, Sun Q, Li N, Yan J, Li H, et al. Microstructures and mechanical properties of dental Co-Cr-Mo-W alloys fabricated by selective laser melting at different subsequent heat treatment temperatures. Metall Mater Trans A 2020;51:3205-14.
  • Referans22. Karaali A, Mirouh K, Hamamda S, Guiraldenq P. Effect of tungsten 0–8 wt.% on the oxidation of Co–Cr alloys. Comput Mater Sci 2005;33:37-43.
  • Referans23. Antanasova M, Kocjan A, Žužek B, Jovanovski S, Jevnikar P. The bond strength of dental porcelain to cobalt-chromium alloys fabricated by casting, milling and by selective laser melting: a comparative analysis. Mater Tehnol 2019;53:845-52.
  • Referans24. Dimitriadis K, Papadopoulos T, Agathopoulos S. Effect of bonding agent on metal‐ceramic bond strength between Co‐Cr fabricated with selective laser melting and dental feldspathic porcelain. J Prosthodont 2019;28:1029-36.
  • Referans25. Lawaf S, Nasermostofi S, Afradeh M, Azizi A. Comparison of the bond strength of ceramics to Co-Cr alloys made by castingand selective laser melting. J Adv Prosthodont 2017;9:52-6.
  • Referans26. Kaleli N, Çağrı U, Küçükekenci AS. Lazer tarama hızının lazer sinterleme ile üretilen metal altyapıların porselen bağlantısı üzerindeki etkisi. KOU Sag Bil Derg 2020;6:227-32.
  • Referans27. Kaleli N, Ural Ç, Küçükekenci AS. The effect of layer thickness on the porcelain bond strength of laser-sintered metal frameworks. J Prosthet Dent 2019;122:76-81.
  • Referans28. Külünk T, Kurt M, Ural Ç, Külünk Ş, Baba S. Effect of different air-abrasion particles on metal-ceramic bond strength. J Dent Sci 2011;6:140-6.
  • Referans29. Yu J, Kang S, Lee J, Jeong H, Lee S. Mechanical properties of dental alloys according to manufacturing process. Materials 2021;14:3367-79.
  • Referans30. Zinelis S, Barmpagadaki X, Vergos V, Chakmakchi M, Eliades G. Bond strength and interfacial characterization of eight low fusing porcelains to cp Ti. Dent Mater 2010;26:264-73.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Diş Hekimliği
Bölüm Araştırma Makalesi
Yazarlar

Haydar Albayrak 0000-0002-2833-1317

Aygül Yaprak 0000-0003-2283-6960

Büşra Ekici 0000-0003-3937-5304

Proje Numarası -
Yayımlanma Tarihi 26 Ocak 2024
Gönderilme Tarihi 14 Mart 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 1

Kaynak Göster

Vancouver Albayrak H, Yaprak A, Ekici B. Alaşım Tipinin Seçici Lazer Ergitme ile Üretilmiş Co-Cr Altyapıların Metal-Seramik Bağlantı Dayanımına Etkisi. ADO Klinik Bilimler Dergisi. 2024;13(1):59-67.