Araştırma Makalesi
BibTex RIS Kaynak Göster

Kırmızı ve Yeşil Mercimekten Elde Edilen Diyet Liflerinin Karakterizasyonu ve Fonksiyonel Özellikleri

Yıl 2018, , 135 - 147, 05.08.2018
https://doi.org/10.24323/akademik-gida.449600

Öz

Bu çalışmada, kırmızı ve yeşil mercimeklerin içerdikleri diyet
liflerinin taneden izole edilmesi ve mercimek diyet liflerinin gıda ürünlerinde
fonksiyonel bileşen olarak kullanılabilirliğinin belirlenmesi amaçlanmıştır. Mercimekteki
diyet liflerini (kabuk diyet lifleri, çözünür olmayan kotiledon diyet lifleri
ve çözünür kotiledon diyet liflerini) elde etmek üzere üç farklı yöntem
uygulanmıştır.
Elde edilen liflerin kompozisyonu ve verimi yanı sıra su tutma
kapasitesi, yağ tutma kapasitesi, emülsiyon oluşturma kapasitesi ve şişme
kapasitesi gibi fonksiyonel özellikleri araştırılmıştır.
Ayrıca, elde edilen
liflerin termal özellikleri de Diferansiyel Taramalı Kalorimetre (DSC) cihazı
ile belirlenmiştir
. Yeşil mercimek ununun %6.83’ü kabuk diyet lifi,
%1.78’i çözünür olmayan kotiledon diyet lifi, %8.00’i ise çözünür kotiledon
diyet lifi olarak izole edilmiştir. Kırmızı mercimek ununun ise %5.16’sı kabuk
diyet lifi, %0.62’si çözünür olmayan kotiledon diyet lifi, %7.08’i çözünür
kotiledon diyet lifi olarak izole edilmiştir. Kotiledon unundan çözünür olmayan
diyet lifi eldesinin kırmızı mercimekte yeşil mercimeğe göre daha düşük verimli
olduğu görülmüştür. Yeşil mercimekten elde edilen liflerde toplam diyet lifi
içerikleri; kabuk lifleri, çözünür kotiledon diyet lifleri ve çözünür olmayan
kotiledon diyet lifleri için sırasıyla; %23.76, 11.51 ve 72.81 olarak
bulunmuştur. Kırmızı mercimek için ise sırasıyla; %20.30, 11.06 ve 43.68 olarak
elde edilmiştir. Diyet liflerinin fonksiyonel özellikleri incelendiğinde, çözünür
olmayan kotiledon diyet liflerinin diğer izole diyet liflerine kıyasla daha
yüksek su tutma, yağ tutma ve şişme kapasitesi gösterdiği belirlenmiştir.
Emülsiyon oluşturma kapasiteleri mercimek diyet lifleri için genel olarak zayıf
bulunmuştur, ancak çözünür kotiledon diyet liflerinin emülsiyon oluşturma
kapasitelerinin çözünür olmayan kotiledon diyet lifleri ve kabuk diyet
liflerine kıyasla daha yüksek olduğu görülmüştür.

Kaynakça

  • [1] Amarowicz, R., Estrella, I., Hernández, T., Robredo, S., Troszyńska, A., Kosińska, A., Pegg, R.B. (2010). Free radical-scavenging capacity, antioxidant activity, and phenolic composition of green lentil (Lens culinaris). Food Chemistry, 121(3), 705-711.
  • [2] Derbyshire, E. (2011). The Nutritional Value of Whole Pulses and Pulse Fractions. In: Pulse Foods Processing, Quality and Nutraceutical Applications, Edited by B. Tiwari, A. Gowen, & B. McKenna. Academic Press; San Diego, CA: pp. 363-383.
  • [3] De Almeida Costa, G.E., Da Silva Queiroz-Monici, K., Pissini Machado Reis, S.M., De Oliveira, A.C. (2006). Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chemistry, 94(3), 327-330.
  • [4] Brummer, Y., Kaviani, M.,Tosh, S.M. (2015). Structural and functional characteristics of dietary fibre in beans, lentils, peas and chickpeas. Food Research International, 67, 117-125.
  • [5] Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing. Food Chemistry, 124(2), 411-421.
  • [6] Lee, Y.P., Puddey, I.B., Hodgson, J.M. (2008). Protein, fibre and blood pressure: Potential benefit of legumes. Clinical and Experimental Pharmacology and Physiology, 35(4), 473-476.
  • [7] Berrios, J.D.J., Morales, P., Cámara, M., Sánchez-Mata, M.C. (2010). Carbohydrate composition of raw and extruded pulse flours. Food Research International, 43(2), 531-536.
  • [8] Anderson, J.W., Story, L., Sieling, B., Chen, W.J.L. (1984). Hypocholesterolemic effects of high-fibre diets rich in water-soluble plant fibres. Journal of the Canadian Dietetic Association, 47, 140-148.
  • [9] Lattimer, J.M., Haub, M.D. (2010). Effects of dietary fiber and its components on metabolic health. Nutrients, 2(12), 1266-1289. [10] Abdul-Hamid, A., Luan, Y.S. (2000). Functional properties of dietary fibre prepared from defatted rice bran. Food Chemistry, 68(1), 15-19.
  • [11] Khan, A.R., Alam, S., Ali, S., Bibi, S., Khalil dan, I.A. (2007). Dietary Fiber Profile of Food Legumes. Sarhad Journal of Agriculture, 23(3), 763-766.
  • [12] Tosh, S.M., Yada, S. (2010). Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Research International, 43(2), 450-460.
  • [13] Meuser, F., Pahne, N., Möller M. (1997). Yield of starch and by-products in the processing of different varieties of wrinkled peas on a pilot scale. Cereal Chemistry, 74, 364-370.
  • [14] Otto, T., Baik, B.K., Czuchajowska, Z., 1997. Microstructure of seed, flours, and starches of legumes. Cereal Chemistry, 74, 445-451.
  • [15] Dalgetty, D.D., Baik, B.K. (2003). Isolation and characterization of cotyledon fibers from peas, lentils, and chickpeas. Cereal Chemistry, 80(3), 310-315.
  • [16] Chiou, D., Langrish, T.A.G. (2007). Development and characterisation of novel nutraceuticals with spray drying technology. Journal of Food Engineering, 82(1), 84-91.
  • [17] Sánchez-Mata, M.C.J.P.T.M., Cámara-Hurtado, M., Díez-Marquéz, C., Torija-Isasa, M.E. (1998). Determination of mono-, di-, and oligosaccharides in legumes by high-performance liquid chromatography using an amino-bonded silica column. Journal of Agricultural and Food Chemistry, 46(98), 3648-3652.
  • [18] McConnell, A.A., Eastwood, M.A., Mitchell, W.D. (1974). Physical characteristics of vegetable foodstuffs that could influence bowel function. Journal of the Science of Food and Agriculture, 25, 1457-1461.
  • [19] Chau, C.F., Cheung, P.C.K., Wong, Y.S. (1997). Functional properties of protein concentrates from three Chinese indigenous legume seeds. Journal of Agricultural and Food Chemistry, 45(7), 2500-2503.
  • [20] Betancur-Ancona, D., Peraza-Mercado, G., Moguel-Ordoñez, Y., Fuertes-Blanco, S. (2004). Physicochemical characterization of lima bean (Phaseolus lunatus) and Jack bean (Canavalia ensiformis) fibrous residues. Food Chemistry, 84(2), 287-295.
  • [21] Yasumatsu, K., Sawada, K., Moritaka, S., Misaki, M., Toda, J., Wada, T., Ishii, K. (1972). Whipping and emulsifying properties of soybean products. Agricultural and Biological Chemistry, 36(5), 719-727.
  • [22] Kaur, A., Singh, N., Ezekiel, R., Sodhi, N.S. (2009). Properties of starches separated from potatoes stored under different conditions. Food Chemistry, 114(4), 1396-1404.
  • [23] Carbonaro, M. (2011). Role of Pulses in Nutraceuticals. In: Pulse Foods: Processing, Quality and Nutraceutical Applications. Edited by: B. Tiwari, A. Gowen, & B. McKenna. Academic Press; New York: pp.385-418.
  • [24] Han, I.H., Baik, B.K. (2006). Oligosaccharide content and composition of legumes and their reduction by soaking, cooking, ultrasound and high hydrostatic pressure. Cereal Chemistry, 83, 428-433.
  • [25] Vaikousi, H., Biliaderis, C.G., Izydorczyk, M.S. (2004). Solution flow behavior and gelling properties of water-soluble barley (1→3,1→4)-β-glucans varying in molecular size. Journal of Cereal Science, 39(1), 119-137.
  • [26] Miao, M., Zhang, T. Jiang, B. (2009). Characterisations of kabuli and desi chickpea starches cultivated in China. Food Chemistry, 113, 1025-1032.
  • [27] Lazaridou, A., Biliaderis, C.G., Izydorczyk, M.S. (2003). Molecular size effects on rheological properties of oat beta-glucans in solution and gels. Food Hydrocolloids, 17(5), 693-712.
  • [28] Li, W., Cui, S.W., Kakuda Y. (2006). Extraction, fractionation, structural and physical characterization of wheat β-glucans. Carbohydrate Polymers, 63, 408-416.
  • [29] Zhang, M., Bai, X., Zhang, Z. (2011). Extrusion process improves the functionality of soluble dietary fiber in oat bran. Journal of Cereal Science, 54(1), 98-103.

Characterization and Functional Properties of Dietary Fibers Isolated from Red and Green Lentils

Yıl 2018, , 135 - 147, 05.08.2018
https://doi.org/10.24323/akademik-gida.449600

Öz

In this study, dietary fiber fractions of red and green lentils were
isolated, and their potential uses in food products as functional ingredients were
determined. During the isolation of dietary fiber fractions, three different
methods were used, and three different dietary fiber fractions (hull fiber,
insoluble cotyledon fiber and soluble cotyledon fiber) were obtained. Besides
the composition and yield of the isolated fibers, their functional properties
such as water holding capacity, oil holding capacity, emulsion formation
ability and swelling power were also determined. On the other hand, thermal
properties of the isolated fibers were determined by the DSC method. From green
lentil flour, 6.83% hull fiber, 1.78% insoluble cotyledon fiber and 8.00%
soluble cotyledon fiber were obtained while 5.16%, hull fiber, 0.62% insoluble cotyledon
fiber and 7.08% soluble cotyledon fiber were isolated from red lentil flour. Yield
for cotyledon insoluble fiber from red lentils were lower than the yield of
cotyledon insoluble fiber from green lentils. Total dietary fiber contents for
the hull fiber, soluble cotyledon fiber and insoluble cotyledon fiber
ingredients isolated from green lentils were 23.76, 2.51 and 72.81% whereas for
red lentils these values were 20.30, 11.06 and 43.68%, respectively. For the functional
properties of dietary fibers, insoluble cotyledon dietary fibers showed higher
water holding, fat retention and swelling capacities than other dietary fiber
fractions. Emulsion forming capacity was generally weak for lentil fibers. But,
the emulsion forming capacity of soluble cotyledon fibers were greater than
insoluble cotyledon fiber and hull fiber ingredients.

Kaynakça

  • [1] Amarowicz, R., Estrella, I., Hernández, T., Robredo, S., Troszyńska, A., Kosińska, A., Pegg, R.B. (2010). Free radical-scavenging capacity, antioxidant activity, and phenolic composition of green lentil (Lens culinaris). Food Chemistry, 121(3), 705-711.
  • [2] Derbyshire, E. (2011). The Nutritional Value of Whole Pulses and Pulse Fractions. In: Pulse Foods Processing, Quality and Nutraceutical Applications, Edited by B. Tiwari, A. Gowen, & B. McKenna. Academic Press; San Diego, CA: pp. 363-383.
  • [3] De Almeida Costa, G.E., Da Silva Queiroz-Monici, K., Pissini Machado Reis, S.M., De Oliveira, A.C. (2006). Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chemistry, 94(3), 327-330.
  • [4] Brummer, Y., Kaviani, M.,Tosh, S.M. (2015). Structural and functional characteristics of dietary fibre in beans, lentils, peas and chickpeas. Food Research International, 67, 117-125.
  • [5] Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing. Food Chemistry, 124(2), 411-421.
  • [6] Lee, Y.P., Puddey, I.B., Hodgson, J.M. (2008). Protein, fibre and blood pressure: Potential benefit of legumes. Clinical and Experimental Pharmacology and Physiology, 35(4), 473-476.
  • [7] Berrios, J.D.J., Morales, P., Cámara, M., Sánchez-Mata, M.C. (2010). Carbohydrate composition of raw and extruded pulse flours. Food Research International, 43(2), 531-536.
  • [8] Anderson, J.W., Story, L., Sieling, B., Chen, W.J.L. (1984). Hypocholesterolemic effects of high-fibre diets rich in water-soluble plant fibres. Journal of the Canadian Dietetic Association, 47, 140-148.
  • [9] Lattimer, J.M., Haub, M.D. (2010). Effects of dietary fiber and its components on metabolic health. Nutrients, 2(12), 1266-1289. [10] Abdul-Hamid, A., Luan, Y.S. (2000). Functional properties of dietary fibre prepared from defatted rice bran. Food Chemistry, 68(1), 15-19.
  • [11] Khan, A.R., Alam, S., Ali, S., Bibi, S., Khalil dan, I.A. (2007). Dietary Fiber Profile of Food Legumes. Sarhad Journal of Agriculture, 23(3), 763-766.
  • [12] Tosh, S.M., Yada, S. (2010). Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Research International, 43(2), 450-460.
  • [13] Meuser, F., Pahne, N., Möller M. (1997). Yield of starch and by-products in the processing of different varieties of wrinkled peas on a pilot scale. Cereal Chemistry, 74, 364-370.
  • [14] Otto, T., Baik, B.K., Czuchajowska, Z., 1997. Microstructure of seed, flours, and starches of legumes. Cereal Chemistry, 74, 445-451.
  • [15] Dalgetty, D.D., Baik, B.K. (2003). Isolation and characterization of cotyledon fibers from peas, lentils, and chickpeas. Cereal Chemistry, 80(3), 310-315.
  • [16] Chiou, D., Langrish, T.A.G. (2007). Development and characterisation of novel nutraceuticals with spray drying technology. Journal of Food Engineering, 82(1), 84-91.
  • [17] Sánchez-Mata, M.C.J.P.T.M., Cámara-Hurtado, M., Díez-Marquéz, C., Torija-Isasa, M.E. (1998). Determination of mono-, di-, and oligosaccharides in legumes by high-performance liquid chromatography using an amino-bonded silica column. Journal of Agricultural and Food Chemistry, 46(98), 3648-3652.
  • [18] McConnell, A.A., Eastwood, M.A., Mitchell, W.D. (1974). Physical characteristics of vegetable foodstuffs that could influence bowel function. Journal of the Science of Food and Agriculture, 25, 1457-1461.
  • [19] Chau, C.F., Cheung, P.C.K., Wong, Y.S. (1997). Functional properties of protein concentrates from three Chinese indigenous legume seeds. Journal of Agricultural and Food Chemistry, 45(7), 2500-2503.
  • [20] Betancur-Ancona, D., Peraza-Mercado, G., Moguel-Ordoñez, Y., Fuertes-Blanco, S. (2004). Physicochemical characterization of lima bean (Phaseolus lunatus) and Jack bean (Canavalia ensiformis) fibrous residues. Food Chemistry, 84(2), 287-295.
  • [21] Yasumatsu, K., Sawada, K., Moritaka, S., Misaki, M., Toda, J., Wada, T., Ishii, K. (1972). Whipping and emulsifying properties of soybean products. Agricultural and Biological Chemistry, 36(5), 719-727.
  • [22] Kaur, A., Singh, N., Ezekiel, R., Sodhi, N.S. (2009). Properties of starches separated from potatoes stored under different conditions. Food Chemistry, 114(4), 1396-1404.
  • [23] Carbonaro, M. (2011). Role of Pulses in Nutraceuticals. In: Pulse Foods: Processing, Quality and Nutraceutical Applications. Edited by: B. Tiwari, A. Gowen, & B. McKenna. Academic Press; New York: pp.385-418.
  • [24] Han, I.H., Baik, B.K. (2006). Oligosaccharide content and composition of legumes and their reduction by soaking, cooking, ultrasound and high hydrostatic pressure. Cereal Chemistry, 83, 428-433.
  • [25] Vaikousi, H., Biliaderis, C.G., Izydorczyk, M.S. (2004). Solution flow behavior and gelling properties of water-soluble barley (1→3,1→4)-β-glucans varying in molecular size. Journal of Cereal Science, 39(1), 119-137.
  • [26] Miao, M., Zhang, T. Jiang, B. (2009). Characterisations of kabuli and desi chickpea starches cultivated in China. Food Chemistry, 113, 1025-1032.
  • [27] Lazaridou, A., Biliaderis, C.G., Izydorczyk, M.S. (2003). Molecular size effects on rheological properties of oat beta-glucans in solution and gels. Food Hydrocolloids, 17(5), 693-712.
  • [28] Li, W., Cui, S.W., Kakuda Y. (2006). Extraction, fractionation, structural and physical characterization of wheat β-glucans. Carbohydrate Polymers, 63, 408-416.
  • [29] Zhang, M., Bai, X., Zhang, Z. (2011). Extrusion process improves the functionality of soluble dietary fiber in oat bran. Journal of Cereal Science, 54(1), 98-103.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Dilara Nilüfer Erdil 0000-0001-9848-0345

Sinem Gedik Bu kişi benim 0000-0002-0508-9011

Yayımlanma Tarihi 5 Ağustos 2018
Gönderilme Tarihi 6 Nisan 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Nilüfer Erdil, D., & Gedik, S. (2018). Kırmızı ve Yeşil Mercimekten Elde Edilen Diyet Liflerinin Karakterizasyonu ve Fonksiyonel Özellikleri. Akademik Gıda, 16(2), 135-147. https://doi.org/10.24323/akademik-gida.449600
AMA Nilüfer Erdil D, Gedik S. Kırmızı ve Yeşil Mercimekten Elde Edilen Diyet Liflerinin Karakterizasyonu ve Fonksiyonel Özellikleri. Akademik Gıda. Ağustos 2018;16(2):135-147. doi:10.24323/akademik-gida.449600
Chicago Nilüfer Erdil, Dilara, ve Sinem Gedik. “Kırmızı Ve Yeşil Mercimekten Elde Edilen Diyet Liflerinin Karakterizasyonu Ve Fonksiyonel Özellikleri”. Akademik Gıda 16, sy. 2 (Ağustos 2018): 135-47. https://doi.org/10.24323/akademik-gida.449600.
EndNote Nilüfer Erdil D, Gedik S (01 Ağustos 2018) Kırmızı ve Yeşil Mercimekten Elde Edilen Diyet Liflerinin Karakterizasyonu ve Fonksiyonel Özellikleri. Akademik Gıda 16 2 135–147.
IEEE D. Nilüfer Erdil ve S. Gedik, “Kırmızı ve Yeşil Mercimekten Elde Edilen Diyet Liflerinin Karakterizasyonu ve Fonksiyonel Özellikleri”, Akademik Gıda, c. 16, sy. 2, ss. 135–147, 2018, doi: 10.24323/akademik-gida.449600.
ISNAD Nilüfer Erdil, Dilara - Gedik, Sinem. “Kırmızı Ve Yeşil Mercimekten Elde Edilen Diyet Liflerinin Karakterizasyonu Ve Fonksiyonel Özellikleri”. Akademik Gıda 16/2 (Ağustos 2018), 135-147. https://doi.org/10.24323/akademik-gida.449600.
JAMA Nilüfer Erdil D, Gedik S. Kırmızı ve Yeşil Mercimekten Elde Edilen Diyet Liflerinin Karakterizasyonu ve Fonksiyonel Özellikleri. Akademik Gıda. 2018;16:135–147.
MLA Nilüfer Erdil, Dilara ve Sinem Gedik. “Kırmızı Ve Yeşil Mercimekten Elde Edilen Diyet Liflerinin Karakterizasyonu Ve Fonksiyonel Özellikleri”. Akademik Gıda, c. 16, sy. 2, 2018, ss. 135-47, doi:10.24323/akademik-gida.449600.
Vancouver Nilüfer Erdil D, Gedik S. Kırmızı ve Yeşil Mercimekten Elde Edilen Diyet Liflerinin Karakterizasyonu ve Fonksiyonel Özellikleri. Akademik Gıda. 2018;16(2):135-47.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).