Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye'nin Ege Bölgesi’ndeki üç çam türünün yıl içerisindeki gövde büyümesi ve meteorolojik faktörlere tepkisi

Yıl 2025, Cilt: 11 Sayı: 2, 334 - 344, 31.12.2025
https://doi.org/10.53516/ajfr.1730837

Öz

Giriş ve Hedefler Çam ağaçları, Akdeniz ormanlarında ekolojik ve ekonomik açıdan önemli türlerdir; ancak bu ormanlar iklim değişikliği nedeniyle giderek artan kuraklık ve sıcaklık stresine maruz kalmaktadır. Bu anlamda orman dirençliliğini tahmin etmek için türe özgü büyüme tepkilerini anlamak gereklidir. Bu çalışma, Türkiye'nin Ege Bölgesi'ndeki denize yakın düşük rakımlı bir alanda bulunan Pinus brutia ve P. pinea’da ve yüksek rakımlı iki dağlık alanda bulunan P. nigra’da radyal gövde büyüme dinamiklerini ve iklimle ilişkili büyüme tepkilerini analiz etmeyi amaçlamıştır.
Yöntemler 2024 yılı büyüme sezonu boyunca yüksek çözünürlüklü elektronik dendrometrelerle gövde yarıçapı değişiklikleri saatlik olarak kaydedilmiştir. Bu veriler kullanılarak günlük büyüme oranları ile günlük ve mevsimsel büyüme dinamikleri değerlendirilmiştir. Hava sıcaklığı, buhar basıncı açığı (VPD) ve yağışın büyüme olasılığı ve miktarı üzerindeki etkilerini incelemek için iki parçalı istatistiksel modeller uygulanmıştır.
Bulgular Gövde büyümesi denize yakın alanda dağlık alanlara göre bir aydan daha erken başlamıştır. Tüm türler belirgin bir ilkbahar büyümesi gösterirken, yazın ağaçların büyüme seyri türler arasında önemli ölçüde farklılık göstermiştir. P. brutia yaz ve sonbahar boyunca gövde büyümesini sürdürürken P. pinea ve P. nigra çok az miktarda büyüme göstermiştir. Daha yüksek hava sıcaklığı P. brutia ve P. nigra için büyüme olasılığını artırırken, daha yüksek buhar basıncı açığı çoğunlukla büyüme olasılığını ve miktarını azaltmıştır. Yağış, günlük büyüme oranları üzerinde önemli bir etki göstermemiştir.
Sonuçlar Bir yıllık çalışma süresi içinde iklime karşı büyüme tepkileri tür ve bölgeye özgü farklılıklar gösterirken P. brutia’nın kuraklığa karşı daha dayanıklı olduğu görülmüştür. Bu çalışma, yüksek çözünürlüklü dendrometre verilerinin, kısa zaman içerisindeki iklimsel değişkenliğin yıl içi büyüme tepkilerini yakalamada başarılı olduğunu da göstermektedir.

Kaynakça

  • Akkemik, Ü., 2014. Türkiye'nin doğal-egzotik ağaç ve çalıları: Gymnospermler, Angiospermler (AG). TC Orman ve Su İşleri Bakanlığı Orman Genel Müdürlüğü.
  • Aldea, J., Bravo, F., Vázquez-Piqué, J., Rubio-Cuadrado, A., del Río, M., 2018. Species-specific weather response in the daily stem variation cycles of Mediterranean pine-oak mixed stands. Agricultural and Forest Meteorology 256, 220-230.
  • Alizadeh, A., Toudeshki, A., Ehsani, R., Migliaccio, K., Wang, D., 2021. Detecting tree water stress using a trunk relative water content measurement sensor. Smart Agricultural Technology 1, 100003.
  • Anderegg, W.R., Schwalm, C., Biondi, F., Camarero, J.J., Koch, G., Litvak, M., Ogle, K., Shaw, J.D., Shevliakova, E., Williams, A., 2015. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349(6247), 528-532.
  • Atalay, I., Efe, R., 2012. Ecological attributes and distribution of Anatolian black pine [Pinus nigra Arnold. subsp. pallasiana Lamb. Holmboe] in Turkey. Journal of Environmental Biology 33, 505-519.
  • Atalay, İ., Sezer, I., Çukur, H., 1998. Kızılçam (Pinus brutia Ten.) ormanlarının ekolojik özellikleri ve tohum nakli açısından bölgelere ayrılması. Orman Ağaçları ve Tohumları Islah Araştırma Müdürlüğü, Yayın No. 6, Izmir.
  • Batur, M., Özçankaya, N., Özçankaya, İ.M., 2024. Kızılçam (Pinus brutia) ağaçlandırmalarında Çam keseböceği (Thaumetopoea wilkinsoni) zararının ve mücadelesinin büyümeye etkisi. Ormancılık Araştırma Dergisi 11(1), 37-54.
  • Boydak, M., 2004. Silvicultural characteristics and natural regeneration of Pinus brutia Ten.—a review. Plant Ecology 171(1), 153-163.
  • Cabon, A., Fernández‐de‐Uña, L., Gea‐Izquierdo, G., Meinzer, F.C., Woodruff, D.R., Martínez‐Vilalta, J., De Cáceres, M., 2020. Water potential control of turgor‐driven tracheid enlargement in Scots pine at its xeric distribution edge. New Phytologist 225(1), 209-221.
  • Camarero, J.J., Olano, J.M., Parras, A., 2010. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytologist 185(2), 471-480.
  • Dai, A., 2013. Increasing drought under global warming in observations and models. Nature Climate Change 3(1), 52-58.
  • Deligöz, A., Gür, M., 2015. Morphological, physiological and biochemical responses to drought stress of Stone pine (Pinus pinea L.) seedlings. Acta physiologiae plantarum 37, 1-8.
  • Deslauriers, A., Morin, H., 2005. Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees 19(4), 402-408.
  • Deslauriers, A., Morin, H., Urbinati, C., Carrer, M., 2003. Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Quebec (Canada). Trees - Structure and Function 17(6), 477-484.
  • Dirik, H., 1994. Üç yerli çam türünün (Pinus brutia Ten., Pinus nigra Arn. ssr. pallasiana Lam., Pinus pinea L.) kurak peryoddaki transpirasyon tutumlarının ekofizyolojik analizi. Journal of the Faculty of Forestry Istanbul University 44(1), 111-122.
  • Downes, G., Beadle, C., Worledge, D., 1999. Daily stem growth patterns in irrigated Eucalyptus globulus and E. nitens in relation to climate. Trees 14(2), 102-111.
  • Etzold, S., Sterck, F., Bose, A.K., Braun, S., Buchmann, N., Eugster, W., Gessler, A., Kahmen, A., Peters, R.L., Vitasse, Y.J.E.l., 2021. Number of growth days and not length of the growth period determines radial stem growth of temperate trees.
  • Fritts, H., 1976. Tree rings and climate. Academic Press, London, 567 p, London.
  • Gazol, A., Oliva, J., Valeriano, C., Colangelo, M., Camarero, J.J., 2022. Mixed pine forests in a hotter and drier world: The great resilience to drought of Aleppo pine benefits it over other coexisting pine species. Frontiers in Forests and Global Change 5, 899425.
  • González-Zamora, Á., Almendra-Martín, L., de Luis, M., Martínez-Fernández, J., 2021. Influence of soil moisture vs. climatic factors in Pinus halepensis growth variability in Spain: A study with remote sensing and modeled data. Remote Sensing 13(4), 757.
  • Güner, Ş., Çömez, A., Özkan, K., Karataş, R., Çelik, N., 2016. Türkiye’deki karaçam ağaçlandırmalarının verimlilik modellemesi. Journal of the Faculty of Forestry Istanbul University 66(1), 159-172.
  • Güney, A., Cankara, F.G., Bahar, B., 2024. Yüksek hassasiyetli dendrometreler kullanılarak Cedrus libani, Juniperus excelsa ve Pinus brutia’da radyal büyüme ve ağaç su açığının değerlendirilmesi. Turkish Journal of Forestry 25(2), 166-175.
  • Güney, A., Kerr, D., Sökücü, A., Zimmermann, R., Küppers, M., 2015. Cambial activity and xylogenesis in stems of Cedrus libani A. Rich at different altitudes. Botanical Studies 56(1), 20.
  • Güney, A., Küppers, M., Rathgeber, C., Şahin, M., Zimmermann, R., 2017. Intra-annual stem growth dynamics of Lebanon Cedar along climatic gradients. Trees 31, 587–606.
  • Güney, A., Zweifel, R., Türkan, S., Zimmermann, R., Wachendorf, M., Güney, C.O., 2020. Drought responses and their effects on radial stem growth of two co-occurring conifer species in the Mediterranean mountain range. Annals of Forest Science 77(4), 105.
  • Harvey, J.E., Smiljanić, M., Scharnweber, T., Buras, A., Cedro, A., Cruz‐García, R., Drobyshev, I., Janecka, K., Jansons, Ā., Kaczka, R., 2020. Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. Global Change Biology 26(4), 2505-2518.
  • Herzog, K.M., Häsler, R., Thum, R.J.T., 1995. Diurnal changes in the radius of a subalpine Norway spruce stem: their relation to the sap flow and their use to estimate transpiration. 10, 94-101.
  • Huang, J.G., Ma, Q., Rossi, S., Biondi, F., Deslauriers, A., Fonti, P., Liang, E., Makinen, H., Oberhuber, W., Rathgeber, C.B.K., Tognetti, R., Treml, V., Yang, B., Zhang, J.L., Antonucci, S., Bergeron, Y., Camarero, J.J., Campelo, F., Cufar, K., Cuny, H.E., De Luis, M., Giovannelli, A., Gricar, J., Gruber, A., Gryc, V., Guney, A., Guo, X., Huang, W., Jyske, T.,
  • Kaspar, J., King, G., Krause, C., Lemay, A., Liu, F., Lombardi, F., Martinez Del Castillo, E., Morin, H., Nabais, C., Nojd, P., Peters, R.L., Prislan, P., Saracino, A., Swidrak, I., Vavrcik, H., Vieira, J., Yu, B., Zhang, S., Zeng, Q., Zhang, Y., Ziaco, E., 2020. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences 117(34), 20645-20652.
  • Jaouadi, W., Alsubeie, M., Mechergui, K., Naghmouchi, S., 2021. Silviculture of Pinus pinea L. in north Africa and the Mediterranean areas: Current potentiality and economic value. In. Taylor & Francis.
  • Jiang, Y., Wang, B.-Q., Dong, M.-Y., Huang, Y.-M., Wang, M.-C., Wang, B., 2015. Response of daily stem radial growth of Platycladus orientalis to environmental factors in a semi-arid area of North China. Trees 29(1), 87-96.
  • Kılcı, M., Akbin, G., Sayman, M., 2014. Fıstık Çamı (Pinus pinea L.). Ege Ormancılık Araştırma Enstitüsü Müdürlüğü Yayınları, yayın No:74 İzmir.
  • Knüsel, S., Peters, R.L., Haeni, M., Wilhelm, M., Zweifel, R., 2021. Processing and extraction of seasonal tree physiological parameters from stem radius time series. Forests 12(6), 765.
  • Köse, N., Akkemik, Ü., Dalfes, H.N., Özeren, M.S., Tolunay, D.J.D., 2012. Tree-ring growth of Pinus nigra Arn. subsp. pallasiana under different climate conditions throughout western Anatolia. 30(4), 295-301.
  • Meng, S., Fu, X., Zhao, B., Dai, X., Li, Q., Yang, F., Kou, L., Wang, H., 2021. Intra-annual radial growth and its climate response for Masson pine and Chinese fir in subtropical China. Trees 35(6), 1817-1830.
  • Miller, T.W., Stangler, D.F., Larysch, E., Honer, H., Puhlmann, H., Schindler, D., Jung, C., Seifert, T., Rigling, A., Kahle, H.-P., 2023. Later growth onsets or reduced growth rates: What characterises legacy effects at the tree-ring level in conifers after the severe 2018 drought? Science of The Total Environment 854, 158703.
  • Moran, E., Lauder, J., Musser, C., Stathos, A., Shu, M., 2017. The genetics of drought tolerance in conifers. New Phytologist 216(4), 1034-1048.
  • Ne'eman, G., Osem, Y., 2021. Pines and their mixed Forest ecosystems in the Mediterranean Basin. Springer. Özçelik, M.S., Poyatos, R., 2025. Water-use strategies in pines and oaks across biomes are modulated by soil water availability. Tree physiology 45(4), tpaf031.
  • Özturk, T., Ceber, Z.P., Türkeş, M., Kurnaz, M.L., 2015. Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. International Journal of Climatology 35(14), 4276-4292.
  • Pacheco, A., Camarero, J.J., Carrer, M., 2018. Shifts of irrigation in Aleppo pine under semi-arid conditions reveal uncoupled growth and carbon storage and legacy effects on wood anatomy. Agricultural and Forest Meteorology 253, 225-232.
  • Peters, R.L., Steppe, K., Cuny, H.E., De Pauw, D.J., Frank, D.C., Schaub, M., Rathgeber, C.B., Cabon, A., Fonti, P., 2020. Turgor–a limiting factor for radial growth in mature conifers along an elevational gradient. New Phytologist, 229(1), 213-229.
  • Quézel, P., Médail, F., 2003. Ecologie et biogéographie des forêts du bassin méditerranéen. Acta Botanica Malacitana 572, Paris, Elsevier.
  • Rigling, A., Bigler, C., Eilmann, B., Feldmeyer‐Christe, E., Gimmi, U., Ginzler, C., Graf, U., Mayer, P., Vacchiano, G., Weber, P., 2013. Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Global Change Biology 19(1), 229-240.
  • Rossi, S., Deslauriers, A., 2007. Intra-annual time scales in tree rings. Dendrochronologia 25(2), 75-77.
  • Rossi, S., Deslauriers, A., Anfodillo, T., Carraro, V., 2007. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152(1), 1-12.
  • Rossi, S., Deslauriers, A., Griçar, J., Seo, J.-W., Rathgeber, C.B.K., Anfodillo, T., Morin, H., Levanic, T., Oven, P., Jalkanen, R., 2008. Critical temperatures for xylogenesis in conifers of cold climates. Global Ecology and Biogeography 17(6), 696-707.
  • Rubio-Cuadrado, Á., López, R., Rodríguez-Calcerrada, J., Gil, L., 2021. Stress and tree mortality in Mediterranean pine forests: anthropogenic influences. In, Pines and their Mixed Forest Ecosystems in the Mediterranean Basin. Springer, pp. 141-181.
  • Saatçioğlu, F., 1976. Silvikültür I, Silvikültürün Biyolojik Esasları ve Prensipleri. İstanbul Üniversitesi Orman Fakültesi Yayınları, Yayın No: 2187/222, İstanbul.
  • Salomon, R.L., Peters, R.L., Zweifel, R., Sass-Klaassen, U.G.W., Stegehuis, A.I., Smiljanic, M., Poyatos, R., Babst, F., Cienciala, E., Fonti, P., Lerink, B.J.W., Lindner, M., Martinez-Vilalta, J., Mencuccini, M., Nabuurs, G.J., van der Maaten, E., von Arx, G., Bar, A., Akhmetzyanov, L., Balanzategui, D., Bellan, M., Bendix, J., Berveiller, D., Blazenec, M., Cada, V., Carraro, V., Cecchini, S., Chan, T., Conedera, M., Delpierre, N., Delzon, S., Ditmarova, L., Dolezal, J., Dufrene, E., Edvardsson, J., Ehekircher, S., Forner, A., Frouz, J., Ganthaler, A., Gryc, V., Guney, A., Heinrich, I.,
  • Hentschel, R., Janda, P., Jezik, M., Kahle, H.P., Knusel, S., Krejza, J., Kuberski, L., Kucera, J., Lebourgeois, F., Mikolas, M., Matula, R., Mayr, S., Oberhuber, W., Obojes, N., Osborne, B., Paljakka, T., Plichta, R., Rabbel, I., Rathgeber, C.B.K., Salmon, Y., Saunders, M., Scharnweber, T., Sitkova, Z., Stangler, D.F., Sterenczak, K., Stojanovic, M., Strelcova, K., Svetlik, J., Svoboda, M., Tobin, B., Trotsiuk, V., Urban, J., Valladares, F., Vavrcik, H., Vejpustkova, M., Walthert, L., Wilmking, M., Zin, E., Zou, J., Steppe, K., 2022. The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nature Communications 13(1), 28.
  • Steppe, K., Sterck, F., Deslauriers, A., 2015. Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends in plant science 20(6), 335-343.
  • Touchan, R., Anchukaitis, K.J., Shishov, V.V., Sivrikaya, F., Attieh, J., Ketmen, M., Stephan, J., Mitsopoulos, I., Christou, A., Meko, D.M., 2014. Spatial patterns of eastern Mediterranean climate influence on tree growth. The Holocene 24(4), 381-392.
  • Turkish General Directorate of Forestry, 2023. Orman Genel Müdürlüğü. Ormancılık İstatistikleri (Forestry Statistics).
  • Vieira, J., Rossi, S., Campelo, F., Freitas, H., Nabais, C., 2013. Seasonal and daily cycles of stem radial variation of Pinus pinaster in a drought-prone environment. Agricultural and forest meteorology 180, 173-181.
  • Wang, X., Zhang, Q., 2023. Interspecific Differences of Stem Diameter Variations in Response to Water Conditions for Six Tree Species in Northeast China. Forests 14(4), 805.
  • Yaltırık, F., Boydak, M., 2000. A New Variety of Calabrian Pine (Pinus brutia Ten.) From Anatolia (Anadolu’da Saptanan Yeni Bir Kızılçam Varyetesi). The Karaca Arboretum Magazine 5 (4), 173-180.
  • Ziaco, E., Biondi, F., 2016. Tree growth, cambial phenology, and wood anatomy of limber pine at a Great Basin (USA) mountain observatory. Trees, 1-15.
  • Zweifel, R., Haeni, M., Buchmann, N., Eugster, W., 2016. Are trees able to grow in periods of stem shrinkage? New Phytologist, 211, 839–849.
  • Zweifel, R., Sterck, F., Braun, S., Buchmann, N., Eugster, W., Gessler, A., Häni, M., Peters, R.L., Walthert, L., Wilhelm, M., 2021. Why trees grow at night. New Phytologist 231(6), 2174-2185.
  • Zweifel, R., Zimmermann, L., Zeugin, F., Newbery, D.M., 2006. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. Journal of experimental botany 57(6), 1445-1459.

Intra-annual stem growth and response to meteorological factors in three pine species from the Aegean Region of Türkiye

Yıl 2025, Cilt: 11 Sayı: 2, 334 - 344, 31.12.2025
https://doi.org/10.53516/ajfr.1730837

Öz

Background and Aims Pines are ecologically and economically important in Mediterranean forests, which are increasingly exposed to drought and heat stress due to climate change. Understanding species-specific growth responses is important for predicting forest resilience. This study aimed to analyze radial stem growth dynamics and climate-growth responses in Pinus brutia and P. pinea at a low-elevation coastal site, and P. nigra at two montane sites in the Aegean region of Türkiye.
Methods High-resolution electronic dendrometers recorded stem radius changes hourly during the 2024 growing season. These data were used to assess daily growth rates, as well as diurnal and seasonal growth dynamics. Two-part statistical models were applied to evaluate the effects of air temperature, vapor pressure deficit, and precipitation on growth likelihood and amount.
Results Growth onset occurred more than one month earlier at the coastal site than at the montane sites. All species showed pronounced spring growth, but summer patterns differed notably. P. brutia maintained stem growth during both summer and autumn, whereas P. pinea and P. nigra showed very limited growth. Higher air temperatures increased growth probability in P. brutia and P. nigra, whereas higher vapor pressure deficit reduced both the likelihood and amount of growth across most sites. Precipitation had no significant effect on daily growth rates.
Conclusions During the study year, growth responses were strongly species- and site-specific, with P. brutia exhibiting greater drought tolerance. This study highlights the value of high-resolution dendrometer data in capturing intra-annual growth responses to short-term climatic variability.

Teşekkür

I am grateful to the Aegean Forestry Research Institute for their support and for granting permission to install one of the monitoring sites within their pine plantation. I also sincerely thank the General Directorate of Nature Conservation and National Parks, as well as the staff at Spil Mountain National Park, for allowing access to the study areas and for their assistance within the park. Special thanks go to those who contributed to the installation and maintenance of the dendrometers. I also acknowledge the Turkish State Meteorological Service for providing meteorological data used in this study.

Kaynakça

  • Akkemik, Ü., 2014. Türkiye'nin doğal-egzotik ağaç ve çalıları: Gymnospermler, Angiospermler (AG). TC Orman ve Su İşleri Bakanlığı Orman Genel Müdürlüğü.
  • Aldea, J., Bravo, F., Vázquez-Piqué, J., Rubio-Cuadrado, A., del Río, M., 2018. Species-specific weather response in the daily stem variation cycles of Mediterranean pine-oak mixed stands. Agricultural and Forest Meteorology 256, 220-230.
  • Alizadeh, A., Toudeshki, A., Ehsani, R., Migliaccio, K., Wang, D., 2021. Detecting tree water stress using a trunk relative water content measurement sensor. Smart Agricultural Technology 1, 100003.
  • Anderegg, W.R., Schwalm, C., Biondi, F., Camarero, J.J., Koch, G., Litvak, M., Ogle, K., Shaw, J.D., Shevliakova, E., Williams, A., 2015. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349(6247), 528-532.
  • Atalay, I., Efe, R., 2012. Ecological attributes and distribution of Anatolian black pine [Pinus nigra Arnold. subsp. pallasiana Lamb. Holmboe] in Turkey. Journal of Environmental Biology 33, 505-519.
  • Atalay, İ., Sezer, I., Çukur, H., 1998. Kızılçam (Pinus brutia Ten.) ormanlarının ekolojik özellikleri ve tohum nakli açısından bölgelere ayrılması. Orman Ağaçları ve Tohumları Islah Araştırma Müdürlüğü, Yayın No. 6, Izmir.
  • Batur, M., Özçankaya, N., Özçankaya, İ.M., 2024. Kızılçam (Pinus brutia) ağaçlandırmalarında Çam keseböceği (Thaumetopoea wilkinsoni) zararının ve mücadelesinin büyümeye etkisi. Ormancılık Araştırma Dergisi 11(1), 37-54.
  • Boydak, M., 2004. Silvicultural characteristics and natural regeneration of Pinus brutia Ten.—a review. Plant Ecology 171(1), 153-163.
  • Cabon, A., Fernández‐de‐Uña, L., Gea‐Izquierdo, G., Meinzer, F.C., Woodruff, D.R., Martínez‐Vilalta, J., De Cáceres, M., 2020. Water potential control of turgor‐driven tracheid enlargement in Scots pine at its xeric distribution edge. New Phytologist 225(1), 209-221.
  • Camarero, J.J., Olano, J.M., Parras, A., 2010. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytologist 185(2), 471-480.
  • Dai, A., 2013. Increasing drought under global warming in observations and models. Nature Climate Change 3(1), 52-58.
  • Deligöz, A., Gür, M., 2015. Morphological, physiological and biochemical responses to drought stress of Stone pine (Pinus pinea L.) seedlings. Acta physiologiae plantarum 37, 1-8.
  • Deslauriers, A., Morin, H., 2005. Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees 19(4), 402-408.
  • Deslauriers, A., Morin, H., Urbinati, C., Carrer, M., 2003. Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Quebec (Canada). Trees - Structure and Function 17(6), 477-484.
  • Dirik, H., 1994. Üç yerli çam türünün (Pinus brutia Ten., Pinus nigra Arn. ssr. pallasiana Lam., Pinus pinea L.) kurak peryoddaki transpirasyon tutumlarının ekofizyolojik analizi. Journal of the Faculty of Forestry Istanbul University 44(1), 111-122.
  • Downes, G., Beadle, C., Worledge, D., 1999. Daily stem growth patterns in irrigated Eucalyptus globulus and E. nitens in relation to climate. Trees 14(2), 102-111.
  • Etzold, S., Sterck, F., Bose, A.K., Braun, S., Buchmann, N., Eugster, W., Gessler, A., Kahmen, A., Peters, R.L., Vitasse, Y.J.E.l., 2021. Number of growth days and not length of the growth period determines radial stem growth of temperate trees.
  • Fritts, H., 1976. Tree rings and climate. Academic Press, London, 567 p, London.
  • Gazol, A., Oliva, J., Valeriano, C., Colangelo, M., Camarero, J.J., 2022. Mixed pine forests in a hotter and drier world: The great resilience to drought of Aleppo pine benefits it over other coexisting pine species. Frontiers in Forests and Global Change 5, 899425.
  • González-Zamora, Á., Almendra-Martín, L., de Luis, M., Martínez-Fernández, J., 2021. Influence of soil moisture vs. climatic factors in Pinus halepensis growth variability in Spain: A study with remote sensing and modeled data. Remote Sensing 13(4), 757.
  • Güner, Ş., Çömez, A., Özkan, K., Karataş, R., Çelik, N., 2016. Türkiye’deki karaçam ağaçlandırmalarının verimlilik modellemesi. Journal of the Faculty of Forestry Istanbul University 66(1), 159-172.
  • Güney, A., Cankara, F.G., Bahar, B., 2024. Yüksek hassasiyetli dendrometreler kullanılarak Cedrus libani, Juniperus excelsa ve Pinus brutia’da radyal büyüme ve ağaç su açığının değerlendirilmesi. Turkish Journal of Forestry 25(2), 166-175.
  • Güney, A., Kerr, D., Sökücü, A., Zimmermann, R., Küppers, M., 2015. Cambial activity and xylogenesis in stems of Cedrus libani A. Rich at different altitudes. Botanical Studies 56(1), 20.
  • Güney, A., Küppers, M., Rathgeber, C., Şahin, M., Zimmermann, R., 2017. Intra-annual stem growth dynamics of Lebanon Cedar along climatic gradients. Trees 31, 587–606.
  • Güney, A., Zweifel, R., Türkan, S., Zimmermann, R., Wachendorf, M., Güney, C.O., 2020. Drought responses and their effects on radial stem growth of two co-occurring conifer species in the Mediterranean mountain range. Annals of Forest Science 77(4), 105.
  • Harvey, J.E., Smiljanić, M., Scharnweber, T., Buras, A., Cedro, A., Cruz‐García, R., Drobyshev, I., Janecka, K., Jansons, Ā., Kaczka, R., 2020. Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. Global Change Biology 26(4), 2505-2518.
  • Herzog, K.M., Häsler, R., Thum, R.J.T., 1995. Diurnal changes in the radius of a subalpine Norway spruce stem: their relation to the sap flow and their use to estimate transpiration. 10, 94-101.
  • Huang, J.G., Ma, Q., Rossi, S., Biondi, F., Deslauriers, A., Fonti, P., Liang, E., Makinen, H., Oberhuber, W., Rathgeber, C.B.K., Tognetti, R., Treml, V., Yang, B., Zhang, J.L., Antonucci, S., Bergeron, Y., Camarero, J.J., Campelo, F., Cufar, K., Cuny, H.E., De Luis, M., Giovannelli, A., Gricar, J., Gruber, A., Gryc, V., Guney, A., Guo, X., Huang, W., Jyske, T.,
  • Kaspar, J., King, G., Krause, C., Lemay, A., Liu, F., Lombardi, F., Martinez Del Castillo, E., Morin, H., Nabais, C., Nojd, P., Peters, R.L., Prislan, P., Saracino, A., Swidrak, I., Vavrcik, H., Vieira, J., Yu, B., Zhang, S., Zeng, Q., Zhang, Y., Ziaco, E., 2020. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences 117(34), 20645-20652.
  • Jaouadi, W., Alsubeie, M., Mechergui, K., Naghmouchi, S., 2021. Silviculture of Pinus pinea L. in north Africa and the Mediterranean areas: Current potentiality and economic value. In. Taylor & Francis.
  • Jiang, Y., Wang, B.-Q., Dong, M.-Y., Huang, Y.-M., Wang, M.-C., Wang, B., 2015. Response of daily stem radial growth of Platycladus orientalis to environmental factors in a semi-arid area of North China. Trees 29(1), 87-96.
  • Kılcı, M., Akbin, G., Sayman, M., 2014. Fıstık Çamı (Pinus pinea L.). Ege Ormancılık Araştırma Enstitüsü Müdürlüğü Yayınları, yayın No:74 İzmir.
  • Knüsel, S., Peters, R.L., Haeni, M., Wilhelm, M., Zweifel, R., 2021. Processing and extraction of seasonal tree physiological parameters from stem radius time series. Forests 12(6), 765.
  • Köse, N., Akkemik, Ü., Dalfes, H.N., Özeren, M.S., Tolunay, D.J.D., 2012. Tree-ring growth of Pinus nigra Arn. subsp. pallasiana under different climate conditions throughout western Anatolia. 30(4), 295-301.
  • Meng, S., Fu, X., Zhao, B., Dai, X., Li, Q., Yang, F., Kou, L., Wang, H., 2021. Intra-annual radial growth and its climate response for Masson pine and Chinese fir in subtropical China. Trees 35(6), 1817-1830.
  • Miller, T.W., Stangler, D.F., Larysch, E., Honer, H., Puhlmann, H., Schindler, D., Jung, C., Seifert, T., Rigling, A., Kahle, H.-P., 2023. Later growth onsets or reduced growth rates: What characterises legacy effects at the tree-ring level in conifers after the severe 2018 drought? Science of The Total Environment 854, 158703.
  • Moran, E., Lauder, J., Musser, C., Stathos, A., Shu, M., 2017. The genetics of drought tolerance in conifers. New Phytologist 216(4), 1034-1048.
  • Ne'eman, G., Osem, Y., 2021. Pines and their mixed Forest ecosystems in the Mediterranean Basin. Springer. Özçelik, M.S., Poyatos, R., 2025. Water-use strategies in pines and oaks across biomes are modulated by soil water availability. Tree physiology 45(4), tpaf031.
  • Özturk, T., Ceber, Z.P., Türkeş, M., Kurnaz, M.L., 2015. Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. International Journal of Climatology 35(14), 4276-4292.
  • Pacheco, A., Camarero, J.J., Carrer, M., 2018. Shifts of irrigation in Aleppo pine under semi-arid conditions reveal uncoupled growth and carbon storage and legacy effects on wood anatomy. Agricultural and Forest Meteorology 253, 225-232.
  • Peters, R.L., Steppe, K., Cuny, H.E., De Pauw, D.J., Frank, D.C., Schaub, M., Rathgeber, C.B., Cabon, A., Fonti, P., 2020. Turgor–a limiting factor for radial growth in mature conifers along an elevational gradient. New Phytologist, 229(1), 213-229.
  • Quézel, P., Médail, F., 2003. Ecologie et biogéographie des forêts du bassin méditerranéen. Acta Botanica Malacitana 572, Paris, Elsevier.
  • Rigling, A., Bigler, C., Eilmann, B., Feldmeyer‐Christe, E., Gimmi, U., Ginzler, C., Graf, U., Mayer, P., Vacchiano, G., Weber, P., 2013. Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Global Change Biology 19(1), 229-240.
  • Rossi, S., Deslauriers, A., 2007. Intra-annual time scales in tree rings. Dendrochronologia 25(2), 75-77.
  • Rossi, S., Deslauriers, A., Anfodillo, T., Carraro, V., 2007. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152(1), 1-12.
  • Rossi, S., Deslauriers, A., Griçar, J., Seo, J.-W., Rathgeber, C.B.K., Anfodillo, T., Morin, H., Levanic, T., Oven, P., Jalkanen, R., 2008. Critical temperatures for xylogenesis in conifers of cold climates. Global Ecology and Biogeography 17(6), 696-707.
  • Rubio-Cuadrado, Á., López, R., Rodríguez-Calcerrada, J., Gil, L., 2021. Stress and tree mortality in Mediterranean pine forests: anthropogenic influences. In, Pines and their Mixed Forest Ecosystems in the Mediterranean Basin. Springer, pp. 141-181.
  • Saatçioğlu, F., 1976. Silvikültür I, Silvikültürün Biyolojik Esasları ve Prensipleri. İstanbul Üniversitesi Orman Fakültesi Yayınları, Yayın No: 2187/222, İstanbul.
  • Salomon, R.L., Peters, R.L., Zweifel, R., Sass-Klaassen, U.G.W., Stegehuis, A.I., Smiljanic, M., Poyatos, R., Babst, F., Cienciala, E., Fonti, P., Lerink, B.J.W., Lindner, M., Martinez-Vilalta, J., Mencuccini, M., Nabuurs, G.J., van der Maaten, E., von Arx, G., Bar, A., Akhmetzyanov, L., Balanzategui, D., Bellan, M., Bendix, J., Berveiller, D., Blazenec, M., Cada, V., Carraro, V., Cecchini, S., Chan, T., Conedera, M., Delpierre, N., Delzon, S., Ditmarova, L., Dolezal, J., Dufrene, E., Edvardsson, J., Ehekircher, S., Forner, A., Frouz, J., Ganthaler, A., Gryc, V., Guney, A., Heinrich, I.,
  • Hentschel, R., Janda, P., Jezik, M., Kahle, H.P., Knusel, S., Krejza, J., Kuberski, L., Kucera, J., Lebourgeois, F., Mikolas, M., Matula, R., Mayr, S., Oberhuber, W., Obojes, N., Osborne, B., Paljakka, T., Plichta, R., Rabbel, I., Rathgeber, C.B.K., Salmon, Y., Saunders, M., Scharnweber, T., Sitkova, Z., Stangler, D.F., Sterenczak, K., Stojanovic, M., Strelcova, K., Svetlik, J., Svoboda, M., Tobin, B., Trotsiuk, V., Urban, J., Valladares, F., Vavrcik, H., Vejpustkova, M., Walthert, L., Wilmking, M., Zin, E., Zou, J., Steppe, K., 2022. The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nature Communications 13(1), 28.
  • Steppe, K., Sterck, F., Deslauriers, A., 2015. Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends in plant science 20(6), 335-343.
  • Touchan, R., Anchukaitis, K.J., Shishov, V.V., Sivrikaya, F., Attieh, J., Ketmen, M., Stephan, J., Mitsopoulos, I., Christou, A., Meko, D.M., 2014. Spatial patterns of eastern Mediterranean climate influence on tree growth. The Holocene 24(4), 381-392.
  • Turkish General Directorate of Forestry, 2023. Orman Genel Müdürlüğü. Ormancılık İstatistikleri (Forestry Statistics).
  • Vieira, J., Rossi, S., Campelo, F., Freitas, H., Nabais, C., 2013. Seasonal and daily cycles of stem radial variation of Pinus pinaster in a drought-prone environment. Agricultural and forest meteorology 180, 173-181.
  • Wang, X., Zhang, Q., 2023. Interspecific Differences of Stem Diameter Variations in Response to Water Conditions for Six Tree Species in Northeast China. Forests 14(4), 805.
  • Yaltırık, F., Boydak, M., 2000. A New Variety of Calabrian Pine (Pinus brutia Ten.) From Anatolia (Anadolu’da Saptanan Yeni Bir Kızılçam Varyetesi). The Karaca Arboretum Magazine 5 (4), 173-180.
  • Ziaco, E., Biondi, F., 2016. Tree growth, cambial phenology, and wood anatomy of limber pine at a Great Basin (USA) mountain observatory. Trees, 1-15.
  • Zweifel, R., Haeni, M., Buchmann, N., Eugster, W., 2016. Are trees able to grow in periods of stem shrinkage? New Phytologist, 211, 839–849.
  • Zweifel, R., Sterck, F., Braun, S., Buchmann, N., Eugster, W., Gessler, A., Häni, M., Peters, R.L., Walthert, L., Wilhelm, M., 2021. Why trees grow at night. New Phytologist 231(6), 2174-2185.
  • Zweifel, R., Zimmermann, L., Zeugin, F., Newbery, D.M., 2006. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. Journal of experimental botany 57(6), 1445-1459.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ağaç Beslenme ve Fizyolojisi
Bölüm Araştırma Makalesi
Yazarlar

Aylin Güney 0000-0002-8955-2770

Gönderilme Tarihi 30 Haziran 2025
Kabul Tarihi 6 Ekim 2025
Erken Görünüm Tarihi 11 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 2

Kaynak Göster

APA Güney, A. (2025). Intra-annual stem growth and response to meteorological factors in three pine species from the Aegean Region of Türkiye. Anadolu Orman Araştırmaları Dergisi, 11(2), 334-344. https://doi.org/10.53516/ajfr.1730837
AMA Güney A. Intra-annual stem growth and response to meteorological factors in three pine species from the Aegean Region of Türkiye. AOAD. Aralık 2025;11(2):334-344. doi:10.53516/ajfr.1730837
Chicago Güney, Aylin. “Intra-annual stem growth and response to meteorological factors in three pine species from the Aegean Region of Türkiye”. Anadolu Orman Araştırmaları Dergisi 11, sy. 2 (Aralık 2025): 334-44. https://doi.org/10.53516/ajfr.1730837.
EndNote Güney A (01 Aralık 2025) Intra-annual stem growth and response to meteorological factors in three pine species from the Aegean Region of Türkiye. Anadolu Orman Araştırmaları Dergisi 11 2 334–344.
IEEE A. Güney, “Intra-annual stem growth and response to meteorological factors in three pine species from the Aegean Region of Türkiye”, AOAD, c. 11, sy. 2, ss. 334–344, 2025, doi: 10.53516/ajfr.1730837.
ISNAD Güney, Aylin. “Intra-annual stem growth and response to meteorological factors in three pine species from the Aegean Region of Türkiye”. Anadolu Orman Araştırmaları Dergisi 11/2 (Aralık2025), 334-344. https://doi.org/10.53516/ajfr.1730837.
JAMA Güney A. Intra-annual stem growth and response to meteorological factors in three pine species from the Aegean Region of Türkiye. AOAD. 2025;11:334–344.
MLA Güney, Aylin. “Intra-annual stem growth and response to meteorological factors in three pine species from the Aegean Region of Türkiye”. Anadolu Orman Araştırmaları Dergisi, c. 11, sy. 2, 2025, ss. 334-4, doi:10.53516/ajfr.1730837.
Vancouver Güney A. Intra-annual stem growth and response to meteorological factors in three pine species from the Aegean Region of Türkiye. AOAD. 2025;11(2):334-4.